
Chapter 24

CORDIC Algorithms and
Architectures
Herbert Dawid Heinrich Meyr

Synopsys, Inc. Aachen University of Technology

DSP Solutions Group Integrated Systems in Signal Processing

Kaiserstr. 100 ISS {611 810{

D-52134 Herzogenrath D{52056 Aachen

Germany Germany

email: dawid@synopsys.com email: meyr@ert.rwth-aachen.de

Abstract

Digital signal processing (DSP) algorithms exhibit an increasing need for the
e�cient implementation of complex arithmetic operations. The computation of
trigonometric functions, coordinate transformations or rotations of complex valued
phasors is almost naturally involved with modern DSP algorithms. Popular appli-
cation examples are algorithms used in digital communication technology and in
adaptive signal processing. While in digital communications, the straightforward
evaluation of the cited functions is important, numerous matrix based adaptive
signal processing algorithms require the solution of systems of linear equations, QR
factorization or the computation of eigenvalues, eigenvectors or singular values. All
these tasks can be e�ciently implemented using processing elements performing vec-
tor rotations. The COordinate Rotation DIgital Computer algorithm (CORDIC)
o�ers the opportunity to calculate all the desired functions in a rather simple and
elegant way.

The CORDIC algorithm was �rst introduced by Volder [1] for the computation
of trigonometric functions, multiplication, division and datatype conversion, and
later on generalized to hyperbolic functions by Walther [2]. Two basic CORDIC
modes are known leading to the computation of di�erent functions, the rotation

mode and the vectoring mode.
For both modes the algorithm can be realized as an iterative sequence of

additions/subtractions and shift operations, which are rotations by a �xed rotation
angle (sometimes called microrotations) but with variable rotation direction. Due
to the simplicity of the involved operations the CORDIC algorithm is very well

1

2 Chapter 24

suited for VLSI implementation. However, the CORDIC iteration is not a perfect
rotation which would involve multiplications with sine and cosine. The rotated
vector is also scaled making a scale factor correction necessary.

We �rst give an introduction into the CORDIC algorithm. Following we
discuss methods for scale factor correction and accuracy issues with respect to
a �xed wordlength implementation. In the second part of the chapter di�erent
architectural realizations for the CORDIC are presented for di�erent applications:

1. Programmable CORDIC processing element

2. High throughput CORDIC processing element

3. CORDIC Architectures for Vector Rotation

4. CORDIC Architectures using redundant number systems

24.1 The CORDIC Algorithm

In this section we �rst present the basic CORDIC iteration before discussing
the full algorithm which consists of a sequence of these iterations.

In the most general form one CORDIC iteration can be written as [2, 3]

xi+1 = xi �m � �i � yi � �m;i

yi+1 = yi + �i � xi � �m;i (1)

zi+1 = zi � �i � �m;i

Although it may not be immediately obvious this basic CORDIC iteration describes
a rotation (together with a scaling) of an intermediate plane vector vi = (xi; yi)

T

to vi+1 = (xi+1; yi+1)
T . The third iteration variable zi keeps track of the rotation

angle �m;i. The variable m 2 f1; 0;�1g speci�es a circular, linear or hyperbolic
coordinate system, respectively. The rotation direction is steered by the variable
�i 2 f1;�1g. Trajectories for the vectors vi for successive CORDIC iterations are
shown in Fig. 24.1 for m = 1, in Fig. 24.2 for m = 0, and in Fig. 24.3 for m = �1,
respectively. In order to avoid multiplications �m;i is de�ned to be

�m;i = d�sm;i ; d : Radix of employed number system, sm;i : integer number

= 2�sm;i ; Radix 2 number system (2)

For obvious reasons we restrict consideration to radix 2 number systems below:
�m;i = 2�sm;i . It will be shown later that the shift sequence sm;i is generally a
nondecreasing integer sequence. Hence, a CORDIC iteration can be implemented
using only shift and add/subtract operations.

The �rst two equations of the system of equations given in Eq. (1) can be
written as a matrix-vector product

vi+1 =

�
1 �m � �i � �m;i

�i � �m;i 1

�
� vi = Cm;i � vi (3)

In order to verify that the matrix-vector product in Eq. (3) describes indeed a vector
rotation and to quantify the involved scaling we consider now a general normalized

CORDIC Algorithms and Architectures 3

x

y

v

v
0

v
1

v
2

3

x + y = 1
2 2

v = (x y)
i i i

T

Circular Coordinates

Figure 24.1 Rotation trajectory for the circular coordinate system (m = 1).

x = 1

x

y Linear Coordinates

v
0

v
1

v
2

v = (x y)
i i i

T

Figure 24.2 Rotation trajectory for the linear coordinate system (m = 0).

plane rotation matrix for the three coordinate systems. For m = 1; 0;�1 and an
angle �i ��m;i with �i determining the rotation direction and �m;i representing an
unsigned angle, this matrix is given by

Rm;i =

�
cos(

p
m � �m;i) ��i �

p
m � sin(pm � �m;i)

�ip
m
� sin(pm � �m;i) cos(

p
m � �m;i)

�
(4)

4 Chapter 24

Hyperbolic Coordinates

x - y = 1
2 2

v = (x y)
i i i

T

y=x

y=-x

y

x

Figure 24.3 Rotation trajectory for the hyperbolic coordinate system (m = �1).

which can be easily veri�ed by setting m to 1; 0;�1, repectively, and using (for
the hyperbolic coordinate system) the identities: sinh(z) = �isin(iz), cosh(z) =
cos(iz), and tanh(z) = �i � tan(iz) with i =

p�1. The norm of a vector (x; y)T

in these coordinate systems is de�ned as
p
x2 +m � y2. Correspondingly, the norm

preserving rotation trajectory is a circle de�ned by x2+y2 = 1 in the circular coor-
dinate system, while in the hyperbolic coordinate system the \rotation" trajectory
is a hyperbolic function de�ned by x2 � y2 = 1 and in the linear coordinate system
the trajectory is a simple line x = 1. Hence, the common meaning of a rotation
holds only for the circular coordinate system. Clearly

1

cos(
p
m � �m;i)

�Rm;i =

�
1 ��i �

p
m � tan(pm � �m;i)

�ip
m
� tan(pm � �m;i) 1

�

holds, hence

1

cos(
p
m � �m;i)

�Rm;i = Cm;i holds for �m;i =
1p
m
� tan(pm � �m;i)

This proves that Cm;i is an unnormalized rotation matrix for m 2 f�1; 1g due to
the scaling factor 1

cos(
p
m��m;i)

. Cm;i describes a rotation with scaling rather than a

pure rotation. For m = 0, Rm;i = Cm;i holds, hence Cm;i is a normalized rotation
matrix in this case and no scaling is involved. The scale factor is given by

Km;i =
1

cos(
p
m � �m;i)

=

q
cos2(

p
m � �m;i) + sin2(

p
m � �m;i)

cos(
p
m � �m;i)

=

q
1 + tan2(

p
m � �m;i) (5)

CORDIC Algorithms and Architectures 5

For n successive iterations, obviously

vn =

n�1Y
i=0

Cm;i � v0 =
n�1Y
i=0

Km;i �
n�1Y
i=0

Rm;i � v0

holds, i.e. a rotation by an angle

� =

n�1X
i=0

�i � �m;i

is performed with an overall scaling factor of

Km(n) =

n�1Y
i=0

Km;i (6)

The third iteration component zi simply keeps track of the overall rotation
angle accumulated during successive microrotations

zi+1 = zi � �i � �m;i

After n iterations

zn = z0 �
n�1X
i=0

�i � �m;i

holds, hence zn is equal to the di�erence of the start value z0 and the total accu-
mulated rotation angle.

