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1 Recap from Last Lecture

In the previous lecture, we wrapped up our discussion of the statistical (PAC) learning framework
by exploring how the combinatorial complexity of a concept class controls its sample complexity.
In particular, we established the fundamental relationship between the VC dimension of a concept
class C and its growth function, which counts the number of distinct labelings the class can induce
on a set of size m.

This connection allowed us to sharpen our generalization bounds. Instead of the crude log |C|
dependence that applies only to finite classes, we showed how classes of potentially infinite size
can still be PAC-learnable as long as their VC dimension is finite. The growth function enabled
a uniform convergence argument that yielded significantly improved sample complexity bounds
compared to the naive finite-class analysis.

2 From Consistency to PAC Learning

Building on this foundation, we also saw a powerful general theorem that bridges the consistency
model and the PAC model. Recall that in the consistency model, the learner is only required to
output some hypothesis from C that fits all observed samples perfectly (if one exists). At first
glance, this is a very weak guarantee, as it only concerns performance on the training set and says
nothing about generalization.

Theorem 2.1 (Consistency = PAC for finite VC dimension). Let C be any concept class with
VCdim(C) = d. Any algorithm A that always returns a hypothesis h € C consistent with any
realizable sample set S also PAC-learns C with sample complexity

1 1 1
me(e,0) = O (E<dlogg + log 5)) :

This theorem shows that any consistent learner must also be a PAC learner, provided we see a
sufficiently large i.i.d. sample. It unifies two notions of learnability that initially seemed unrelated:
consistency is enough to guarantee generalization, if the class has a finite VC dimension and the
sample size is large enough.



Remark 2.2. There also exist algorithms (not necessarily consistent) that achieve O(%(d + log %))
sample complexity, and this bound is tight up to constant factors. However, such algorithms may
deliberately trade off small training error for better generalization, and so do not necessarily return
a hypothesis i with errg(h) = 0.

2.1 Lower Bounds on Sample Complexity

We also have matching lower bounds showing that this dependence on d and % is essentially un-
avoidable:

Theorem 2.3. Let C be any concept class of VC dimension d. Then there exists a distribution D
such that any (€, 0)-PAC learner for C requires at least

me(e, §) > Q(%(d + log %))

samples.

This shows that our earlier upper bounds are tight up to constant factors, and motivates explor-
ing what happens when we relax the assumptions that make these bounds possible.

3 Agnostic Learning

So far, our discussion has assumed the realizability or consistency assumption: that there exists
some true concept ¢* € C such that all examples (z,y) ~ D satisfy y = ¢*(x). But in many
realistic settings, no hypothesis in C is perfectly consistent with D. This can happen for several
reasons:

* Noisy or imperfect labels. Even if there is an underlying ground-truth labeling function,
the labels we observe may be corrupted. For example, if the data is labeled by crowdsourced
workers, they may make errors or disagree on borderline cases.

* Insufficient features. Our representation of the input space X might be too simplistic to
capture the distinctions needed to separate the classes.

* Limited expressiveness of the concept class. Even if the features are expressive, the chosen
hypothesis class C might be too restricted to represent the true decision boundary.

Example. Imagine a binary classification task where X is the set of social media posts and
Y = {appropriate, inappropriate}. The labels are obtained from a pool of human annotators. There
may be mistakes in their labels (noise), the features may not fully capture the semantic content,
and even our hypothesis space (say, all linear classifiers) may not contain a perfect decision rule.
In such a scenario, it is unrealistic to hope for a hypothesis /& with errp(h) = 0.

This motivates moving beyond the realizable PAC model to a more general and robust frame-
work, called agnostic learning or sometimes referred to as agnostic PAC model.
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Definition 3.1 (Agnostic Learning). An algorithm A is said to agnostically learn a concept class
C if there exists a function mc¢ (e, d) such that for every distribution D on X x Y and every i.i.d.
sample set S of size m > me(e, d), with probability at least 1 — ¢, the hypothesis hg = A(S)
satisfies
< i .
errp(hg) < }Llel(fr errp(h) + €

In words, this means that the learner’s output is guaranteed to be nearly as good as the best
possible hypothesis in C, even if the true labeling function does not lie in C at all. The learner is
not expected to find the “truth,” but simply the best approximation available within C.

3.1 Agnostic Learning via ERM

We study binary classification with 0-1 loss. For a hypothesis i and distribution D, errp(h) =

Pri,~plh(z) # y] and for a sample S = {(2;,y;) 72y, errg(h) == =37 1[h(x;) # y;). An
ERM algorithm returns hg € arg mingec errg(h).

