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Recall that for an algorithm A that learns a concept C in the consistency model learns C in the
PAC model using sample complexity that satisfies

m ≥ 2

ϵ

(
log2(ΠC(2m)) + log2

(
1

δ

))
(1)

Reasoning about the inequality is challenging as both sides depend on m. For example, when
ΠC(m) = 2m, no such m satisfies 1.

We now define an important combinatorial notion that will help to bound ΠC(m) and signifi-
cantly simplify 1.

1 Vapnik–Chervonenkis Dimension
Definition 1.1. A set S ∈ Xm is shattered by class C if |C[S]| = 2|S| = 2m. That is, for any
labeling y1, . . . , ym ∈ {0, 1}, there is c ∈ C such that c(xi) = yi for all xi ∈ S.

Definition 1.2. The Vapnik–Chervonenkis (VC) dimension of C, denoted by VCDim(C), is the
size of the largest S that can be shattered by C.

Note that in order to show VCDim(C) = d, we have to prove that

• there exists a set S = {x1, . . . , xd} that is shattered by C

• there is no set of size ≥ d+ 1 that can be shattered by C.

Next, we compute the VC dimension of concept classes we have seen in previous lectures.

Example 1.3. (1-dimensional intervals)

Let X = R, C1 = {cab : a, b ∈ R}. cab(x) = 1{a ≤ x ≤ b}. For S = {−1, 1}, we can shatter
S as

x1 x2

c−1,4 1 1
c4,5 0 0
c−1,0 1 0
c1,3 0 1
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However, we cannot shatter any set of three points. Without loss of generality, x1 ≤ x2 ≤ x3.
If cab(x1) = 1 and cab(x3) = 1, then cab(x2) = 1, so assigning labels (1, 0, 1) is not possible. Thus,
VCDim(C1) = 2.

Example 1.4. (Axis-aligned rectangles)

Let X = R2, C2 = {ca1,b1,a2,b2 | a1, b1, a2, b2 ∈ R}, ca1,b1,a2,b2(x) = 1{a1 ≤ x1 ≤ b1}1{a2 ≤
x2 ≤ b2}. We can show that VCDim(C2) ≥ 4 as we can shatter four vertices of a rhombus:

Figure 1: A set of four points that can be shattered

However, no five points can be shattered. Without loss of generality, let x1 be the leftmost
point, x2 the rightmost point, x3 the topmost point, and x4 the bottom most point. Note that while
x1, . . . , x4 might not be distinct, there is a remaining point x5 that is not any of these points.

x1

x2

x3

x4

x5

Figure 2: A set of five points cannot be shattered

Note that x5 is in the bounding box of {x1, . . . , x4}; the set of extreme points, so the label
(1, 1, 1, 1, 0) is not possible. Therefore, the VC dimension of C2 is 4.
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2 Relationship between Growth function and VC dimension
Recall that in previous lectures, we prove that the growth functions for the concept classes above
are

ΠC1(m) ≤
(
m

0

)
+

(
m

1

)
+

(
m

2

)
= O(m2)

ΠC2(m) ≤ (ΠC1(m))2 = O(m4).

In these examples, ΠC(m) is O(md), where d is the VC dimension. We can actually bound ΠC(m)
using VC dimension in general using the following lemma.

Lemma 2.1. (Sauer-Shelah) A hypothesis class C with VCDim(C) = d satisfies

ΠC(m) ≤
d∑

i=0

(
m

i

)
Proof. The proof involves using the following combinatorial facts:

Fact 2.2.
(
m
k

)
=

(
m−1
k

)
+
(
m−1
k−1

)
Fact 2.3.

(
m
k

)
= 0 if k < 0 or k > m.

We will use induction on m+ d. For ease of notation, let Φd(m) =
∑d

i=0

(
m
i

)
.

Base case 1) m = 0, d ≥ 0.
LHS = ΠC(0) = 1

and simplifying RHS using Fact 2.3, we have

RHS = Φd(0) =
d∑

i=0

(
0

i

)
=

(
0

0

)
= 1

so it holds for (0, d).

