
CS272 - Foundations of Learning, Decisions, and Games

Lecture 2: Statistical learning I
September 2, 2025

Lecturer: Nika Haghtalab Readings: Chp 2, UML
Scribe: Nika Haghtalab

As a motivating example, consider going to the farmer’s market. You want to identify delicious
apples from the bad ones. Let’s make a simplifying assumption that only three features of an apple
affect its deliciousness: color (green/red), firmness (soft/crunchy), and size (small/medium/large).
In the past, you have had a several apples from the market and you have diligently recorded the
features of every apple you ate and their level of tastiness. Your goal is to use this historical record
to learn to identify tasty apples from the non-tasty ones. That is, given a new apple that you haven’t
yet tasted, predict whether this apple is tasty.

For today’s lecture, we make a simplifying assumption that there is an unknown mapping from
apples to labels, denoted by c : {green, red} × {soft, crunchy} × {small,medium, large} →
{tasty, not tasty}, that perfectly determines the deliciousness of an apple. Such a mapping is
called a concept. A collection of concepts is called a concept class. We assume that the concept
c belongs to some known concept class C that is pre-determined. Our goal is to learn c or a close
approximation of it, so that we can near-perfectly identify all delicious apples in the market.

How do you learn c? This is what we discuss in this lecture.

1 Formal Model
Let us formally define notations that will be used in this lecture and many of the following lectures.

• Domain (Instance space): An arbitrary set X that includes all possible instances, e.g., ap-
ples, that the learner may wish to label. An instance is typically described by a vector of val-
ues, representing the relevant feature values. For example, and apple can be described by a
feature vector (green, crunchy,medium). In this case, the domain can be the set of all pos-
sible feature vectors, i.e., X := {green, red}×{soft, crunchy}×{small,medium, large}.
An x ∈ X is called an instance.

• Labels: A set Y that includes all possible labels or predictions for a single instance. In
the apple example, we have Y = {tasty, not tasty}. For simplicity, this course works with
2-element label sets, which we usually refer to as {0, 1}, {−1, 1}, {false, true}, etc. For
ease of presentation, in the apple example we refer to tasty, 1, true interchangeably.

• Labeled instance: An instance-label pair (x, y) ∈ X × Y is called a labeled instance.

• Concept: A concept (later on will also be called a classifier or predictor or hypothesis) is a
function c : X → Y . For example, the concept (color = red) ∨ (size ̸= small) assigns to
any apple that is red or is not small, the label true.

1

𝑎" 𝑏"

𝑎$

𝑏$

+

Bounding	box	of	instances	labeled	+.

+

+

-

+
+

-

-

-

-
-

-

Figure 1: An axis-aligned rectangle in two dimensions.

• Concept class: A concept class C is a pre-determined set of concepts.

2 The Consistency Model
We start our study of learnability with theconsistency model. While this may not be a very realistic
model of learning, it’s a great place for demonstrating ideas that will come up again later.

We say that a concept c ∈ C is consistent with a set of samples {(x1, y1), . . . , (xm, ym)}, if for
all i ∈ [m], c(xi) = yi. We say that a concept class C is learnable in the consistency model if
there is an algorithm A such that, for any set of labeled instances S = {(x1, y1), . . . , (xm, ym)},
A(S) = c for some c ∈ C that is consistent with the examples, or A(S) = “no such concept exists”
if no such concept c ∈ C exists.

We are especially interested in algorithms that are computationally efficient and can learn in
the consistency model. Let’s consider a few examples of such algorithms.

2.1 Geometrical Examples
Axis-aligned rectangles. In this example, we consider X = R2 and Y = {+,−}. An axis-
aligned rectangle is a concept that assigns + to instance that are within some rectangle and − to
those outside. More formally, each concept c ∈ C is defined by four parameters a1, b1, a2, b2 ∈ R
and

c(x) =

{
+ if for i ∈ {1, 2}, ai ≤ xi ≤ bi

− otherwise

How would you design an algorithms A that runs efficiently, in the size of the input set S and learns
C in the consistency model? A simple solution is to find the minimum and maximum instances

2

labeled + along each of the axes. Then, consider the axis-aligned rectangle whose boundaries are
defined by these examples (See Figure 1). Note that, this is the most conservative concept in C that
is consistent with all (xi,+) ∈ S. That is, the positive region of any other axis-aligned rectangle
c′ ∈ C that is also consistent with all (xi,+) ∈ S includes the positive region of c. All that is
left is to check if c is also consistent with all (xi,−) ∈ S. If it is consistent then A(S) = c.
Otherwise, no other concept can be consistent with the data in which case A(S) states that no
consistent axis-aligned rectangle exists.

Note that such an algorithm take O(|S|) to find the minimum and maximum instances labeled
+ along each axis and to form the bonding box. It takes an additional O(|S|) runtime to check that
the concept defined by the bounding box is consistent with the rest of the data.

2.2 Consistency Model and Generalization
At a high level, learning in the consistency model is really about optimization on observed labeled
instances. But it is not necessary clear whether the concept that is learned in the consistency model
is a good predictor for instances that the algorithm has not encountered yet. As a thought exercise
and while ignoring the need for computationally efficient algorithms, consider the setting where C
includes all boolean functions on n bit. Then one can learn (inefficiently though) in the consistency
model, by having A(S) say no consistent concept exists if S includes an (x, y) and (x, ȳ), and
otherwise memorize the instances and their respective labels through a disjunctive normal form.
While this algorithm does learn in the consistency model, the learning seems ineffective in a way.
For example, any instance that hasn’t appeared in S will be labeled as negative. This makes the
concept class especially brittle on unseen instances.