In Fig. 24.4, the structure of a processing element implementing one CORDIC
iteration is shown. All internal variables are represented by a �xed number of
digits, including the precalculated angle �m;i which is taken from a register. Due
to the limited wordlength some rounding or truncation following the shifts 2�sm;i is
necessary. The adders/subtractors are steered with �m�i, �i and ��i, respectively.

A rotation by any (within some convergence range) desired rotation angle
A0 can be achieved by de�ning a converging sequence of n single rotations. The
CORDIC algorithm is formulated given

1. a shift sequence sm;i de�ning an angle sequence

�m;i =
1p
m
� tan�1(pm � 2�sm;i) with i 2 f0; : : : ; n� 1g (7)

which guarantees convergence. Shift sequences will be discussed in section
24.1.3.

2. a control scheme generating a sign sequence �i with i 2 f0; : : : ; n� 1g which
steers the direction of the rotations in this iteration sequence and guarantees
convergence.

6 Chapter 24

x Reg y Reg z Reg

Mux

+/- +/- +/-

-sm,i2 2
-sm,i

a
m,i

-m µ i µ i −µ i

i i i

yx zi+1 i+1 i+1

0
m

Figure 24.4 Basic structure of a processing element for one CORDIC iteration.

In order to explain the control schemes used for the CORDIC algorithm the angle
Ai is introduced specifying the remaining rotation angle after rotation i. The
direction of the following rotation has to be chosen such that the absolute value of
the remaining angle eventually becomes smaller during successive iterations [2]

jAi+1j = jjAij � �m;ij (8)

Two control schemes ful�lling Eq. (8) are known for the CORDIC algorithm, the
rotation mode and the vectoring mode.

24.1.1 Rotation Mode

In rotation mode the desired rotation angle A0 = � is given for an input vector
(x; y)T . We set x0 = x, y0 = y, and z0 = � = A0. After n iterations

zn = � �
n�1X
i=0

�i � �m;i

If zn = 0 holds, then � =
Pn�1

i=0 �i � �m;i, i.e. the total accumulated rotation angle
is equal to �. In order to drive zn to zero, �i = sign(zi) is used leading to

xi+1 = xi �m � sign(zi) � yi � 2�sm;i

yi+1 = yi + sign(zi) � xi � 2�sm;i (9)

zi+1 = zi � sign(zi) � �m;i

Obviously, for z0 = A0 and zi = Ai

zi+1 = zi � sign(zi) � �m;i

CORDIC Algorithms and Architectures 7

hence

sign(zi) � zi+1 = sign(zi) � zi � �m;i

= jzij � �m;i

Taking absolute values

jzi+1j = jjzij � �m;ij
follows, satisfying Eq. (8) for zi = Ai (10)

The �nally computed scaled rotated vector is given by (xn; yn)
T . In Fig. 24.5, the

trajectory for the rotation mode in the circular coordinate system is shown. It be-
comes clear that the vector is iteratively rotated towards the desired �nal position.
The scaling involved with the successive iterations is also shown in Fig. 24.5.

x

y

v

v
0

v
1

v
2

3

x + y = 1
2 2

v = (x y)
i i i

T

Rotation Mode

θ

Figure 24.5 Rotation trajectory for the rotation mode in the circular coordinate

system.

24.1.2 Vectoring Mode

In vectoring mode the objective is to rotate the given input vector (x; y)T with

magnitude
p
x2 +m � y2 and angle � = �A0 =

1p
m
� tan�1(pm � y

x
) towards the x{

axis. We set x0 = x, y0 = y, and z0 = 0. The control scheme is such that during the
n iterations yn is driven to zero: �i = �sign(xi) � sign(yi). Depending on the sign
of x0 the vector is then rotated towards the positive (x0 � 0) or negative (x0 < 0)
x{axis. If yn = 0 holds, zn contains the negative total accumulated rotation angle
after n iterations which is equal to �

zn = � = �
n�1X
i=0

�i � �m;i

8 Chapter 24

and xn contains the scaled and eventually (for x0 < 0) signed magnitude of the
input vector as shown in Fig. 24.6. The CORDIC iteration driving the yi variable

x

y

v

v
0

v
1

v
2

3

x + y = 1
2 2

v = (x y)
i i i

T

Vectoring Mode

φ

Figure 24.6 Rotation trajectory for the vectoring mode in the circular coordinate

system.

to zero is given by

xi+1 = xi +m � sign(xi) � sign(yi) � yi � 2�sm;i

yi+1 = yi � sign(xi) � sign(yi) � xi � 2�sm;i (11)

zi+1 = zi + sign(xi) � sign(yi) � �m;i

with xn = Km(n) � sign(x0) �
p
x2 +m � y2. Obviously, the remaining rotation angle

after iteration i is given by Ai = � 1p
m
� tan�1(pm � yi

xi
). Clearly, sign(Ai) =

�sign(xi) � sign(yi) holds. With z0 = 0 and A0 = ��, Ai = zi � � holds. Using
�i = �sign(Ai)

Ai+1 = zi+1 � �

= zi + sign(xi) � sign(yi) � �m;i � � using Eq. (11)

= zi � sign(Ai) � �m;i � �

= Ai � sign(Ai) � �m;i

holds. Eq. (8) is again satis�ed as was shown in Eq. (10).

24.1.3 Shift Sequences and Convergence Issues

Given the two iteration control schemes, shift sequences sm;i have to be in-
troduced which guarantee convergence.

CORDIC Algorithms and Architectures 9

First, the question arises how to de�ne convergence in this case. Since there
are only n �xed rotation angles with variable sign, the desired rotation angle A0

can only be approximated resulting in an angle approximation error �� [4]

�� = A0 �
n�1X
i=0

�i � �m;i

�� does not include errors due to �nite quantization of the rotation angles �m;i.
In rotation mode, since z0 = A0, �� = zn = An holds, i.e. zn can not be made
exactly equal to zero. In vectoring mode the angle approximation error is given by
the remaining angle of the vector (xn; yn)

T

�� = An =
1p
m
� tan�1(pm � yn

xn
) =

8<
:
tan�1(yn

xn
) m = 1

yn
xn

= yn
x0

m = 0

tanh�1(yn
xn
) m =-1

Hence, convergence can only be de�ned taking into account the angle approx-
imation error. Two convergence criteria can be derived (for a detailed discussion
see [1, 2]):
1.) First, the chosen set of rotation angles has to satisfy

�m;i �
n�1X
j=i+1

�m;j � �m;n�1 (12)

The reason for this requirement can be sketched as follows: if at any iteration stage
i the current remaining rotation angle Ai is zero, it will be changed by ��m;i in
the next iteration. Then, the sum of rotation angles for the remaining iterationsPn�1

j=i+1 �m;j has to be large enough to bring the remaining angle after the last
iteration An to zero within the accuracy given by �m;n�1.
2.) Second, the given rotation angle A0 must not exceed the convergence range of
the iteration which is given by the sum of all rotation angles plus the �nal angle

jA0j �
n�1X
i=0

�m;i + �m;n�1

Walther [2] has proposed shift sequences for each of the three coordinate
systems for radix 2 implementation. It was shown by Walther [2] that for m = �1
the convergence criterion Eq. (12) is not satis�ed for ��1;i = tanh�1(2�i), but it is
satis�ed if the integers (4; 13; 40; : : : ; k; 3k+1; : : :) are repeated in the shift sequence.
For any implementation, the angle sequence �m;i resulting from the chosen shift
sequence can be calculated in advance, quantized according to a chosen quantization
scheme and retrieved from storage during execution of the CORDIC algorithm as
shown in Fig. 24.4.

