Laying the Foundations for the Next Digital Revolution:
Innovation in the College of Engineering at Berkeley

5th Asian Leadership Conference
Shanghai, China
November 2001

Dean A. Richard Newton

The Weather Forecast ...

◆ Rate of change will only accelerate - life will be more complex, busier . . .
◆ Adaptability, agility & momentum will be the key to success!
◆ Innovation, opportunities & entrepreneurship will thrive
◆ Disruption will be the order of the day
◆ Fun, fortunes & failure will be in abundance

Source: Vinod Khosla, Kleiner Perkins
Leading U.S. Engineering Programs

<table>
<thead>
<tr>
<th>Chemical Fac.</th>
<th># Fac.</th>
<th>Civil Fac.</th>
<th># Fac.</th>
<th>Electrical Fac.</th>
<th># Fac.</th>
<th>Comp. Sci. Fac.</th>
<th># Fac.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. MIT</td>
<td>34</td>
<td>2. Berkeley</td>
<td>42</td>
<td>2. MIT</td>
<td>70</td>
<td>2. MIT</td>
<td>39</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Industrial Fac.</th>
<th># Fac.</th>
<th>Natural Fac.</th>
<th># Fac.</th>
<th>Mechanical Fac.</th>
<th># Fac.</th>
<th>Engineering Fac.</th>
<th># Fac.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3. Berkeley</td>
<td>20</td>
<td></td>
<td></td>
<td>7. UC Santa Barbara</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8. Berkeley</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

35 of the 36 units on the Campus are ranked in the top 10 in the nation!

CITRIS
The Center for Information Technology Research
In the Interest of Society

Core Technologies
- Distributed Info Systems
- Micro sensors and actuators
- Human-Computer Interaction
- Prototype Deployment

Applications
- Quality-of-Life Emphasis
- Initially Leverage Existing Expertise on campuses

Foundations
- Security, Policy
- Probabilistic Systems
- Formal Techniques
- Data management
- Simulation

Professor Richard Newton
newton@coe.berkeley.edu
The Best Technology for The World’s Biggest Challenges

◆ Energy Efficiency
◆ Transportation Planning
◆ Monitoring Health Care

The Berkeley Highway Lab

- Twelve cameras with overlapping fields of view covering 1.5 miles of Interstate 880

- Video data are processed to obtain position and speed of every vehicle

Source: Prof. Pravin Varaiya
Laying the Foundations for the Next Digital Revolution:
Innovation in the College of Engineering at Berkeley

Lane-Changing Maneuver and Shockwave

Source: Prof. Pravin Varaiya

The Best Technology
for The World’s Biggest Challenges

◆ Energy Efficiency
◆ Transportation Planning
◆ Monitoring Health Care
Laying the Foundations for the Next Digital Revolution: Innovation in the College of Engineering at Berkeley

5th Asian Leadership Conference
Shanghai, China
November 2001

Wireless Measurement, Diagnosis, and Cure

Source: Professors Tom Budinger, Jan Rabaey, Al Pisano

The Best Technology for The World’s Biggest Challenges

◆ Education
◆ Emergency Response
◆ Land and Environment
Laying the Foundations for the Next Digital Revolution:
Innovation in the College of Engineering at Berkeley

Microair Vehicles and Smart Dust:
Connecting the Civil and Environmental Infrastructure

Source: Professors Kris Pister & Ron Fearing

Mote and TinyOS Demonstration at 29 Palms

- UAV drops nodes along road:
 - hot-water pipe insulation for package
- Nodes self configure into linear network:
 - Synchronize to 1/32 sec
 - Calibrate magnetometers
 - correct for earth's magnetic field
 - Each detects passing vehicle
 - Share filtered sensor data with five neighbors
 - Each calculates estimated direction & velocity
 - Share results
- As plane passes by:
 - Joins network
 - Upload as much of missing dataset as possible from each node when in range

7.5 KBytes of code!

Source: Professor David Culler
Laying the Foundations for the Next Digital Revolution:
Innovation in the College of Engineering at Berkeley

5th Asian Leadership Conference
Shanghai, China
November 2001

Professor Richard Newton
newton@coe.berkeley.edu

eMerging Societal-Scale Systems

New System Architectures
New Enabled Applications
Diverse, Connected, Physical, Virtual, Fluid

“Client”

“Server”

Clusters
Massive Cluster
Gigabit Ethernet

New System Architectures
New Enabled Applications
Diverse, Connected, Physical, Virtual, Fluid

MEMS
BioMonitoring

Source: Professor Randy Katz

Implementation & Deployment of an Oceanic Data Information Utility

- Ubiquitous devices require ubiquitous storage
- 10,000 9Gbyte IBM Microdrives in a single rack provides 90 terabytes/m² (Professors Dave Patterson & Kathy Yellick)
- Confederations of (Mutually Suspicious) Utilities

Source: Professor John Kubiatowicz

Copyright © 2001
Page 7
Laying the Foundations for the Next Digital Revolution: Innovation in the College of Engineering at Berkeley

Professor Richard Newton
newton@coe.berkeley.edu

5th Asian Leadership Conference
Shanghai, China
November 2001

The Future of Moore’s Law

- 1000X Improved Computationally
- Energy Optimized (MOPS/watt)
- Mixed Signal Platforms

