
CS272 - Theoretical Foundations of Learning, Decisions, and Games

Lecture 9: Efficient Algorithms for Online Learning
September 25, 2025

Lecturer: Nika Haghtalab Readings: UML Chapter 21
Scribe: -

Background and motivation
A central storyline in learning theory contrasts the offline (statistical) world with the online (ad-
versarial) world. In the previous lecture, we addressed the statistical gap between these two
paradigms: offline learnability is characterized by the finiteness of VC dimension, online learn-
ability by the finiteness of Littlestone dimension, and smoothed analysis yields regret bounds that
depend only on the VC dimension even against smoothed adaptive adversaries.

In this lecture, we turn to the algorithmic gap between online and offline learning. Early in the
semester we observed that ERM is a universally good algorithm for offline learning: any class of
VC dimension d is PAC-learnable by ERM from O

(
ϵ−2(d + ln(1/δ))

)
samples. In contrast, ERM

is not a good algorithm for online learning; in particular, we saw in previous lectures that repeated
ERM (and any other deterministic algorithm) can be forced to incur a regret of Ω(T).

On the other hand, the Randomized Weighted Majority (RWM) algorithm is a natural online
choice, but its running time scales linearly with the number of experts. This is unfortunate in
settings with exponentially many (or even infinitely many) experts, where RWM becomes com-
putationally intractable — even when the corresponding offline ERM problem can still be solved
efficiently by exploiting structure.

Our goal in this lecture is to design online algorithms that build up on ERM. We will study
Follow-the-Regularized-Leader (FTRL) and Follow-the-Perturbed-Leader (FTPL), two general frame-
works for online algorithm design that achieve low regret while prioritizing computational effi-
ciency by using the same or similar computation as ERM does.

Up to now, we have discussed the expert setting where on round t we choose an expert it ∈ [n]
and analyze the expected loss E[ct(it)]. Today we move to a more general linear model. In the
adversarial online setting, on each round t = 1, . . . , T , the learner chooses xt ∈ X ; then a linear
loss ct : X → R is revealed and the learner suffers

ct(xt) = ⟨ct, xt⟩.

The regret against a comparator x⋆ ∈ X is

RegretT (x
⋆) =

T∑
t=1

ct(xt) −
T∑
t=1

ct(x⋆).

The learning-with-expert-advice setting is a special case with X = ∆n (the probability simplex),
∥ct∥∞ ≤ 1, and xt ≥ 0, ∥xt∥1 = 1, in which case Eit∼xt [ct(it)] = ⟨ct, xt⟩.

1

1 Role of Stability in Online learning
Let us start by recalling the lower bound on repeated ERM from prior lectures.

Theorem 1.1. For any deterministic algorithm (including ERM) A, there is an online sequence
such that REGRET(A) ≥

(
1− 1

n

)
T , where n is the number of experts in the problem.

Proof. At each iteration t, since A is deterministic, the adversary can design his cost function as
follows: ct(it) = 1 if it is the expert that the player will choose by A and ct(i) = 0 for all i ̸= it.
In this case,

∑T
t=1 c

t(it) = T , while mini∈[n]
∑T

t=1 c
t(i) ≤ T

n
because at least one of the n experts

appeared in less than T/n time steps. Thus REGRET(A) ≥ T − T
n
=

(
1− 1

n

)
T .

This theorem shows the performance of ERM against an worst-case adversary. What made
this sequence very challenging to learn was that the best expert so far, i.e., ERM’s outcome, kept
changing at most time steps. That is, the algorithm was running behind the ERM at the next step.
Indeed, this is the main challenge when it comes to online learning. To begin, we will prove the
following lemma, often referred to as the “Be the Leader” lemma.

Lemma 1.2 (Be the Leader). If the strategy of the player is ERM, i.e., xt = argminx

∑t−1
τ=1 c

τ (x),
then

REGRET(ERM) =
T∑
t=1

ct
(
xt
)
−min

x

T∑
t=1

ct (x) ≤
T∑
t=1

(
ct
(
xt
)
− ct

(
xt+1

))
.

Proof. Note that, it suffices to prove that

T∑
t=1

ct
(
xt+1

)
≤ min

x

T∑
t=1

ct (x) =
T∑
t=1

ct
(
xT+1

)
,

where the second equality holds by the definition of xT+1. We prove this new inequality by induc-
tion. When T = 1, the claim follows by definition. Assume

T−1∑
t=1

ct
(
xt+1

)
≤ min

x

T−1∑
t=1

ct(x).