24.1.4 CORDIC Operation Modes and Functions

Using the CORDIC algorithm and the shift sequences stated above, a number
of di�erent functions can be calculated in rotation mode and vectoring mode as
shown in Table 24.2.

10 Chapter 24

coordinate system shift sequence convergence scale factor

m sm;i jA0j Km(n!1)

1 0; 1; 2; 3; 4; : : : ; i; : : : � 1:74 � 1:64676

0 1; 2; 3; 4; 5: : : : ; i+ 1; : : : 1:0 1:0

� 1 1; 2; 3; 4; 4; 5; : : : � 1:13 � 0:82816

Table 24.1 CORDIC shift sequences.

m mode initialization output

1 rotation x0 = x xn = K1(n) � (x cos � � y sin �)
y0 = y yn = K1(n) � (y cos � + x sin �)
z0 = � zn = 0
x0 =

1
K1(n)

xn = cos �

y0 = 0 yn = sin �
z0 = � zn = 0

1 vectoring x0 = x xn = K1(n) � sign(x0) �
p
x2 + y2

y0 = y yn = 0
z0 = � zn = � + tan�1(y

x
)

0 rotation x0 = x xn = x

y0 = y yn = y + x � z
z0 = z zn = 0

0 vectoring x0 = x xn = x

y0 = y yn = 0
z0 = z zn = z + y

x

- 1 rotation x0 = x xn = K�1(n) � (x cosh � + y sinh �)
y0 = y yn = K�1(n) � (y cosh � + x sinh �)
z0 = � zn = 0
x0 =

1
K�1(n)

xn = cosh �

y0 = 0 yn = sinh �
z0 = � zn = 0

- 1 vectoring x0 = x xn = K�1(n) � sign(x0) �
p
x2 � y2

y0 = y yn = 0

z0 = � zn = � + tanh�1(y
x
)

Table 24.2 Functions calculated by the CORDIC algorithm.

In addition, the following functions can be calculated from the immediate
CORDIC outputs

tan z =
sin z

cos z

CORDIC Algorithms and Architectures 11

tanh z =
sinh z

cosh z
exp z = sinh z + cosh z

ln z = 2 tanh�1(
y

x
) with x = z + 1 and y = z � 1

p
z =

p
x2 � y2 with x = z +

1

4
and y = z � 1

4

24.2 Computational Accuracy

It was already mentioned that due to the n �xed rotation angles a given
rotation angle A0 can only be approximated, resulting in an angle approximation
error �� � �m;n�1. Even if all other error sources are neglected, the accuracy of
the outputs of the nth iteration is hence principally limited by the magnitude of
the last rotation angle �m;n�1. For large n, approximately sm;n�1 accurate digits
of the result are obtained since sm;n�1 speci�es the last right shift of the shift
sequence. As a �rst guess the number of iterations should hence be chosen such
that sm;n�1 =W for a desired output accuracy of W bits. This leads to n =W +1
iterations if the shift sequence given in Table 24.1 for m = 1 is used.

A second error source is given by the �nite precision of the involved variables
which has to be taken into account for �xed point as well as
oating point implemen-
tations. The CORDIC algorithm as stated so far is suited for �xed point number
representations. Some facts concerning the extension to
oating point numbers
will be presented in section 24.2.4. The format of the internal CORDIC variables
is shown in Fig. 24.7. The internal wordlength is given by the wordlengthW of the

W-1 0MSB

MSB guard digits LSB guard digitsinput digits

LSB

Figure 24.7 Format of the internal CORDIC variables.

�xed point input, enhanced by G guard bits on the most signi�cant bit (MSB) and
C guard bits at the least signi�cant bit (LSB) side1. The MSB guard bits are nec-
essary since form = 1 the scale factor is larger than one, and since range extensions
are introduced by the CORDIC rotation as obvious from the rotation trajectories
given in Fig. 24.1, Fig. 24.2 and Fig. 24.3, respectively2. The successive right shifts
employed in the CORDIC algorithm for the xi and yi variables, together with the
limited number of bits in the internal �xed point datapath, require careful analysis
of the involved computational accuracy and the inevitable rounding errors3. LSB

1In the CORDIC rotation mode and vectoring mode the iteration variables zi and yi are driven

to zero during the n iterations. This fact can be exploited by either increasing the resolution for

these variables during the iterations or by reducing their wordlength. Detailed descriptions for

these techniques can be found in [5, 6] for the rotation mode and in [7] for the vectoring mode.
2For m = 1 two guard bits are necessary at the MSB side. First, the scale factor is larger

than one: K1(n) � 1:64676. Second a range extension by the factor
p
2 occurs for the xn and yn

components.
3In order to avoid any rounding the number of LSB guard digits has to be equal to the sum of

all elements in the shift sequence, which is of course not economically feasible.

12 Chapter 24

guard digits are necessary in order to provide the desired output accuracy as will
be discussed in section 24.2.3.

24.2.1 Number Representation

Below, we assume that the intermediate CORDIC iteration variables xi and
yi are quantized according to a normalized (fractional) �xed point two's comple-
ment number representation. The value V of a number n with N binary digits
(nN�1; : : : ; n0) is given by

V = (�nN�1 +
N�2X
j=0

nj � 2�(N�1)+j) � F with F = 1 (13)

This convenient notation can be changed to a two's complement integer represen-
tation simply by using F = 2N�1 or to any other �xed point representation in a
similar way, hence it does not pose any restriction on the input quantization of the
CORDIC.
For m = 1 the di�erent common formats for rotation angles have to be taken into
account. If the angle is given in radians the format given in Eq. (13) may be chosen.
F has to be adapted to F = 2 if the input range is (��=2; �=2) = (�1:57; 1:57).
However, in many applications for the circular coordinate system it is desirable to
represent the angle in fractions of � and to include the wrap around property which
holds for the restricted range of possible angles (��;+�). If F = � is chosen, the
well known wrap around property of two's complement numbers ensures that all
angles undergoing any addition/subtraction stay in the allowed range. This format
was proposed by Daggett [8] and is sometimes referred to as "Daggett angle repre-
sentation". The input angle range is often limited to (��=2; �=2) which guarantees
convergence. The total domain of convergence can be easily expanded by including
some \pre-rotations" for input vectors in the ranges (�=2; �) and (��;��=2). If
the Daggett angle format is used it is very easy to determine the quadrant of a
given rotation angle A0 since only the upper two bits have to be inspected. Pre-
rotations by �� or ��=2 are very easy to implement. More sophisticated proposals
for expanding the range of convergence of the CORDIC algorithm for all coordinate
systems were given in [9].