3 The PAC Model
We now define additional notations for capturing accuracy and generalization.

• Data-Generating distribution: We consider a probability distribution D over X × Y . We
assume that instances we received are independent and identically distributed (i.i.d) accord-
ing to an unknown D. I.I.D. means that samples are all distributed according to the same
distribution and are independent of each other. Throughout today’s lecture, we assume that
there is an unknown concept c that determines the true label of instances. That is, there is an
unknown c ∈ C such that D is only supported on instances (x, y) where y = c(x). This is
called the “consistency assumption”.

• True Error: Consider a data-generating distribution D and the true labeling concept c. The
true error of a concept h with respect to D is the probability that h makes a mistake, i.e.,
disagrees with c, on a freshly drawn sample from D. That is,

errD(h) = Pr
(x,y)∼D

[h(x) ̸= y].

3

• Empirical Error: Given a sample set S = {(x1, y1), . . . , (xm, ym)}, the empirical error of
a concept h with respect to S is the fraction of instances in S that are incorrectly labeled by
h. That is,

errS(h) =
1

m

m∑
i=1

1(h(xi) ̸= yi)).

The basic idea of the Probably Approximately Correct (PAC) learning model is to assume that
labeled instances are coming from a fixed but unknown distribution D and the goal is to use the
sample set S to learn a concept h that has a small true error on D.

Definition 3.1 (PAC Learning). An algorithm A PAC-learns concept class C if there is a function
mC(ϵ, δ) : (0, 1)× (0, 1) → N such that the following is true: For any c∗ ∈ C and any distribution
D labeled according to c∗, any ϵ > 0 and δ > 0, there is an algorithm A that takes an i.i.d. sample
set S of size m ≥ mC(ϵ, δ), and with probability 1 − δ returns a function h : X → Y such that
errD(h) ≤ ϵ.

Algorithm A is computationally efficient if the number of samples and runtime is polynomial
time in 1

ϵ
, 1
δ
,m and a natural representation of the concept class C.

In PAC learning, ϵ and δ represent two types of bad events. Here, δ is the probability that
a “total disaster” could happen and A(S) returns a hypothesis h that is completely wrong, i.e.,
errD(h) is very large. So, typical range of δ is 0.01-0.001 or less. On the other hand, ϵ describes
how close h and c∗ are, when we avoid that total disaster. ϵ is typically much larger than δ, for
example ϵ = 0.05-0.1 is a quite reasonable. PAC learning refers to the fact that our hypothesis is
“probably” (with probability 1− δ) “approximately” (up to an error of ϵ) correct!

Remark 1 There are different versions of PAC learning based on whether the returned function
h ∈ C or not. When the algorithm is guaranteed to return a function h ∈ C this is called proper
PAC learning. Otherwise, it’s called improper PAC learning. To emphasize the fact that instances
in D are generated by a concept c∗, sometimes the community refers to PAC learning as realizable
PAC learning.

Remark 2 When the assumption that instances in D are labeled according to a concept c∗ that
is in the range of outcomes of the algorithm is removed, i.e., lack of realizibility, it might be
impossible to have a concept h that has errD(h) ≤ ϵ at all. This latter model, where no assumption
on the existence of a good concept is made, is called agnostic learning. We will come back to this
in a few lectures.

4 Consistency versus PAC
In this section we show how one can relate learnability in the consistency model and the PAC
model.

4

Theorem 4.1 (PAC Learnability of Finite Concept Classes). Let A be an algorithm that learns a
concept class C in the consistency model (that is, it returns h ∈ C whenever a consistent concept
w.r.t. S exists). Then, A learns the concept class C (by the hypothesis class H = C) in the PAC
learning model using

mC(ϵ, δ) =
1

ϵ

(
ln(|C|) + ln(

1

δ
)

)
.

Let us review two useful fact before we prove this theorem.

Fact 4.2. For any α ∈ [0, 1], 1− α ≤ exp(−α).

Fact 4.3 (Union Bound). Let E1, . . . , Ek be probabilistic events. Then, Pr
[⋃

i∈[k] Ei

]
≤

∑k
i=1 Pr [Ei].

Proof of Theorem 4.1. Since we are in the (realizable) PAC setting, we know that there is a concept
c∗ ∈ C that is consistent with the sample set S. Therefore, A(S) will return a hypothesis hS ∈ C
that is also consistent with S. So it is sufficient to show that with probability 1 − δ, hS has true
error of at most ϵ. That is, it is sufficient to bound the probability of the following bad event.

B : ∃h ∈ C such that h is consistent with S and errD(h) > ϵ.

Fix one hypothesis h ∈ C that has errD(h) > ϵ. What is the probability that this hypothesis is
consistent with the sample set S? Note that for a freshly sampled (x, c∗(x)) ∼ D, the probability
that h makes a mistake on x is exactly its true error. That is,

Pr
(x,c∗(x))∼D

[h(x) ̸= c∗(x)] = errD(h).

So, the probability that such an h does not make a mistake on any of the m samples in S is

Pr[h consistent with S] = (1− errD(h))
m < (1− ϵ)m ≤ exp(−mϵ).

Applying this to all possible hypothesis in C, we have that

Pr[B] = Pr

[⋃
h∈C

h is consistent with S and errD(h) > ϵ

]
≤ |C| exp(−mϵ).

Therefore, when m ≥ 1
ϵ

(
ln(|C|) + ln(1

δ
)
)
, we have that Pr[B] ≤ δ. This proves the claim.

4.1 Beyond Finite Concept Classes
In the next lecture, we see how you can get a variant of Theorem 4.1 even for some infinite concept
classes.

5

