
CS272 - Theoretical Foundations of Learning, Decisions, and Games

Lecture 7: Online Learning III
September 18, 2025

Lecturer: Nika Haghtalab Readings: UML Chapter 21
Scribe: Ryan Campbell

1 Recap
In the last lecture we attempted to get MistakeBound ≤ OPT + (∗), where (∗) is small some
quantity of the order ≈ log |C|. We introduced an algorithm that almost met this requirement,
but with a constant multiplicative factor: the Weighted Majority Algorithm with MistakeBound ≤
2.4(OPT + log |C|).

We then introduced the Randomized Weighted Majority algorithm (also known as the Multi-
plicative Weights Update, MWU), that added randomization to the choice of the expert. While
doing so, we also started to work with general-purpose cost functions that go beyond 0-1 losses.
We ended the last lecture with the proof of the following lemma on the performance of RWM.

Theorem 1.1. For cost functions ct : [n]→ [0, 1], the RWM(ε) algorithm gets

E

[
T∑
t=1

ct(it)

]
︸ ︷︷ ︸

cost(ALG)

≤ 1

1− ε
E

[
min
i∗∈[n]

T∑
t=1

ct(i∗)

]
︸ ︷︷ ︸

OPT

+
1

ε
ln(n)

In this lecture, we first return to our goal of obtaining bounds on cost(ALG)−OPT and then
discuss the setting where the number of experts is infinitely large.

2 Regret and No-Regret Algorithms
We define Regret to be the gap between cost(ALG) and OPT.

Definition 2.1. The Regret of an algorithm A on a sequence of costs c1, c2, . . . , cT is

Regret
(
A, {c}Tt=1

)
=

T∑
t=1

ct(it)− min
i∗∈[n]

T∑
t=1

ct(i∗)

where it are the choices of A. Note that oftentimes we are concerned with expected regret.

E
[
Regret

(
A, {c}Tt=1

)]
= E

[
T∑
t=1

ct(it)− min
i∗∈[n]

T∑
t=1

ct(i∗)

]

1

We often refer to the worst-case regret of algorithm A on any sequence of costs by just
Regret(A).

Corollary 2.2. The expected regret of MWU(ε) for ε∗ = min

{
1
2
,
√

ln(n)
2·

}
, is

2
√
2 · OPT · ln(n) ≤ O

(√
T · ln(n)

)
.

Proof. Note that for ε < 1
2
, we have that 1

1−ε
< 1 + 2ε. Then using Theorem 1.1, we have that

E [Regret (MWU)] ≤ 2εOPT +
1

ε
ln(n)

When OPT is known, we can choose ε∗ according to the following

ε∗ = min

{
1

2
,

√
ln(n)

2 ·OPT

}
to get the desired bound. Note that, OPT ≤ T which gives the final inequality in the stated
results.

Remark 2.3. When OPT is not known, one can use ε∗ = min

{
1
2
,
√

ln(n)
2·T

}
to get the same asymp-

totic regret bound. Sometime T might not even be known. In such cases, a “guess-and-double”
trick can be used: First guess a small horizon Ti, run the algorithm with for this number of steps
with the associated step size. If the actual horizon exceed Ti then double the estimate Ti+1 = 2Ti

and continue with the associated ϵ. Continue until the guessed horizon exceeds the actual number
of time steps played. Note that the regret of this trick is

log(T)∑
i=0

O
(√

2i ln(n)
)
∈ O

√
T ln(n),

since for any k
k∑

i=0

(
√
2) i =

(
√
2) k+1 − 1√
2− 1

= Θ
(
(
√
2) k

)
= Θ

(√
2 k

)
.

There are schedules for changing ϵ that solely depend on ϵt that lead to smaller constants
hidden in O(·) notation. We won’t discuss these and from here onward we assume that we always
know T in advance (since the guess-and-double trick can be used to overcome lack of knowledge
otherwise).