24.2.2 Angle Approximation Error

It was shown already that the last rotation angle �m;n�1 determines the ac-
curacy achievable by the CORDIC rotation. A straightforward conclusion is to
increase the number of iterations n in order to improve accuracy since �m;n�1 =
1p
m
� tan�1(pm � 2�sm;n�1) with sm;i being a nondecreasing integer shift sequence.

However, the �nite word length available for representing the intermediate variables
poses some restrictions. If the angle is quantized according to Eq. (13) the value of
the least signi�cant digit is given by 2�W�C+1�F . Therefore, �m;n�1 � 2�W�C+1�F
must hold in order to represent this value. Additionally the rounding error, which
increases with the number of iterations, has to be taken into account.

24.2.3 Rounding Error

Rounding is preferred vs. truncation in CORDIC implementations since the
truncation of two's complement numbers creates a positive o�set which is highly

CORDIC Algorithms and Architectures 13

undesirable. Additionally, the maximum error due to rounding is only half as large
as the error involved with truncation. The e�ort for the rounding procedure can
be kept very small since the eventual addition of a binary one at the LSB position
can be incorporated with the additions/subtractions which are necessary anyway.

Analysis of the rounding error for the zi variable is easy since no shifts occur
and the rounding error is just due to the quantization of the rotation angles. Hence,
the rounding error is bounded by the accumulation of the absolute values of the
rounding errors for the single quantized angles �m;i.

In contrast the propagation of initial rounding errors for xi and yi through
the multiple iteration stages of the algorithm and the scaling involved with the
single iterations make an analytical treatment very di�cult. However, a thorough
mathematical analysis taking into account this error propagation is given in [4] and
extended in [10]. Due to limited space we present only a simpli�ed treatment as can
be found in [2]. Here the assumption is made that the maximum rounding errors
associated with every iteration accumulate to an overall maximum rounding error
for n iterations. While for zi this is a valid assumption it is a coarse simpli�cation
for xi and yi. As shown in Fig. 24.7, W + G + C bits are used for the internal
variables with C additional fractional guard digits. Using the format given in
Eq. (13) the maximum accumulated rounding error for n iterations is given by
e(n) = n � F � 2�(W+C�1)�1. If W accurate fractional digits of the result are to be
obtained the resulting output resolution is 2�(W�1) � F . Therefore, if C is chosen
such that e(n) � F � 2�W , the rounding error can be considered to be of minor
impact. From n � F � 2�(W+C) < F � 2�W it follows that C � log2(n). Hence, at
least C = dlog2(n)e additional fractional digits have to be provided.
24.2.4 Floating Point Implementations

The shift{and-add structure of the CORDIC algorithm is well suited for a
�xed point implementation. The use of expensive
oating point re{normalizations
and
oating point additions and subtractions in the CORDIC iterations does not
lead to any advantage since the accuracy is still limited to the accuracy imposed by
the �xed wordlength additions and subtractions which also have to be implemented
in
oating point adders/subtractors. Therefore,
oating point CORDIC implemen-
tations usually contain an initial
oating to �xed conversion. We consider here only
the case m = 1 (detailed discussions of the
oating point CORDIC can be found in
[7, 11, 12, 13]). Below, it is assumed that the input
oating point format contains
a normalized signed mantissa m and an exponent e. Hence, the mantissa is a two's
complement number4 quantized according to Eq. (13) with F = 1. The components
of the
oating point input vector v are given by v = (x; y)T = (mx � 2ex ;my � 2ey)T .
The input conversion includes an alignment of the normalized signed
oating point
mantissas according to their exponents. Two approaches are known for the
oating
point CORDIC:

1. The CORDIC algorithm is started using the same shift sequences, rotation
angles and number of iterations as for the �xed point CORDIC. We consider
a
oating point implementation of the vectoring mode.
The CORDIC vectoring mode iteration written for
oating point values xi

4If the mantissa is given in sign{magnitude format it can be easily converted to a two's com-

plement representation.

14 Chapter 24

and yi and m = 1 is given by

mx;i+1 � 2ex = mx;i � 2ex + �i �my;i � 2ey � 2�sm;i

my;i+1 � 2ey = my;i � 2ey � �i �mx;i � 2ex � 2�sm;i (14)

Depending on the di�erence of the exponents E = ex � ey two di�erent ap-
proaches are used. If E < 0 we divide both equations 14 by 2ey

mx;i+1 � 2ex�ey = mx;i � 2ex�ey + �i �my;i � 2�sm;i

my;i+1 = my;i � �i �mx;i � 2ex�ey � 2�sm;i (15)

Hence, we can simply set y0 = my;0 and x0 = mx;0 � 2ex�ey and then perform
the usual CORDIC iteration for the resulting �xed point two's complement
inputs x0 and y0. Of course, some accuracy for the xi variable is lost due to
the right shift 2ex�ey . For E � 0 we could proceed completely accordingly
and divide the equations by 2ex . Then the initial conversion represents just
an alignment of the two
oating point inputs according to their exponents.
This approach was proposed in [11].

Alternatively, if E � 0 the two equations (14) are divided by 2ex and 2ey ,
respectively, as described already in [2]

mx;i+1 = mx;i +m � �i �my;i � 2�(sm;i+E)

my;i+1 = my;i � �i �mx;i � 2�(sm;i�E) (16)

Then, the usual CORDIC iteration is performed with two's complement �xed
point inputs, but starting with an advanced iteration k: xk = mx;0 and
yk = my;0. Usually, only right shifts occur in the CORDIC algorithm. A
sequence of left shifts would lead to an exploding number of digits in the
internal representation since all signi�cant digits have to be taken into account
on the MSB side in order to avoid over
ows. Therefore, the iteration k with
sm;k = E is taken as the starting iteration. With sm;k = E all actually applied
shifts remain right shifts for the n iterations: i 2 fk; : : : ; k+n�1g. Hence, the
index k is chosen such that optimum use is made of the inherent �xed point
resolution of the yi variable whose value is driven to zero. Unfortunately, the
varying index of the start iteration leads to a variable scale factor as will be
discussed later.

The CORDIC angle sequence �m;i has also to be represented in a �xed point
format in order to be used in a �xed point implementation. If the algorithm
is always started with iteration i = 0 the angle sequence can be quantized
such that optimum use is made of the range given by the �xed wordlength. If
we start with an advanced iteration with variable index k the angle sequence
has to be represented such that for the starting angle �m;k no leading zeroes
occur. Consequently, the angle sequence has to be stored with an increased
resolution (i.e. with an increased number of bits) and to be shifted according
to the value of k in order to provide the full resolution for the following n

iterations.