Base case 2) m ≥ 0, d = 0. Since the VC dimension of C is 0, ∀x ∈ X , x cannot be mapped to
both 1 and 0 by elements of C, that is, for any x ∈ X , it has only one label across all c ∈ C.
This implies that LHS is

LHS = ΠC(m) = 1

and RHS is

RHS = Φ0(m) =

(
m

0

)
= 1

so it holds for (m, 0).
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Inductive Step. Assume that the lemma holds for any m′,d′ such that m′ + d′ < m+ d. We want
to show that ΠC(m) = |C[S]| ≤ Φd(m). We construct two hypothesis classes to use our
inductive hypothesis. Let S = {x1, . . . , xm} be an arbitrary set, and S ′ = {x1, . . . , xm−1}
be the domain of C1, C2. We consider the labeling produced by h ∈ C, only considering the
unique labelings in C[S]. We will define two types for functions in C.

• Pairs: h, h′ ∈ C are pairs if ∀i ∈ [m− 1], h(xi) = h′(xi), and h(xm) ̸= h′(xm). Define
g on x1, . . . , xm−1 with g(xi) = h(xi) = h′(xi). We add g to C1 and C2.

• Singleton: h with no h′ that satisfies the pair condition. Define g on x1, . . . , xm−1 with
g(xi) = h(xi), and add only to C1

Fact 2.4. |C1|+ |C2| = |C[S]|

Claim 2.5. VCDim(C1) ≤ VCDim(C)

Proof. If a set T ⊆ {x1, . . . , xm−1} is shattered by C1, T is also shattered by C. Just from
the definition of C1 as every labeling produced by C1 on T has a labeling in C[S] which has
the same label on x1, . . . , xm−1.

Claim 2.6. 1 + VCDim(C2) ≤ VCDim(C)

Proof. We claim that if T ⊆ {x1, . . . , xm−1} is shattered by C2, then T ∪ {xm} is also
shattered by C. Every labeling in C2 corresponds to pairs (h, h′), where h(xm) ̸= h′(xm),
while h(xi) = h′(xi) for xi ∈ T . So T ∪ {xm} can be labeled all possible ways.

By induction, we have

|C1| ≤ ΠC1(m− 1) ≤ Φd(m− 1)

|C2| ≤ ΠC2(m− 1) ≤ Φd−1(m− 1)

so

C[S] = |C1|+ |C2|
≤ Φd(m− 1) + Φd−1(m− 1)

=
d∑

i=0

(
m− 1

i

)
+

d−1∑
i=0

(
m− 1

i

)

=
d∑

i=0

(
m− 1

i

)
+

d−1∑
i=1

(
m− 1

i− 1

)

=
d∑

i=0

(
m− 1

i

)
+

d∑
i=0

(
m− 1

i− 1

)
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=
d∑

i=0

(
m

i

)
= Φd(m)

where in the fourth line, we shift the index by one, and the fifth line holds from 2.3.

Using the lemma we can also bound the growth function asymptotically.

Corollary 2.7.

ΠC(m) ≤
(em

d

)d

where e is exponent of natural log.

Proof. Sketch - use Stirling’s approximation.

We can now replace ΠC(2m) on the right hand side in 1.

Theorem 2.8. Any algorithm A that learns C in the consistency model learns C in the PAC model
with sample complexity

mϵ,δ = C

(
1

ϵ

(
d ln

(
1

ϵ

)
+ ln

(
1

δ

)))
, for some constant C

Proof. Sketch - 1 + 2.7 + rearranging

In fact, it is possible to have a more efficient sample complexity, albeit not for all algorithms.

Theorem 2.9. (Hanneke [2016]) There exists an algorithm that learns C in the PAC model with
sample complexity

mϵ,δ = C1

(
1

ϵ

(
d+ ln

(
1

δ

)))
, for some constant C1

and this bound is tight.
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