Definition 2.4. A No-Regret algorithm is an algorithm where the (expected) regret on any sequence
of costs is ≤ o(T). Equivalently, an algorithm A is no-regret is

lim
T→∞

Regret(A)
T

= 0

2

3 No-regret Algorithms with Infinite Hypothesis Classes
A natural question to ask is what happens if |C| is unbounded? In this case, without further assump-
tions, nothing can be done to learn with no regret. To begin answering this question, we consider
what we have shown so far in Table 1.

Table 1: Summary of Online vs. Offline

Sample Complexity error / Regret

finite C infinite C

Offline m ∈ O
(

1
ε2

(
d+ ln 1

δ

))
ε ≤ O

(√
m ln |C|

)
ε ≤ O

(√
mVCD(C)

)
Online O

(√
T ln |C|

)
?

We wish to fill in the “?" part of the table, but it is not so clear whether or not VCD is the
correct notion for Online learning with infinite C.

This question cannot be separated from the question of what algorithms are no-regret! While,
we have seen that RWM is no-regret for finite hypothesis classes, its dependence on ln(|C|) is
problematic. On the other hand, ERM is also not a good algorithm even for finite C, as shown
below:

Theorem 3.1. For any deterministic Algorithm, there is an adversarial sequence where

Regret ≥ Ω(T)

≥
(
1− 1

n

)
T

Proof. Any deterministic algorithm chooses it as a function of the history so far. For example, in
ERM,

it ← argmin
i∈[n]

t−1∑
τ=1

cτ (i).

Because of the determinism, it can always be known to an adversary. Thus, the adversary can
choose ct(it) = 1 and ct(i′) = 0 for i′ ̸= it. Then the cost of ALG will be T . Since ∃i ∈ [n] such
that i is used ≤ T/n times, OPT ≤ T/n. Thus, Regret ≥ T − T/n =

(
1− 1

n

)
T .

4 Consistency Model in Infinite Hypothesis classes
What is analogous to VCDim then? In this section we explore this question. Recall the following
example.

3

Example 4.1. Consider the case where C are 1-dim thresholds. That is, C = {ha | a ∈ R} with
each ha = 1(x ≥ a). This can be visualized as splitting a number line.

0 1
8

1
4

3
8

1
2

5
8

3
4

7
8

1

In the finite case, each prediction and label ‘reveals’ some information about where a is, though
it is not hard to see that in the infinite case, the adversary can easily obfuscate a for as long as
they want, while ensuring that the learner makes infinite mistakes along the way. Consider the
following possible sequence:

• Adversary gives us 1
2
, we predict 1 but the true label is 0

• Adversary gives us 3
4
, we predict 0 but the true label is 1

• Adversary gives us 5
8
, we predict 1 but the true label is 0

• So on and so forth . . .

0 1
8

1
4

3
8

1
2

5
8

3
4

7
8

1

− +−

1
2•

1
4•

3
4•

1
8•

3
8•

5
8•

7
8•

...
...

...
...

...
...

...
...

−

+

−

The adversary can always see our prediction, provide the opposite label, and pose the next
question based on what information has been revealed in order to cause infinite mistakes. Even
simpler, an adversary can choose each label with equal chance, causing every algorithm to have
cost T/2 in expectation while OPT remains perfect. All of this is true even though VCD(C) = 1.
We still have MistakeBound =∞.

This example tells us that finiteness of VCDim is not enough for online learnability. Thus, we
proceed by introducing a different notion of combinatorial dimension, the hope being that we can
identify concept classes that are learnable in the online and infinite size setting.

4

Definition 4.2 (Root-to-leaf path). Consider a full binary tree whose nodes are elements of X .
Given such a tree of depth d and sequence of binary numbers (y1, y2, . . . , yd) ∈ {0, 1}d, the corre-
sponding root-to-leaf path is a sequence (x1, . . . , xd) that is generated by traversing this tree. That
is, xt is the root of the current tree, we then recursively take the right subtree of if yt = −1, and
the left child if yt = +1, and continue to t+ 1.

