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1 Lecture Overview

From our previous lectures, we covered both Offline and Online learning, with the results of bounds
of the Regret when the consistency assumption doesn’t hold and does hold plotted in the table
below. Relevant papers where these bounds are derived are cited in the table. As a reminder, )
indicates that that particular bound is tight to some polylogarithmic function of 7.

Our goal for this lecture is to explore a middle ground between Offline and Online learning,
since we observed that the Offline case is rather easy while the Online case is exceedingly difficult.
This was seen in the analysis of the Littlestone dimension (LDim) of 1-dimensional thresholds—an
example that we will return to in motivating the case for a middle ground. Indeed, the Littlestone
dimension of most natural classes in machine learning is infinite, as whenever a class embeds a
thresholding behavior (as we often strive for in classification), the class is known to suffer from
infinite Littlestone behavior.

We will see that a middle ground can be constructed by constraining the adversary to have
a "shaking hand" — in the sense that they are still able to adversarially construct the data and
labels, as in the online setting, but there is an added random perturbation to the data outside the
adversary’s control.

Regret/Mistake Bound

Regret Agnostic o : " .
with "consistency" assumption

O(v/T - VCD) O(VCD - InT)

Offline Haussler] [1992] Valiant [[1984]

1
o-smoothed Adversary O (\/T - VED - In(3) ) O(VCD - poly log(£))
Haghtalab et al.|[2024]]

O(v/T - LDim) ©(LDim)
Online Ben-David et al.|[2009] Littlestone| [[1988]]
Alon et al.|[2021]] Littlestone and Warmuth| [[1994]]




As a reminder, the main difference between the Offline and Online paradigms is that the data
in the Offline setting are drawn independently and identically from the same distribution, while
Online data can be arbitrarily dependent on past data. In practice, allowing dependence on the
past is important for prediction and generation. Examples include stock forecasting, where future
performance can depend on historical performance and predictions, and text generation, where the
next token generated is conditioned on the history of the text up to that point.
We will see that the limits of our model for a middle ground—the o-smoothed Adversary—reduce

to the Offline and Online cases.

e Offline: z; isi.i.d. from zq, ..., 244

* Online: x; could be dependent on x4, ..., 1

2 Middle Ground in 1D Thresholding

We would like to construct a paradigm that is weaker than online learning, but still one that allows
future instances to depend on earlier instances. We will focus on the one-dimensional threshold as
a canonical example of a hard class to online learn (Littlestone dimension of infinity) in our initial
investigation.

Example: Shaky Hand Adversary

Let’s consider a situation where ;. can depend on 71, . . ., 7, but there is still randomness. Sup-
pose our adversary thinks of z;,; based on x1, ..., x;, but then their hand shakes when they write
it down, so there is error. Mathematically, we can think of this as:

Tyl ™~ Uniform[i’tﬂ — 0, :%tJrl -+ O']

for a parameter ¢. This is a natural assumption to make since in real life, all the measurements we
take are approximations.

Informal claim: The adversary cannot use the infinite-depth shattered tree strategy we saw in
the previous lecture to inflict an infinite number of mistakes in the consistency model.

We analyze the example of the one-dimensional threshold game studied in the last lecture,
where the adversary queries the learner on the labels of adaptive instances that form a binary
search tree. The shattered tree in this sense is a tree like the one shown in Figure 1(a). Note that
the adversary traverses the tree such that x;,; is the right child of z; if y, = —1, and the left child
of z; if y, = +1. Moreover, y; is chosen at every round as the opposite of the learner’s prediction
Yt

Let [aq, b;] be the interval between the rightmost negatively labeled point and the leftmost pos-
itively labeled point—that is, the interval outside of which the learner knows the labels of future
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(a) Worst-Case Adversary (b) Shaky Hand Adversary

points with certainty. No matter how small [a;, b;] is, a worst-case adversary can recursively con-
struct a shattered tree within such an interval. Therefore, this worst-case adversary can force the
learner to make an arbitrarily large number of mistakes.

Now consider the adversary with shaky hands, as in Figure Note that when |a — b| < o, no
matter what %, the adversary chooses, it is very likely that x; ¢ [a,b]. Since, outside of [a, b], the
learner knows the label of the queried point with certainty (due to the promise of consistency with
some threshold function), such a query can be answered with no mistake on the part of the learner.
This limits the adversary’s power for recursively going down the shattered tree, and in some way,
o defines an interval or resolution within which the adversary does not have control.

3 Smoothed Adaptive Adversary

We now introduce a more general model of adaptive adversaries inspired by the above example.
Note that the main limiting factor on the adversary was that they could not focus on arbitrarily
small areas of the domain. In other words, they could not concentrate their queries too much in a
way that was unpredictable to the learner.

Let 1 be some base measure (e.g., a uniform distribution or Gaussian). A smoothed adversary
operates as follows:

1. At time ¢, the adversary picks a distribution D; on X’ (depending on the history thus far),
with the only constraint being that D, is o-smooth with respect to .

2. x; ~ D, and is revealed to the learner.
3. The learner predicts 7, and later observes ;.

Definition 3.1 (o-smoothness). A distribution D is o-smooth with respect to p if VA C X,
D(A) < #A where 0 < 0 < 1.