So far we discussed the �rst approach to
oating point CORDIC only for
the vectoring mode. For the rotation mode similar results can be obtained
(c.f. [2]). To summarize, several drawbacks are involved for E � 0:

CORDIC Algorithms and Architectures 15

(a) The scale factor is depending on the starting iteration k

Km(n; k) =

n�1+kY
j=k

Km;j (17)

Therefore the inverse scale factor as necessary for �nal scale factor cor-
rection has e.g. to be calculated in parallel to the iterations or storage
has to be provided for a number of precalculated di�erent inverse scale
factors.

(b) The accuracy of the stored angle sequence has to be such that su�cient
resolution is given for all possible values of k. Hence, the number of
digits necessary for representing the angle sequence becomes quite large.

(c) If the algorithm is started with an advanced iteration k with sm;k = E,
the resulting right shifts given by sm;i + E for the xi variable lead to
increased rounding errors for a given �xed wordlength.

Nevertheless, this approach was proposed for a number of applications (c.f. [11,
14, 15]).

2. For full IEEE 754
oating point accuracy a
oating point CORDIC algorithm
was derived in [12, 13]. Depending on the di�erence of the exponents of the
components of the input vector and on the desired angle resolution an opti-
mized shift sequence is selected here from a set of prede�ned shift sequences.
For a detailed discussion the reader is referred to [12, 13].

Following the �xed point CORDIC iterations the output numbers are re{converted
to
oating{point format. The whole approach with input{output conversions and
internal �xed point datapath is called block
oating{point [15, 12, 13].

24.3 Scale Factor Correction

At �rst glance, the vector scaling introduced by the CORDIC algorithm does
not seem to pose a signi�cant problem. However, the correction of a possibly
variable scale factor for the output vector generally requires two divisions or at
least two multiplications with the corresponding reciprocal values. Using a �xed{
point number representation a multiplication can be realized by W shift and add
operations where W denotes the wordlength. Now, the CORDIC algorithm itself
requires on the order of W iterations in order to generate a �xed{point result with
W bits accuracy as discussed in section 24.2. Therefore, correction of a variable
scale factor requires an e�ort comparable to the whole CORDIC algorithm itself.
Fortunately, the restriction of the possible values for �i to (�1; 1) (�i 6= 0) leads
to a constant scale factor Km(n) for each of the three coordinate systems m and a
�xed number of iterations n as given in Eq. (6).

A constant scale factor which can be interpreted as a �xed (hence not data
dependent) gain can be tolerated in many digital signal processing applications5.
Hence it should be carefully investigated whether it is necessary to compensate for
the scaling at all.

5The drawback is that a certain unused headroom is introduced for the output values since the

scale factor is not a power of two.

16 Chapter 24

If scale factor correction can not be avoided, two possibilities are known:
performing a constant factor multiplication with 1

Km(n)
or extending the CORDIC

iteration in a way that the resulting inverse of the scale factor takes a value such that
the multiplication can be performed using a few simple shift and add operations.

24.3.1 Constant Factor Multiplication

Since 1
Km(n)

can be computed in advance the well known multiplier recoding

methods [16] can be applied. The e�ort for a constant factor multiplication is
dependent on the number of nonzero digits necessary to represent the constant
factor, resulting in a corresponding number of shift and add operations6. Hence, the
goal is to reduce the number of nonzero digits in 1

Km(n)
by introducing a canonical

signed digit [17] representation with digits sj 2 f�1; 0; 1g and recoding the resulting
number

1

Km(n)
=

W�1X
j=0

sj2
�j

On the average, the number of nonzero digits can be reduced to W
3
[16], hence the

e�ort for the constant multiplication should be counted as approximately one third
the e�ort for a general purpose multiplication only.

24.3.2 Extended CORDIC Iterations

By extending the sequence of CORDIC iterations the inverse of the scale factor
may eventually become a \simple" number (i.e. a power of two, the sum of powers
of two or the sum of terms like (1� 2�j), so that the scale factor correction can be
implemented using a few simple shift and add operations. The important fact is
that when changing the CORDIC sequence, convergence still has to be guaranteed
and the shift sequence as well as the set of elementary angles �m;i both change.
Four approaches are known for extending the CORDIC algorithm:
1. Repeated Iterations

Single iterations may be repeated without destroying the convergence properties
of the CORDIC algorithm [18] which is obvious from Eq. (12). Hence, a set of
repeated iterations can be de�ned which leads to a simple scale factor. However,
using this simple scheme the number of additional iterations is quite large reducing
the overall savings due to the simple scale factor correction[19].
2. Normalization Steps

In [20] the inverse of the scale factor is described as

1

Km(n)
=

n�1Y
i=0

(1�m �
m;i � 2�sm;i)

with
m;i 2 f0; 1g. The single factors in this product can be implemented by
introducing normalization steps into the CORDIC sequence

xi+1;norm = xi+1 �m � xi+1 �
m;i � 2�sm;i

yi+1;norm = yi+1 �m � yi+1 �
m;i � 2�sm;i (18)

6In parallel multiplier architectures the shifts are hardwired, while in a serial multiplier the

multiplication is realized by a number of successive shift and add operations.

CORDIC Algorithms and Architectures 17

The important fact is that these normalization steps can be implemented with es-
sentially the same hardware as the usual iterations since the same shifts sm;i are
required and steered adders/subtractors are necessary anyway. No change in the
convergence properties takes place since the normalization steps are pure scaling
operations and do not involve any rotation.
3. Double shift iterations

A di�erent way to achieve a simple scale factor is to modify the sequence of ele-
mentary rotation angles by introducing double shift iterations as proposed in [21]

xi+1 = xi �m � �i � yi � 2�sm;i �m � �i � yi � �m;i � 2�s
0

m;i

yi+1 = yi + �i � xi � 2�sm;i + �i � xi � �m;i � 2�s
0

m;i (19)

where �m;i 2 f�1; 0; 1g and s
0

m;i > sm;i. For �m;i = 0 the usual iteration equations
are obtained. The set of elementary rotation angles is now given by

�m;i =
1p
m
� tan�1(pm � (2�sm;i + �m;i � 2�s

0

m;i))

The problem of �nding shift sequences s
0

m;i and sm;i which guarantee convergence,
lead to a simple scale factor and simultaneously represent minimum extra hardware
e�ort was solved in [22, 15, 23].
4. Compensated CORDIC Iteration

A third solution leading to a simple scale factor was proposed in [19] based on [24]

xi+1 = xi �m � �i � yi � 2�sm;i + xi � �m;i � 2�sm;i

yi+1 = yi + �i � xi � 2�sm;i + yi � �m;i � 2�sm;i

The advantage is that the complete subexpressions xi � 2�sm;i and yi � 2�sm;i occur
twice in the iteration equations and hence need to be calculated only once. The set
of elementary angles is here described by

�m;i =
1p
m
� tan�1(

p
m

2sm;i + �m;i

)

A comparison of the schemes 1.-4. in terms of hardware e�ciency is outside
the scope of this chapter. It should be mentioned, however, that the impact of
the extra operations depends on the given application, the desired accuracy and
the given wordlength. Additionally, recursive CORDIC architectures pose di�erent
constraints on the implementation of the extended iterations than pipelined un-
folded architectures. A comparison of the schemes for a recursive implementation
with an output accuracy of 16 bits can be found in [19].