Then,

T∑
t=1

ct
(
xt+1

)
=

T−1∑
t=1

ct
(
xt+1

)
+ cT

(
xT+1

)
≤ min

x

T−1∑
t=1

ct(x) + cT
(
xT+1

)
(Induction Hypothesis)

≤
T−1∑
t=1

ct(xT+1) + cT
(
xT+1

)
(replacing x← xT+1)

2

=
T∑
t=1

ct
(
xT+1

)
= min

x

T∑
t=1

ct(x).

as required.

Now let us see what this lemma implies. If the algorithm’s decisions change on only k
rounds—namely, if xt ̸= xt+1 for at most k time steps—then RegretT (ERM) ≤ k. More gen-
erally, even when xt ̸= xt+1 but the loss functions ct are Lipschitz and the successive decisions
xt+1 and xt remain close in distance, the same lemma yields a meaningful (and typically small)
regret bound.

2 Follow the Regularized Leader
In this section, we see how we can stabilize ERM so as to achieve a no-regret algorithm. We
start by considering ERM with one small change, we add to the history a new cost function c0(·).
This cost function is often called a regularizer. We refer to ERM with a regularizer as Follow the
Regularized Leader (FTRL) algorithm. See Algorithm 1 for a description.

Algorithm 1 Follow the Regularized Leader (FTRL)

Input: regularizer R(·)
x1 = argminx∈X R(x)
for t = 2, 3, . . . , T do
xt = argminx∈X

(
R(x) +

∑t−1
τ=1 c

τ (x)
)

end for

Theorem 2.1 (FTRL/FTPL Theorem). Let xt be the action played by the FTRL algorithm (Algo-
rithm 1) at time t. Then, for any x∗ ∈ X ,

T∑
t=1

ct(xt)−
T∑
t=1

ct(x∗) ≤
T∑
t=1

[
ct(xt)− ct(xt+1)

]
+
[
R(x∗)−R(x1)

]
In other words, if you regularize your ERM, the regret is the same as in Lemma 1.2, but includes

the difference term for the regularizer. The proof is a simple edit to thgeec proof of Lemma 1.2
when adding day 0’s cost function.

To see the implications of the FTRL theorem, let’s consider the linear cost function again. That
is, ct(x) = ct · x. Then our hope is that the choice of regularizer induces large enough cost so that
the choice of xt and its loss changes slowly, i.e., ct(xt) − ct(xt+1) ≤ ϵ, but also the regularizer is
small enough so that R(x∗) − R(x1) is also small. In that case the regret ≤ ϵ · T +maxx R(x) is
hopefully small. So, we need to choose a regularizer that has these properties.

3

Theorem 2.2. Let X ⊆ Rn be X = {x | ∥x∥2 ≤ 1} and assume that the cost functions on each
step are linear and ∥c∥2 ≤ 1. Consider the FTRL algorithm with the following regularizer

R(x) =

√
T

2
∥x∥22.

Then the regret of FTRL is at most
√
2T .

Proof. Note that x1 = 0 is the minimizer of the regularizer. For all other time steps we have

xt+1 = argminx

√
T

2
∥x∥22 +

t∑
τ=1

cτ · x.

We find this minimum by taking the gradient and setting it to be equal to 0 as follows.

2

√
T

2
· x+

t∑
τ=1

cτ = 0

xt+1 = − 1√
2T

t∑
τ=1

cτ

If we had done this at the time step before, we would have gotten:

xt = − 1√
2T

t−1∑
τ=1

cτ .

So
xt+1 = xt − 1√

2T
ct.

This is online gradient descent! It also shows that ct · xt − ct · xt+1 changes slowly. Then,

Regret ≤
T∑
t=1

ct · (xt − xt+1) +R(x∗)−R(0)

≤
T∑
t=1

(
ct · 1√

2T
· ct

)
+

√
T

2
∥x∗∥22

≤
T∑
t=1

1√
2T

+

√
T

2

=

√
T

2
+

√
T

2
≤
√
2T

4

Note that in the above application of FTRL, it’s possible that we play xt /∈ X , i.e., it is possible
that ∥xt∥ > 1. Can we get similar guarantees as in Theorem 2.2 if we limited FTRL to play
within X ? Yes, when X is a convex body as is in Theorem 2.2. In that case, at every step of the
optimization, let x̂t be what FTRL suggests, and let xt ∈ X be the closest point to x̂t. That is
xt ∈ X is a projection of x̂t on the convex set X . Note that the distance between two points after
projection on a convex body is only smaller than before. That is,

∥xt − xt+1∥ ≤ ∥x̂t − x̂t+1∥.