Remark 3.2. Here 1 is known in advance to the learner. The definition of o-smooth can be gener-

alized to requiring j—f < % where % is the Radon-Nikodym derivative.
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Figure 2: A representation of the finite set H’, which is chosen as an e-net of the concept space C
with respect to x for some €. For all h € C,3h' € H', which is at most € distance away from h, as
measured by their agreement on y (i.e., Py, (h(z) # 1 (2))).

Theorem 3.3. Let D denote the joint distribution on x1, . ..,xp where T is the final time. There is
an algorithm in online learning with smooth adaptive adversaries with expected regret

T T
Zﬂ(ﬁt?ﬁyt —1an]1 () # ye)
=1 =1

Next, we will sketch a proof for this theorem with a more relaxed bound O(,/VCD - T/5).

<(’)(\/VCD T In(L ))

Proof Sketch of Theorem[3.3} Let H' C C' be some finite set. Ignore C'\ H' and play randomized
weighted majority (RWM)/multiplicative weight update (MWU) algorithm on H’. Then the regret
of this algorithm is

T
regret < E
g - D

T
Zﬂ Je # i) — Hlf
t=1

IL(h/(ﬂft) #* Z/t)]

/

-~

expected regret in mistake-bound setting<<4 /7T log(H "
T

inf 1 — inf 1(h
e (W (1) # y1) 1n tzl (@t #yt]

+E
D

(. /

Ar :approximation error of H'

What is a good choice of H'? |H'| < (1)VeP(©) (YERLAYVED(G) oVED(O) gre al] acceptable because

€

we want log(H') < O(VCD(C)). What we want is for H’ to have small approximation error (i.e.,
V/VCD(C) - T - something with something o * or log(2).

It is important for the approximation error to be small when measured over instances drawn
from D. But this is difficult to discuss due to the dependencies between the x;s in this distribution.
So, to get some more intuition we start with a scenario where D is the distribution of i.i.d samples
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from ©? How could we ensure that

T

E| inf 1(R (z¢) # yr) —1nf2]1 (z¢) # )
1

T

2ug h}g], > 1(h(x,) # B (24))]

<E

is small? We introduce the following lemma, which considers this case.

Lemma 3.4 (Haussler). For any distribution y, there is H' C C of size |H'| < (1)) such
that
Vh e C, 30 € H' s.t. P,(h(x) # 1 (x)) <e. (1)

Remark 3.5. Statement|[1]is that H' is an e-cover (or e-net) of C' with respect to .

Proof Sketch of Theorem (cont.): From now on, take H’ to be an e-net of C' with respect to j
for some e.

Claim: When H' C (' is an e-net for C with respect to p, its expected approximation error
(Ar) with respect to C' and any D that is o-smooth is also small:

T

}slugh}leljf{, 1(h(z) # h’(xt))] < O(T-K~e—i— VT -K-VCD(C)+T(1— O')K>.

AT<ED

Proof of claim: Define gy(z) = 1(h(z) # hj(x)) where h} is the closest neighbor in H’ to h.
Then, we can write:

T

sup inf T(h(xy) # B (x4))

W eH!
heC —

T

sup Z g(xt)] )

geG —1

Ep =Ep

A fact from homework 2 tells us VCDim(G) < 2VCDim(C'). So, this fact and the union bound
allow us to write:

Ep sung xy)

gEG

<supE
geG

Z g(x)

The next lemma is arguably the most magical property of smoothed adversaries. Up to now,
we have built some intuition regarding instances where D is an i.i.d. process. Of course, to address
smoothed adversaries, we need to go beyond the independence assumption. The following lemma
states, in general, how adaptive smoothed adversaries over a time horizon of length 7" can be
viewed as adversaries that generate approximately 7"/o samples and then select a subset of them.
More formally, we have:

+O( TVCD(C)).

Lemma 3. 6 (Coupling between smoothed adaptive and i.id processes) Suppose D is a o-smooth

B Y

such that:



1. x’s are distributed with respect to Dy(-|xy, ..., T¢1)
2. {Zg}tzl ..... Tij=1,..K L-i.d from p
3. Foreacht, Pr(x, ¢ {2l }jo1. x) < (1—0)K
Proof of [3.3](cont.): Proof of claim (cont.): Applying the coupling lemma, we see

Ep sung z)| <Ep supZZg +T(1 — o)X
gEG geG =1 j—1
B
and
T K
B <supE, | Y Y g(z])| +/T- K -VCD(C)
9eG t=1 j=1

[ J/

We can see the supremum above is upper bounded by 7'K¢ using the definition of g(zf ) as an
indicator function and the fact that 4’ is in the e-cover.

E, zzg<zz‘>] S SO, (1) £ ()]

t=1 j=1

Combining the above results, we see that

T

sup » g(x¢)

Ar < Ep <T-K-e++/T-K-VCD(C)+T(1-0)k.

Ife:;—zandK:}rlogT,

g

—_— =~
o) o)

Ar < Texp(—FKo) + 75 4\ /T In(T)VCD(C).

Then

regret < /T log(H') + O(\/§ (T)VeD(C))
Vab(C) - <ﬁ+ o(\/_)>
:(5( §VCD(C)). O
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Remark 3.7. This proof sketch achieves a polynomial dependence on %, compared to the stated
dependence of log(1/0). To obtain the tight bound stated in Theorem the main idea is to use
a stronger concentration inequality (Bernstein rather than Hoeffding) that leverages the fact that
E[g(2])] < € to achieve a tighter bound on the approximation error.
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