Theorem 3.2 (ERM is an agnostic learner). Let C be a hypothesis class with finite VC dimension
d. There is a constant ¢, such that for any €, € (0, 1), if

1 1
m > c- (6_2(d+10g5)>’

then with probability at least 1 — § over an i.i.d. sample S of size m, the ERM hg satisfies

<
errp(hg) < }nggerrp(h) + e

Proof sketch. We will prove an O(Z (log |C|+log })) bound in the finite case; the general theorem
will be left as a homework problem as it closely follows the same approach as PAC learning for
classes with finite VC dimension.

Step 1: Uniform convergence. Fix h € C and define i.i.d. variables Z; = 1[h(x;) # v;] € [0, 1]
with E[Z;] = errp(h). Hoeffding’s inequality gives

Pr“errs(h) — errp(h)| > t} < 2e72mF
Taking a union bound over all & € C yields

Pr[sup |errs(h) — errp(h)| > %} < 2lCle~m 2,
hec

Step 2: ERM implies near-optimality. Assume the event £ that the LHS above is < 7. Let
h* € argminpec errp(h). Then

errp(hg) < errg(hg) +5 < errg(h*) 4+ 5 < errp(R*) + ¢,

where the last inequality follows from the fact that hg is the ERM on set .S, so its empirical error
is better than h*. 0



4 The Mistake-Bound Model of Online Learning

We now move from the statistical PAC setting, which assumes i.i.d. samples from a fixed dis-
tribution, to an online setting that makes no stochastic assumptions. Instead of asking how many
samples are needed for a small generalization error, we will ask: how many mistakes must a learner
make before it converges to correct predictions?

This perspective is especially natural in adversarial environments or interactive tasks where
examples arrive sequentially and feedback is immediate.

Protocol. Ateachroundt=1,2,...,7"
1. The learner receives an instance x; € X.
2. It predicts a label g, € Y.
3. The true label y, is then revealed.

4. If y; # yq, the learner incurs a mistake.

Importantly, we assume realizability in this model: there exists some unknown target concept
¢* € C such that y, = ¢*(x;) for all t. Thus, all mistakes come purely from the learner’s initial
uncertainty about ¢*, rather than from noise or model mismatch.

Goal. We want algorithms that make only a small number of mistakes in total — ideally, bounded
by a constant that depends only on C, not on the number of rounds 7.

Definition 4.1 (Mistake-Bound Model). An algorithm A is said to learn C in the mistake-bound
model with mistake bound M if the following holds: for any sequence (z1,¥1), ..., (zr,yr) that
is consistent with some ¢* € C (i.e. y; = c¢*(x;) for all t), algorithm A makes at most M prediction
mistakes (rounds where ¢; # y;). No i.i.d. or distributional assumption is required on the sequence.

This model shifts our performance measure from error rate to total mistakes, which is a much
stronger and more adversarial guarantee.

Example 4.2 (One-Dimensional Thresholds). Let us warm up with a simple class:
Cv=A{c,:x—1zx>a]l | a€{0,1,...,N}}.

Each concept c, predicts 1 if t > a and 0 otherwise. Assume the true concept is cq+. Suppose
the learner predicts using the smallest threshold still consistent with all past labels. Each time the
learner errs on some x4, it can eliminate at least one possible threshold value. Since there are only
N + 1 possible thresholds, it will make at most N mistakes in total. This implies that the mistake
bound for this class is at most N. But can it be less?

Let i* be the rightmost negatively labeled point observed before time t, and j' the leftmost
positively labeled point observed by time t. Then it’s clear that we need not make any mistakes on
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future x; if vy < i and xy > j'. So, the only additional mistakes will be made when x; € (i*, j').
Now, take the prediction policy that labels x, as negative if x, € (i*, (i* + j*)/2] and positive if
xy € [(i" + 5%) /2, j'). Note that if we make a mistake at time t, then

1
t+1 Z-t+1| < -
2

j 5" —].
This implies that every mistake reduces our “confusion interval” — areas where we aren’t sure
about the label — by half. So overall, this strategy makes at most log(N) mistakes.

In the next lecture, we show that the strategy used in this example is an instances of a more

general algorithm called the Majority or the Halving algorithm, that’s known to incur a mistake
bound of at most log,(|C|).
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