So the stability property maintained by FTRL still holds here after projection.

3 Follow the Perturbed Leader
Let’s consider an online routing game, where every day we decide what route to take from home
to work. There is a graph G = (V,E) where the domain of our actions are valid paths in G, shown
by the set X ⊆ {0, 1}E . Our cost function is a vector c where entry ci is the traffic or delay on
edge i. When taking route x our total delay is c ·x. While this is a linear cost function, our domain
set X is not convex. Even though this problem is not a convex optimization problem, we can still
solve the ERM efficiently in time poly(|E|) by using Dijkstra’s algorithm. In this section, we ask
whether for linear functions we can turn any efficient ERM into a no-regret algorithm that is also
efficient, even if the problem is non-convex?

Let us consider the case of learning with experts. We have K be the simplex of n dimensions
(all probability distributions over all experts): {x : xi ≥ 0 ∀i,

∑n
j=1 xj = 1}. Set c to be such

that ci is the cost of expert i, which is between 0 and 1. Theorem 2.2 suggests that if we pick
a strongly convex cost of

√
T/2∥x∥22 then we can get a no-regret algorithm. While this is true,

note that
√

T/2∥x∥22 cannot be interpreted as cost of experts at a time step, simply because it is
not linear. So, we ask whether we can use other methods of providing regularization that lead to
c0(x) = R(x) referring to the cost of the experts on time step 0?

The following algorithm, called Follow the Perturbed Leader (FTPL), achieves this exactly. It
takes a cost function c0 that assigns random costs to each expert at time 0. Then, at every time step
it picks the expert whose cumulative cost including step 0 is minimized.

Algorithm 2 Follow the Perturbed Leader
for t = 1, 2, 3, 4, ...T do
c0 ∼ distribution
xt = argminx

(
c0(x) +

∑t−1
τ=1 c

τ (x)
)

end for

For an adaptive adversary, it is important that we re-draw c0 at every step to preserve the ran-
domness of our algorithm. But for the oblivious adversary we could take c0 once at the beginning
and reuse the same cost throughout. The expected regret of both algorithms is the same.

5

Theorem 3.1. Let X ⊂ Rn be any set (not-necessarily convex) such that maxx,x′ ∥x− x′∥1 ≤ D.
Assume that the cost functions are such that ∥ct∥1 ≤ A. Furthermore, assume that for any x and
x, |c · x| ≤ R. Then, Follow the Perturbed Leader with c0 ∼ Unif

[
0, 2

ϵ

]n has

E [Regret] ≤ 2D

ϵ
+ TRAϵ.

Note that for ϵ =
√

2D
ART

, this leads to E [Regret] ≤
√
2ARDT.

Proof. Recall from Theorem 2.2 that

E [Regret] ≤ E

[
c0 · (x∗ − x1) +

T∑
t=1

ct · (xt − xt+1)

]
(1)

For the first term in the above inequality we have

c0 · (x∗ − x1) ≤ ∥c0∥∞∥x∗ − x1∥1 ≤
2

ϵ
D.

Next, we will analyze the second term in Equation 1. By linearity of expectation, we only need
to show that E[ct · xt] − E[ct · xt+1] ≤ RAϵ for a fixed time step t. To help us with the notation,
we’ll define Box(a, b) = x | ai ≤ xi ≤ bi. Note that FTPL is choosing a random c0 ∼ Box(0, 2

ϵ
).

We will complete this proof in the next lecture. For now, we just define a useful quantity that
will be used in the proof in the next time.

p := Pr
c0∼Box(0,2/ϵ)

[
c0 ̸∈ Box(ct,

2

ϵ
)

]
=

Box(0, 2
ϵ
) \ Box(ct, 2

ϵ
)

Box(0, 2
ϵ
)

=
Box(0, 2

ϵ
) \ Box(0, 2

ϵ
− ct)

Box(0, 2
ϵ
)

where the last equality is by the symmetric nature of the box definitions.

6

	Role of Stability in Online learning
	Follow the Regularized Leader
	Follow the Perturbed Leader

