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1 Recap
In Lecture 2, we considered PAC learning with a finite concept class C and proved the following
theorem of sample complexity:

Theorem 1.1 (Sample complexity for finite C). Let A be an algorithm that learns C in a consistency
model, then A also learns C in the PAC model with the number of samples

mC(ϵ, δ) = O
(
1

ϵ

(
ln |C|+ ln(

1

δ
)

))
.

In today’s lecture, we consider the case that C is infinite. With infinite C, the union bound we
used to prove theorem 1.1 will no longer work. Nevertheless, although C is infinite, many c ∈ C
might behave similarly. Therefore, instead of |C|, we should understand the behavior of c ∈ C
on the sample set or the data distribution and come up with a behavior-dependent “effective” size
of the concept class to describe its expressiveness. Specifically, we will leverage growth functions
and symmetrization tricks (double sampling S and S ′ + random swaps with σ) to achieve the proof.

2 Growth functions
We begin by defining projections and growth functions of concept classes.

Definition 2.1 (Projection). Given sample set S = (x1, . . . , xm) ∈ Xm and concept class C, the
projection of C on S is

C[S] :=
{
(c(x1), . . . , c(xm)) : c ∈ C

}
.

Definition 2.2 (Growth function). For a concept class C, its growth function is defined to be

ΠC(m) := max
S∈Xm

|C[S]|

Intuitively, the projection is the set of all labelings of S that concepts in C can produce, while
the growth function is the largest number of distinct labelings on any m points that C can realize.
Below we discuss three examples.
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Example 2.3 (upper bound). If C is the set of all functions c : X → {0, 1}, then ΠC(m) = 2m

since for each of the m data points we can assign either +1 or −1. This is an upper bound for any
C.

Example 2.4 (1-dimensional intervals). Consider C1 = {ca,b : a, b ∈ R} where ca,b(x) = 1(a ≤
x ≤ b). Intuitively, concepts are defined by intervals on the real line. In this setting, we can
consider three cases for some S: 1) at least 2 points in S are labeled +1, 2) exactly one point in S
is labeled +1, 3) no point in S is labeled +1.

In case 1, we can consider choosing the left-most and right-most +1 points from the m points,
which then uniquely determine the labels of every other point. This gives us

(
m
2

)
labelings. Simi-

larly, we only need to choose one +1 point (
(
m
1

)
) in case 2 and choose no +1 point (

(
m
0

)
) in case

3 to produce all unique labelings. Combining these three cases gives us

ΠC1(m) ≤
(
m

2

)
+

(
m

1

)
+

(
m

0

)
= O(m2).

Example 2.5 (2-dimensional axis-aligned rectangles). Consider C2 = {ca1,b1,a2,b2 : a1, b1, a2, b2 ∈
R} where ca1,b1,a2,b2(x) = 1(a1 ≤ x1 ≤ b1 and a2 ≤ x2 ≤ b2).

In this case, concepts are defined by axis-aligned rectangles on a 2-dimensional plane. Note
that we can use the previous example to upper bound the number of labelings that axis aligned
rectangles can produce. In particular, for any sample set S the labeling produced by ca1,b1,a2,b2
maps to a pair of labelings produced according the x-axis and according to the y-axis, i.e., labels
given by ca1,b1 and ca2,b2 . Since these are both 1-dimensional intervals that belong to C1, we have
that

ΠC2(m) ≤ (ΠC1(m))2 = O(m4).

3 Proving the fundamental theorem of PAC learning
Now we can proceed to prove the sample complexity theorem with infinite C, which is also known
as the fundamental theorem of PAC learning.

Theorem 3.1 (Fundamental theorem of PAC learning). Let A be an algorithm that learns C in a
consistency model, then A also learns C in the PAC model with sample complexity m as long as

m ≥ 2

ϵ

(
log(ΠC(2m)) + log(

2

δ
)

)
.

This theorem helps us understand whether certain problems are learnable. For example, if
ΠC(m) = 2m, the inequality m ≥ 2

ϵ
(m + 1 + log(2

δ
)) cannot hold for any m, which means that

this theorem cannot establish the learnability of such C (indeed such classes are not learnable!)
If ΠC′(m) = m2, the inequality is equivalent to m ≥ O(1

ϵ
log(m)) which can be achieved for

some values of m (this is an arithmatical operation that will formally perform in the future), so
C ′ is learnable. In general, this theorem shows that is if ΠC(m) = poly(m) then the concept C is
learnable.
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To prove theorem 3.1, we first present three definitions of bad events. These bad events are
functions of the sample set S ∼ Dm, imaginary sample set S ′ ∼ Dm, and a vector of m Bernoulli
random variables σ each label 0 or 1 with equal probability. Therefore, in the definitions, we
consider S, S ′, σ as fixed inputs to the bad event functions.

Definition 3.2 (Standard bad event). We define B(S) : ∃h ∈ C s.t. h is consistent with S (i.e.,
errS(h) = 0) but errD(h) > ϵ.

Definition 3.3 (Bad event with double sampling). We define B(S, S ′) : ∃h ∈ C s.t. h is consistent
with S but errS′(h) > ϵ.

Definition 3.4 (SWITCH). For some S = {x1, . . . , xm}, S ′ = {x′
1, . . . , x

′
m}, σ = (σ1, . . . , σm) ∈

{0, 1}m, denote (T, T ′) = SWITCH(S, S ′, σ) where T = {z1, . . . , zm}, T ′ = {z′1, . . . , z′m}. Then,
the function SWITCH is defined such that ∀i = 1, . . . ,m,

zi =

{
xi if σi = 1,

x′
i if σi = 0.

z′i =

{
xi if σi = 0,

x′
i if σi = 1.