Definition 4.3 (Shattering a tree). Consider a full binary tree of depth d, where each node is
x ∈ X . This tree is shattered by concept class C if for all (y1, . . . , yd) ∈ {0, 1}d, the root-to-leaf
path (x1, . . . , xd) defined by (y1, . . . , yd) has the following property:

∃h ∈ C such that ∀i ∈ [d] it is the case that h(xi) = yi.

Definition 4.4 (Littlestone Dimension of a class C). The maximal depth of a tree that can be
shattered by C is LDim(C), the Littlestone dimension.

Based on the definition of Littlestone dimension, we have the following easily-provable facts.

Fact 4.5. For all C, LDim(C) ≤ log(|C|).

Proof. Shattering a depth d tree implies all 2d root-to-leaf paths can be labeled, so |C| ≥ 2d.

Fact 4.6. LDim(C) ≥ VCDim(C)

Proof. Let the set (not the tree!) S = {x1, . . . , xn} be shattered by C. Then construct a tree where
at each depth j, all nodes are xj . This tree is also shattered by C, since every root-to-path leaf
refers to x1, . . . , xn.

5 Standard Optimal Algorithm
Using our newly-defined Littlestone dimension we can state and later prove the following theorem.
We can also fill out Table 1, as shown in Table 2.

Theorem 5.1. In the consistency model, there is an algorithm with MistakeBound ≤ O(LDim(C)).

Table 2: Summary of Online vs. Offline (filled in)

Sample Complexity error / Regret

finite C infinite C

Offline m ∈ O
(

1
ε2

(
d+ ln 1

δ

))
ε ≤ O

(√
m ln |C|

)
ε ≤ O

(√
mVCD(C)

)
Online O

(√
T ln |C|

)
Õ
(√

T · LDim(C)
)

5

The idea behind the algorithm in Theorem 5.1 is similar to MAJ. We define some set St con-
taining the hypotheses that have been perfect so far, and split it into St

+1 and St
−1 based on the

prediction of the hypothesis on xt. We predict based on whichever set between St
+1 or St

−1 has
larger Littlestone dimension. The goal will be to show that whenever the algorithm makes a mis-
take, then LDim(St+1) ≤ LDim(St)− 1. More formally, we write this out as Algorithm 1.

Algorithm 1 The Standard Optimal Algorithm (SOA)

1: Initialize S1 ← C ▷ all hypotheses are valid to start
2: for t = 1→ T do
3: St ← {h ∈ C | ∀τ < t, h(xτ) = yτ}
4: St

+1 ← {h ∈ St | h(xt) = +1}
5: St

−1 ← {h ∈ St | h(xt) = −1}
6: predict ŷ = argmaxr∈{±1} LDim(St

r)
7: observe yt

8: St+1 ← St
yt ▷ update the set of valid hypothesis with newly observed label

9: end for

Proof. We want to show that if the algorithm makes a mistake on t, then LDim(St+1) < LDim(St).
Thus, assume that ŷt ̸= yt. Then,

LDim
(
St
)
≥ LDim

(
St
ŷt

)
by monotonicity of LDim

≥ LDim
(
St
yt

)
by the definition of SOA

= LDim
(
St+1

)
by the definition of SOA

Assume for the sake of contradiction that the inequalities above are in fact all equalities.

LDim
(
St
)
= LDim

(
St+1

)
= LDim

(
St
+1

)
= LDim

(
St
−1

)︸ ︷︷ ︸
:=d

However, if LDim
(
St
+1

)
= LDim

(
St
−1

)
= d, then LDim (St) = d+ 1, since St is simply the

concatenation of left subtree St
+1 and right subtree St

−1 with common root xt. This implies that
one of the inequalities must be strict, so

LDim
(
St
)
> LDim

(
St+1

)
.

6

	Recap
	Regret and No-Regret Algorithms
	No-regret Algorithms with Infinite Hypothesis Classes
	Consistency Model in Infinite Hypothesis classes
	Standard Optimal Algorithm