New Architectures

Source: Professor Shankar Sastry

Nanosciences
Molecular Electronics/Quantum/Bio
3-D CMOS + - HYBRIDS

Source: Professor Shankar Sastry

eMerging Societal-Scale Systems

Source: Professor Randy Katz

Information Architecture

Clusters
Massive Cluster
Gigabit Ethernet

MEMS
BioMonitoring

Scalable, Reliable,
Secure Services

Source: Professor Randy Katz

Information Architecture

The Future of Moore’s Law

- 1000X Improved Computationally
- Energy Optimized (MOPS/watt)
- Mixed Signal Platforms

New Architectures

Source: Professor Shankar Sastry

Nanosciences
Molecular Electronics/Quantum/Bio
3-D CMOS + - HYBRIDS

Source: Professor Shankar Sastry

EUV

15nm

1nm

100nm

1000nm

Intel8080

1 million transistors

Intel486

100 million

PentiumPro

10 billion

Pentium

1000nm

10nm

1nm

Intel486

PentiumPro

Pentium

IA-64

Unicom

EUV

Bipolar, NMOS

CMOS

Intel386

Pentium

10nm

15nm

Feature size (nanometers)

Intel8080

1 million transistors

Intel486

100 million

PentiumPro

10 billion

Pentium

1000nm

10nm

1nm

Bipolar, NMOS

CMOS

15nm

EUV

Source: Professor Shankar Sastry

Nanosciences
Molecular Electronics/Quantum/Bio
3-D CMOS + - HYBRIDS

Source: Professor Shankar Sastry
High-performance Printed Circuits

Inkjet System

Substrate

Oxide-passivated silicon substrate

Source: Professor Vivek Subramanian

Gecko Adhesive

- Sticks to wet or dry surfaces
- Sticks to rough or smooth surfaces (e.g. concrete or glass)
- Self cleaning
- Leaves no residue
- Reusable
- Can be turned on/off at 10 Hz
- Pull-off 10N/cm²

Goal: artificial nanofabricated structures with gecko adhesive performance

Source: Professor Ron Fearing
Laying the Foundations for the Next Digital Revolution:
Innovation in the College of Engineering at Berkeley

Professor Richard Newton
newton@coe.berkeley.edu

Copyright © 2001
Page 10
It’s all about Communication!

It’s all about Power!

Source: Professor Jan Rabaey
Is the End of Moore’s Law an Economic One?

◆ Silicon is not suited for low-end human-centric consumer appliances
 ❖ Baseline costs of traditional chips are high
 ❖ Cannot easily integrate human interaction component

◆ The solution: Organic Semiconductors
 ❖ “Spray on circuits” – no clean rooms
 ❖ Easy to integrate display, computation and sensing

Source: Professor Vivek Subramanian

“Smart Soup”

Electronic “Bar Code”
Passive RF circuit that talk to the outside world... no need for scanners

Real-time Labeling
Develop new generations of reflective display technology for ultra-low power "electronic paper" displays No more incorrect pricing!

Closed Loop Content Monitoring
No more expiration dates... the can knows when it has expired!

Source: Professor Vivek Subramanian
Laying the Foundations for the Next Digital Revolution: Innovation in the College of Engineering at Berkeley

A MEMS Microgenerator

Energy density comparison between liquid hydrocarbon fueled power supply and typical batteries

- 11,000
- 5,000
- 1,000
- 0

Liquid Hydrocarbon Fuel

- 40% Efficient Micro-Engine
- 20% Efficient Micro-Engine
- Zinc-Air Battery
- Lithium Battery
- Alkaline Battery

Power Conditioning, Logic, and Engine Control

H₂O and CO₂ Exhaust

MEMS Rotary Engine and Integrated Power Generator Chipset (PGC)

Source: Professors Carlos Fernandez-Pello, Al Pisano and Dorian Liepmann

The Rotary Microengine

- Measured power in mini-engine
 (3.7 W @ 9300 RPM)
- Fabrication of 3 mm meso-scale engine complete
- Fabrication of 1 mm micro-rotary engine initiated

Mini-Rotary Engine

SiC m-rotor (3 mm dia)

Micro-Rotary Engine

1 mm micro-engine fabricated from silicon

Source: Professors Carlos Fernandez-Pello, Al Pisano and Dorian Liepmann
CITRIS is a Partnership with Industry

“I believe we are now entering the Renaissance phase of the Information Age, where creativity and ideas are the new currency, and invention is a primary virtue, where technology truly has the power to transform lives, not just businesses, where technology can help us solve fundamental problems.”

Carly Fiorina, CEO, Hewlett Packard Corporation

Berkeley Engineering: A Tradition of Impact in Research

- Berkeley Unix
- Relational Database Technology
- Electronic Design Automation: SPICE to Synopsys
- RISC (with Stanford)
- RAID
- CyberCut online manufacturing systems
- NOW (Networks of Workstations)
- IEEE Floating Point
- Infopad (now called WebPad)
- Semiconductor Devices & Modeling
- MEMS

- Berkeley faculty are fundamentally motivated by high-potential-impact, long-range research

Berkeley Engineering: A Tradition of Impact in Research