24.4 CORDIC Architectures

In this section several CORDIC architectures are presented. We start with
the dependence graph for the CORDIC which shows the operational
ow in the
algorithm. Note that we restrict ourselves to the conventional CORDIC iteration
scheme. The dependence graph for extended CORDIC iterations can be easily de-
rived based on the results. The nodes in the dependence graph represent operations

18 Chapter 24

(here: steered additions/subtractions and shifts 2�sm;i) and the arcs represent the

ow of intermediate variables. Note that the dependence graph does not include
any timing information, it is just a graphical representation of the algorithmic
ow.
The dependence graph is transformed into a signal
ow graph by introducing a suit-
able projection and a time axis (c.f. [25]). The timed signal
ow graph represents
a register{transfer level (RTL) architecture. Recursive and pipelined architectures
will be derived from the CORDIC dependence graph in the following.

The dependence graph for a merged implementation of rotation mode and vec-
toring mode is shown in Fig. 24.8. The only di�erence for the two CORDIC modes
is the way the control
ags are generated for steering the adders/subtractors. The
signs of all three intermediate variables are fed into a control unit which gener-
ates the control
ags for the steered adders/subtractors given the used coordinate
system m and a
ag indicating which mode is to be applied.

x

y

x

y

0

0

zz
0 n

n

n

α
m,0

α α α
m,1 m,2 m,n-1

steered adder/subtractor shift 2
- s m,i control unit

Figure 24.8 CORDIC dependence graph for rotation mode and vectoring mode.

In a one{to{one projection of the dependence graph every node is implemented
by a dedicated unit in the resulting signal
ow graph. In Fig. 24.9, the signal

ow graph for this projection is shown together with the timing for the cascaded
additions/subtractions (the �xed shifts are assumed to be hard{wired, hence they
do not represent any propagation delay). Besides having a purely combinatorial
implementation, pipeline registers can be introduced between successive stages as
indicated in Fig. 24.9.

In the following we characterize three di�erent CORDIC architectures by their
clock period TClock, throughput in rotations per second and latency in clock cycles.
The delay for calculating the rotation direction �i is neglected due to the simplicity
of this operation, as well as
ip
op setup and hold times. As shown in Fig. 24.9
every addition/subtraction involves a carry propagation from least signi�cant bit
(LSB) to most signi�cant bit (MSB) if conventional number systems are used. The
length of this ripple path is a function of the wordlength W , e.g. TAdd � W holds
for a Carry{Ripple addition. The sign of the calculated sum or di�erence is known
only after computation of the MSB. Therefore, the clock period for the unfolded
architecture without pipelining is given by n � TAdd as shown in Fig. 24.9. The
throughput is equal to 1

n�Tadd rotations/s. The pipelined version has a latency of n

clock cycles and a clock period TClock = Tadd. The throughput is
1

Tadd
rotations/s.

It is obvious that the dependence graph in Fig. 24.8 can alternatively be
projected in horizontal direction onto a recursive signal
ow graph. Here, the

CORDIC Algorithms and Architectures 19

x

y

0

0

z
0

α
m,0

steered adder/subtractor shift 2
- s m,i

x

y

z
n

n

n

α α α
m,1 m,2 m,n-1

control unit pipeline register

T
T

Add

LSB

MSB MSB MSBMSB MSB

LSB LSB LSB LSB{
Figure 24.9 Unfolded (pipelined) CORDIC signal
ow graph.

successive operations are implemented sequentially on a recursive shared processing
element as shown in Fig. 24.10.

x

y

i

i

z
i α

m,i

steered adder/subtractor

shift 2
- s m,i

control unit

delay

x

y

i+1

i+1

z
i+1

i = 0,...,n-1

Figure 24.10 Folded (recursive) CORDIC signal
ow graph.

Note that due to the necessity to implement a number of di�erent shifts ac-
cording to the chosen shift sequence, variable shifters (i.e. so called barrel shifters)
have to be used in the recursive processing element. The propagation delay associ-
ated with the variable shifters is comparable to the adders, hence the clock period
is given by TClock = TAdd + TShift. The total latency for n recursive iterations is
given by n clock cycles and the throughput is given by 1

n�(TAdd+TShift) since new

input data can be processed only every n clock cycles.
The properties of the three architectures are summarized in Table 24.3.

20 Chapter 24

Architecture Clock period
Throughput
rotations/s

Latency
cycles

Area

unfolded n � Tadd 1
n�Tadd 1 3nadd, 1reg

unfolded pipelined Tadd
1

Tadd
n 3nadd, 3nregs

folded recursive Tadd + Tshift
1

n�(Tadd+TShift) n 3add, 3 + nregs

2shifters

Table 24.3 Architectural properties for three CORDIC architectures.

24.4.1 Programmable CORDIC processing element

The variety of functions calculated by the CORDIC algorithm leads to the idea
of proposing a programmable CORDIC processing element (PE) for digital signal
processing applications, e.g. as an extension to existing arithmetic units in digital
signal processors (DSPs) [18, 19]. The folded sequential architecture presented in
Fig. 24.10 is the most attractive architecture for a CORDIC PE due to its low
complexity. In this section, we give an overview of the structure and features of
such a PE.

Standard DSPs contain MAC (Multiply{Accumulate) units which enable sin-
gle cycle parallel multiply{accumulate operations. Functions can be evaluated using
table{lookup methods or using iterative algorithms (e.g. Newton{Raphson itera-
tions [17]) which can e�ciently be executed using the standard MAC unit. Since
the MAC unit performs single cycle multiplication and addition the multiplica-
tion realized with the linear CORDIC mode (m = 0) can not compete due to the
sign{directed, sequential nature of the CORDIC algorithm which requires a num-
ber of clock cycles for multiplication. In contrast all functions calculated in the
circular and hyperbolic modes compare favorably to the respective implementa-
tions on DSPs as shown in [19]. Therefore, a CORDIC PE extension for m = 1
and m = �1 to standard DSPs seems to be the most attractive possibility. It is
desirable that the scale factor correction takes place inside the CORDIC unit since
otherwise additional multiplications or divisions are necessary in order to correct
for the scaling. As was already pointed out in section 24.3, several methods for
scale factor correction are known. As an example, a CORDIC PE using the double
shift iteration method is shown in Fig. 24.11. Here, the basic CORDIC iteration
structure as shown in Fig. 24.4 was enhanced in order to facilitate the double shift
iterations. The double shift iterations Eq. (19) with s

0

m;i 6= 0 are implemented in

two successive clock cycles7. For iterations with s
0

m;i = 0 the shifters are steered to
shift by sm;i and the part of the datapath drawn in dashed lines is not used. For

double shift iterations with s
0

m;i 6= 0 the result obtained after the �rst clock cycle
is registered in the dashed registers and multiplexed into the datapath during the

7Alternatively, an architecture executing one double shift iteration per clock cycle is possible.

However, this requires additional hardware. If the number of iterations with s
0

m;i
6= 0 is small,

the utilization of the additional hardware is poor.

