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Recall that for an algorithm A that learns a concept C in the consistency model learns C in the
PAC model using sample complexity that satisfies

= 2 (logy(tie(2m) + 1og, (5 ) 1)

Reasoning about the inequality is challenging as both sides depend on m. For example, when
II¢(m) = 2™, no such m satisfies [1}
We now define an important combinatorial notion that will help to bound Ilz(m) and signifi-

cantly simplify [I}

1 Vapnik-Chervonenkis Dimension

Definition 1.1. A set S € A™ is shattered by class C if |C[S]| = 2/l = 2™. That is, for any
labeling y1, ..., ym € {0, 1}, there is ¢ € C such that ¢(x;) = y; for all x; € S.

Definition 1.2. The Vapnik—Chervonenkis (VC) dimension of C, denoted by VCDim(C), is the
size of the largest S that can be shattered by C.

Note that in order to show VCDim(C) = d, we have to prove that

o there exists aset S = {xy,..., 24} that is shattered by C

* there is no set of size > d + 1 that can be shattered by C.

Next, we compute the VC dimension of concept classes we have seen in previous lectures.

Example 1.3. (/-dimensional intervals)

Let ¥ =R, C; = {cw: a,b € R}. cpp(z) = 1{a < z < b}. For S = {—1, 1}, we can shatter
S as

I | Ty
C_14 1 1
C45 0 0
caao| 110
C1,3 0 1




However, we cannot shatter any set of three points. Without loss of generality, z; < x5 < 3.
If cop(z1) = 1 and cup(x3) = 1, then cqp(2) = 1, so assigning labels (1,0, 1) is not possible. Thus,
VCDim(Cy) = 2.

Example 1.4. (Axis-aligned rectangles)

Let X = R% Cy = {Cay branps | @1,01,02,02 € R}, Cay by an () = L{ag < 2y < bi}1{as <
x9 < by}. We can show that VCDim(Cs) > 4 as we can shatter four vertices of a rhombus:

Figure 1: A set of four points that can be shattered

However, no five points can be shattered. Without loss of generality, let z; be the leftmost
point, x5 the rightmost point, x3 the topmost point, and z, the bottom most point. Note that while

x1, ..., x4 might not be distinct, there is a remaining point x5 that is not any of these points.
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Figure 2: A set of five points cannot be shattered

Note that 5 is in the bounding box of {x1,...,z,}; the set of extreme points, so the label
(1,1,1,1,0) is not possible. Therefore, the VC dimension of C, is 4.
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2 Relationship between Growth function and VC dimension

Recall that in previous lectures, we prove that the growth functions for the concept classes above

L s
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In these examples, II¢(m) is O(m?), where d is the VC dimension. We can actually bound I1¢(m)
using VC dimension in general using the following lemma.

Lemma 2.1. (Sauer-Shelah) A hypothesis class C with VCDim(C) = d satisfies

> (7)

Proof. The proof involves using the following combinatorial facts:
m m—1 m—1

Fact2.2. () = (") + (%)

Fact 2.3. (7;) =0ifk<0ork>m.

We will use induction on m + d. For ease of notation, let ®4(m) = S0 (7).

Base case1) m = 0,d > 0.
LHS =11¢(0) =1

and simplifying RHS using Fact 2.3, we have
d
RHS = &4(0 Z():() 1
1=0

Base case 2) m > 0,d = 0. Since the VC dimension of C is 0, Vo € X, x cannot be mapped to
both 1 and 0 by elements of C, that is, for any x € X, it has only one label across all ¢ € C.
This implies that LHS is

so it holds for (0, d).

LHS =1lg(m) =1
and RHS is
m
RHS:@O(m):( ):1

so it holds for (m, 0).



Inductive Step. Assume that the lemma holds for any m’,d’ such that m’ + d’ < m + d. We want
to show that II¢(m) = |C[S]| < ®4(m). We construct two hypothesis classes to use our
inductive hypothesis. Let S = {z1,...,z,,} be an arbitrary set, and S’ = {z1,..., 21}
be the domain of C;, C,. We consider the labeling produced by h € C, only considering the
unique labelings in C[S]. We will define two types for functions in C.

* Pairs: h, b’ € C are pairs if Vi € [m — 1], h(z;) = h/(z;), and h(z,,) # h'(z,,). Define
gonmy,. ..,y 1 with g(z;) = h(z;) = h'(x;). We add g to C; and Cs.

* Singleton: h with no A’ that satisfies the pair condition. Define g on x1, ..., x,,_1 with
g(x;) = h(x;), and add only to C;

Fact 2.4. ’Cl‘ + ‘CQ| = |C[S]|
Claim 2.5. VCDim(C;) < VCDim(C)

Proof. IfasetT C {wy,...,z,_1} is shattered by C;, T is also shattered by C. Just from
the definition of C; as every labeling produced by C; on 7" has a labeling in C[S] which has
the same label on 1, ..., z,,_1. O

Claim 2.6. 1 + VCDim(Cz) < VCDim(C)

Proof. We claim that if 7" C {xy,...,x,,_1} is shattered by Cs, then 7' U {z,,} is also
shattered by C. Every labeling in Cy corresponds to pairs (h, k'), where h(z,,) # h'(zn),
while h(z;) = h'(x;) forz; € T. So T'U {x,,} can be labeled all possible ways. O

By induction, we have

C1] < e, (m — 1) < @y(m — 1)
|Ca| < Tlgy(m —1) < Py (m —1)
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where in the fourth line, we shift the index by one, and the fifth line holds from

]
Using the lemma we can also bound the growth function asymptotically.
Corollary 2.7.
d
Ie(m) < <@>
d

where e is exponent of natural log.
Proof. Sketch - use Stirling’s approximation. 0

We can now replace I1¢(2m) on the right hand side in

Theorem 2.8. Any algorithm A that learns C in the consistency model learns C in the PAC model
with sample complexity

Mmes = C (l (dln <1> +In (%))) , for some constant C'
€ €

Proof. Sketch -[1]+[2.7)+ rearranging O
In fact, it is possible to have a more efficient sample complexity, albeit not for all algorithms.

Theorem 2.9. (Hanneke| [2016]) There exists an algorithm that learns C in the PAC model with

sample complexity
1 1
Mmes = C) <Z (d +In (5>>) , for some constant Cy

and this bound is tight.
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