Definition 3.5 (Bad event with double sampling and randomness). We define B(S, S ′, σ) : ∃h ∈
C s.t. h is consistent with T but errT ′(h) > 2

ϵ
, where (T, T ′) = SWITCH(S, S ′, σ).

Now, let’s start by analyzing B(S, S ′).

Claim 3.6. If m ≥ 8
ϵ
, then

Pr
S∼Dm,S′∼Dm

[B(S, S ′)|B(S)] ≥ 1

2
.

Proof. Assume that B(S) holds and let h be the hypothesis for which errS(h) = 0 and errD(h) >
ϵ. Note that PrS∼Dm,S′∼Dm [B(S, S ′)|B(S)] ≥ PrS′∼Dm [errS′(h) > ϵ

2
|B(S), h]. We now lower

bound this quantity. We have

E
S′∼Dm

[errS′(h)|B(S)] = errD(h) > ϵ,

because S ′ is independent of h. Then, by Chernoff’s bound (proof skipped in lecture), we have

Pr
[
errS′(h) >

ϵ

2
| B(S)

]
≤ exp

(
−mϵ

8

)
≤ 1

2
.

The above claim gives us the following corollary by the definition of conditional probability:

Corollary 3.7. PrS∼Dm [B(S)] ≤ 2PrS,S′∼Dm [B(S, S ′)].

Now, to bound B(S), we can instead consider bounding B(S, S ′). In fact, bounding B(S, S ′)
is equivalent to bounding B(S, S ′, σ). This is because σ only randomly swaps x’s in S and x′’s in
S ′, and so (S, S ′) is identically distributed to (T, T ′).
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Claim 3.8. PrS∼Dm,S′∼Dm [B(S, S ′)] = PrS∼Dm,S′∼Dm,σ∼Ber( 1
2
)[B(S, S ′, σ)].

Here, σ allows us to condition on the additional sample set S ′ without losing randomness.
Introducing S ′, σ is a common trick called symmetrization, where S ′ is often called shadow
samples or ghost samples.

Now we start to derive a bound for B(S, S ′, σ), which will allow us to complete the proof.

Claim 3.9. For fixed S, S ′ ∈ Xm and h ∈ C,

Pr
σ∼Ber( 1

2
)

[
errT (h) = 0 and errT ′(h) >

ϵ

2

]
≤ 2

−mϵ
2 .

Proof. Let’s consider three cases.
Case 1: if ∃i ∈ [m] s.t. h(xi), h(x

′
i) are both wrong, we will have

Pr
σ∼Ber( 1

2
)

[
errT (h) = 0 and errT ′(h) >

ϵ

2
| Case 1

]
= 0,

since errT (h) cannot be 0 in this case. So, this is not possible.
Case 2: similarly, if more than (1 − ϵ

2
)m such i ∈ [m] exist s.t. h(xi), h(x

′
i) are both correct,

it’s impossible to have errT ′(h) > ϵ/2, so we have

Pr
σ∼Ber( 1

2
)

[
errT (h) = 0 and errT ′(h) >

ϵ

2
| Case 2

]
= 0.

Case 3: let the number of i ∈ [m] s.t. exactly one of h(xi), h(x
′
i) is correct be r. Case 1 and

2 indicate that r ≥ mϵ
2

. To ensure errT (h) = 0 in B(S, S ′, σ), it must be that on every i within
these r indices, σi chose the correct one from h(xi) and h(x′

i) which happens with probability 0.5
independently for each i. Therefore

Pr
σ∼Ber( 1

2
)

[
errT (h) = 0 and errT ′(h) >

ϵ

2
| Case 3

]
≤ 2−r ≤ 2−

mϵ
2 .

Now, we are finally ready to prove theorem 3.1. To get Pr[B(S)] ≤ δ, it suffices (by corollary
3.7 and claim 3.8) to show that Pr[B(S, S ′, σ)] ≤ δ

2
. We will proceed to show that A is bounded

for any S, S ′, where A is defined in

Pr
S∼Dm,S′∼Dmσ∼Ber( 1

2
)
[B(S, S ′, σ)] = Pr

S∼Dm,S′∼Dm

 Pr
σ∼Ber( 1

2
)
[B(S, S ′, σ)|S, S ′]︸ ︷︷ ︸

A

 .

Note that when S, S ′ are given, we can restrict h to the projection C[S ∪S ′]. This is the crucial
step, where we no longer depend on the size of |S| and instead are able to bring in the growth
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function! That is,

A := Pr
σ∼Ber( 1

2
)
[B(S, S ′, σ)|S, S ′]

= Pr
σ∼Ber( 1

2
)

[
∃h ∈ C, errT (h) = 0 and errT ′(h) >

ϵ

2
|S, S ′

]
= Pr

σ∼Ber( 1
2
)

[
∃h ∈ C[S ∪ S ′], errT (h) = 0 and errT ′(h) >

ϵ

2
|S, S ′

]
=

∑
h∈C[S∪S′]

Pr
σ∼Ber( 1

2
)

[
errT (h) = 0 and errT ′(h) >

ϵ

2
|S, S ′, h

]
≤ΠC(2m) · 2−

mϵ
2 ≤ δ

2
.

by claim 3.8 and the definition of growth function. The transition from the second to the third line
holds because when conditioned on fixed S, S ′, we can restrict our analysis to the set of hypotheses
h that produce different labelings for S, S ′, which by definition is the projection C[S ∪ S ′].

The last inequality follows from the choice of sample complexity

m ≥ 2

ϵ

(
log(ΠC(2m)) + log(

2

δ
)

)
.

this completes the proof of theorem 3.1.
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