CORDIC Algorithms and Architectures 21

Mux

+/- +/-

-sm,i -sm,i

-m µ i µ i

y Regi i

+/-

a
m,i

−µ i

z Regi

0
mMux Mux

Reg Reg

-sm,i-sm,i
ROM

x Reg

2

2 2

2

Figure 24.11 Programmable CORDIC processing element.

second clock cycle while the other registers are stalled. During this second clock
cycle the shifters are steered to shift by s

0

m;i and the �nal result is obtained as given
in Eq. (19).

The sets of elementary rotation angles to be used can be stored in a ROM
as shown in Fig. 24.11 or in register �les (arrays of registers), if the number of
angles is reasonably small. A control unit steers the operations in the datapath
according to the chosen coordinate system m and the chosen shift sequence. In
addition, the CORDIC unit may be enhanced by a
oating to �xed and �xed to

oating conversion if the
oating point data format is used. Implementations of
programmable recursive CORDIC processing units were reported in [26, 19, 20].

24.4.2 Pipelined CORDIC architectures

In contrast to a universal CORDIC processing element the dominating moti-
vation for a pipelined architecture is a high throughput constraint. Additionally, it
is advantageous if relatively long streams of data have to be processed in the same
manner since it takes a number of clock cycles to �ll the pipeline and also to
ush
the pipeline if e.g. the control
ow changes (a di�erent function is to be calculated).
Although pipeline registers are usually inserted in between the single CORDIC it-
erations as shown in Fig. 24.9 they can principally be placed everywhere since the
unfolded algorithm is purely feedforward. A formalism to introduce pipelining is
given by the well known cut{set retiming method [27, 25].
The main advantage of pipelined CORDIC architectures compared to recursive im-
plementations is the possibility to implement hard{wired shifts rather than area
and time consuming barrel shifters. However, the shifts can be hard{wired only
for a single �xed shift sequence. Nevertheless, a small number of di�erent shifts
can be implemented using multiplexors which are still much faster and less area
consuming than barrel shifters as necessary for the folded recursive architecture.
A similar consideration holds for the rotation angles. If only a single shift sequence
is implemented the angles can be hard{wired into the adders/subtractors. A small

22 Chapter 24

number of alternative rotation angles per stage can be implemented using a small
combinatorial logic steering the selection of a particular rotation angle. ROMs or
register �les as necessary for the recursive CORDIC architecture are not necessary.
Implementations of pipelined CORDICs are described in [21, 22, 15].

24.4.3 CORDIC Architectures for Vector Rotation

It was already noted that the CORDIC implementation of multiplication and
division (m = 0) is not competitive. We further restrict consideration here to the
circular mode m = 1 since much more applications exist than for the hyperbolic
mode (m = �1).

Traditionally, vector rotations are realized as shown by the dependence graph
given in Fig. 24.12. The sine and cosine values are generated by some table-lookup
method (or another function evaluation approach) and the multiplications and
additions are implemented using the corresponding arithmetic units as shown in
Fig. 24.12. Below, we consider high throughput applications with one rotation per
clock cycle, and low throughput applications, where several clock cycles are avail-
able per rotation.
High throughput applications: For high throughput applications, a one{to{one
mapping of the dependence graph in Fig. 24.12 to a possibly pipelined signal
ow
graph is used. While only requiring a few multiplications and additions, the main
drawback of this approach is the necessity to provide the sine and cosine values. A
table-lookup may be implemented using ROMs or combinatorial logic. Since one
ROM access is necessary per rotation, the throughput is limited by the access time
of the ROMs. The throughput can not be increased beyond that point by pipelin-
ing. If even higher throughputs are needed, the ROMs have e.g. to be doubled and
accessed alternatingly every other clock cycle. If on the other hand combinatorial
logic is used for calculation of the sine and cosine values, pipelining is possible in
principle. However, the cost for the pipelining can be very high due to the low
regularity of the combinatorial logic which typically leads to a very high pipeline
register count. As shown in section 24.4.2, it is easily and e�ciently possible to

φ x y

cos sin

x y

Figure 24.12 Dependence graph for the classical vector rotation.

pipeline the CORDIC in rotation mode. The resulting architectures provide very
high throughput vector rotations. Additionally, the e�ort for a CORDIC pipeline

CORDIC Algorithms and Architectures 23

grows only linearly with the wordlengthW and the number of stages n, hence about
quadratically with the wordlength if n = W + 1 is used. In contrast the e�ort to
implement the sine and cosine tables as necessary for the classical method grows
exponentially with the required angle resolution or wordlength. Hence there is a
distinct advantage in terms of throughput and implementation complexity for the
CORDIC at least for relatively large wordlengths. Due to the n pipelining stages
in the CORDIC the classical solution can be advantageous in terms of latency.
Low throughput applications:: A single resource shared multiplier and adder is suf-
�cient to implement the classical method in several clock cycles as given for low
throughput applications. However, at least one table shared for sine and cosine
calculation is still necessary, occupying in the order of (2W �1)�W bits of memory
for a required wordlength of W bits for the sine and cosine values and the angle
�8. In contrast, a folded sequential CORDIC architecture can be implemented
using three adders, two barrel shifters and three registers as shown in Table 24.3.
If n = W + 1 iterations are used, the storage for the n rotation angles amounts to
(W +1) �W bits only. Therefore, the CORDIC algorithm is highly competetive in
terms of area consumption for low throughput applications.

The CORDIC vectoring mode can be used for fast and e�cient computation
of magnitude and phase of a given input vector. In many cases, only the phase
of a given input vector is required, which can of course be implemented using a
table{lookup solution. However, the same drawbacks as already mentioned for the
sine and cosine tables hold in terms of area consumption and throughput, hence
the CORDIC vectoring mode represents an attractive alternative.

Other interesting examples for dedicated CORDIC architectures include sine
and cosine calculation [6, 28], Fourier Transform processing [24], Chirp Z{transform
implementation [29] and adaptive lattice �ltering [30].

24.5 CORDIC Architectures using Redundant Number Systems

In conventional number systems, every addition or subtraction involves a carry
propagation. Independent of the adder architecture the delay of the resulting carry
ripple path is always a function of the wordlength. Redundant number systems
o�er the opportunity to implement carry-free or limited carry propagation addition
and subtraction with a small delay independent of the used wordlength. There-
fore they are very attractive for VLSI implementation. Redundant number systems
have been in use for a long time e.g. in advanced parallel multiplier architectures
(Booth, Carry{Save array and Wallace tree multipliers [16]). However, redundant
number systems o�er implementation advantages for many applications containing
cascaded arithmetic computations. Recent applications for dedicated VLSI archi-
tectures employing redundant number systems include �nite impulse response �lter
(FIR) architectures [31], cryptography [32] and the CORDIC algorithm. Since the
CORDIC algorithm consists of a sequence of additions/subtractions the use of re-
dundant number systems seems to be highly attractive. The main obstacle is given
by the sign directed nature of the CORDIC algorithm. As will be shown below, the
calculation of the sign of a redundant number is quite complicated in absolute con-
trast to conventional number systems where only the most signi�cant bit has to be

8Symmetry of the sine and cosine functions can be exploited in order to reduce the table input

wordlength by two or three bits.

24 Chapter 24

inspected. Nevertheless, several approaches were derived recently for the CORDIC
algorithm. A brief overview of the basic ideas is given.

24.5.1 Redundant Number Systems

A uni�ed description for redundant number systems was given by Parhami
[33] who de�ned Generalized Signed Digit (GSD) number systems. A GSD number
system contains the digit set f��;��+1; : : : ; ��1; �g with �; � � 0, and �+�+1 >
r with r being the radix of the number system. Every suitable de�nition of � and
� leads to a di�erent redundant number system. The value X of a W digit integer
GSD number is given by:

X =

W�1X
k=0

rkxk ; xk 2 f��;��+ 1; : : : ; � � 1; �g (20)

An important subclass are number systems with � + � = r, which are called
\minimal redundant", since � + � = r � 1 corresponds already to a conventional
number system. The well known Carry{Save (CS) number system is de�ned by
� = 0; � = 2; r = 2. CS numbers are very attractive for VLSI implementation since
the basic building block for arithmetic operations is a simple full adder9.

In order to represent the CS digits two bits are necessary which are called ci
and si. The two vectors C and S given by ci and si can be considered to be two
two's complement numbers (or binary numbers, if only unsigned values occur). All
rules for two's complement arithmetic (e.g. sign extension) apply to the C and the
S number.

s i+1
c i+1

c i

s i

c i-1

s i-1

c i

s i

s i+1
c i+1

c i-1

s i-1

Figure 24.13 Carry ripple addition (left hand side) and 3{2 Carry Save addition

(right hand side).

An important advantage of CS numbers is the very simple and fast implemen-
tation of the addition operation. In Fig. 24.13, a two's complement carry ripple
addition and a CS addition is shown. Both architectures consist ofW full adders for
a wordlength of W digits. The carry ripple adder exhibits a delay corresponding to
W full adder carry propagations while the delay of the CS adder is equal to a single

9With � = 1; � = 1; r = 2 the well known Binary Signed Digit (BSD) number system results.

BSD operations can be implemented using the same basic structures as for CS operations. The

full adders used for CS implementation are replaced with \Generalized Full Adders" [32] which

are full adders with in part inverting inputs and outputs.

CORDIC Algorithms and Architectures 25

full adder propagation delay and independent of the wordlength. The CS adder is
called 3{2 adder since 3 input bits are compressed to 2 output bits for every digit
position. This adder can be used to add a CS number represented by two input bits
for every digit position and a usual two's complement number. Addition of two CS
numbers is implemented using a 4{2 adder as shown in Fig. 24.14. CS subtraction
is implemented by negation of the two two's complement numbers C and S in the
minuend and addition as for two's complement numbers. It is well known that
due to the redundant number representation pseudo over
ows [34, 35] can occur.
A correction of these pseudo over
ows can be implemented using a modi�ed full
adder cell in the most signi�cant digit (MSD) position. For a detailed explanation
the reader is referred to [34, 35].

Conversion from CS to two's complement numbers is achieved using a so
called Vector{Merging adder (VMA) [35]. This is a conventional adder adding the
C and the S part of the CS number and generating a two's complement number.
Since this conversion is very time consuming compared to the fast CS additions it is
highly desirable to concatenate as many CS additions as possible before converting
to two's complement representation.

c i

s i

s i+1
c i+1

c i-1

s i-1

Figure 24.14 Addition of two Carry Save numbers (4{2 Carry Save addition).

The CORDIC algorithm consists of a sequence of additions/subtractions and
sign calculations. In Fig. 24.15, three possibilities for an addition followed by a sign
calculation are shown. On the left hand side a ripple adder with sign calculation is
depicted. Determination of the sign of a CS number can be solved by converting the
CS number to two's complement representation and taking the sign from the MSD,
which is shown in the middle of Fig. 24.15. For this conversion a conventional adder
with some kind of carry propagation from least signi�cant digit (LSD) to MSD is
necessary. Alternatively, the sign of a CS number can be determined starting with
the MSD. If the C and the S number have the same sign, this sign represents the
sign of the CS number. Otherwise succssive signi�cant digits have to be inspected.
The number of digits which have to be inspected until a de�nite decision on the
sign is possible is dependent on the di�erence in magnitude of the C and the S
number. The corresponding circuit structure is shown on the right hand side of
Fig. 24.15. Since in the worst case all digits have to be inspected a combinatorial
path exists from MSD to LSD.

To summarize, a LSD �rst and a MSD �rst solution exists for sign calculation
for CS numbers. Both solutions lead to a ripple path whose length is dependent

26 Chapter 24

CS adder LSD first sign
calculation

sign

CS adder

sign

MSD first sign
calculation

Ripple adder and
sign calculation

sign

Figure 24.15 Addition and sign calculation using a ripple adder (left hand side),

CS adder and LSD �rst (middle) as well as MSD �rst (right hand side) sign calcu-

lation.

on the wordlength. Addition and sign calculation using the two's complement
representation requires less delay and less area. Therefore it seems that redundant
arithmetic can not be applied advantageously to the CORDIC iteration.

24.5.2 Redundant CORDIC Architectures

In order to overcome the problem to determine the sign of the intermedi-
ate variables in CORDIC for redundant number systems several authors proposed
techniques based on an estimation of the sign of the redundant intermediate results
from a number of MSDs using a particular selection function ([7, 36, 28, 5]) for the
circular coordinate system. If a small number of MSDs is used for sign estimation,
the selection function can be implemented with a very small combinatorial delay.
It was shown in the last section that in some cases it is possible to even determine

the sign from a number of MSDs but in other cases not. The proposed algorithms
di�er in the treatment of the case that the sign can not be determined.

In [7] a redundant method for the vectoring mode is described. It is proposed
not to perform the subsequent microrotation at all if the sign and hence the rotation
direction can not be determined from the given number of MSDs. This is equivalent
to expanding the range for the sign sequence �i from �i 2 f�1; 1g to �i 2 f�1; 0; 1g.
It is proved in [7] that convergence is still guaranteed. Recall that the total scale
factor is given by the product of the scale factors involved with the single iterations.
With �i 2 f�1; 0; 1g the scale factor is variable

Km(n) =

n�1Y
i=0;�i 6=0

Km;i (21)

The variable scale factor has to be calculated in parallel to the usual CORDIC iter-
ation. Additionally, a division by the variable scaling factor has to be implemented
following the CORDIC iteration.

A number of recent publications dealing with constant scale factor redundant

(CFR) CORDIC implementations for the rotation mode ([35] {[5]) describe tech-
niques to avoid a variable scale factor. As proven in [6] the position of the signi�cant
digits of zi in rotation mode changes by one digit per iteration since the magnitude
of zi decreases during the CORDIC iterations. In all following �gures this is taken

CORDIC Algorithms and Architectures 27

into account by a left shift of one digit for the intermediate variables zi following
each iteration. Then, the MSDs can always be taken for sign estimation.

Using the double rotation method proposed in [6, 5] every iteration or (micro{
)rotation is represented by two subrotations. A negative, positive or non{rotation
is implemented by combining two negative, positive or a positive and a negative
subrotation, respectively. The sign estimation is based on the three MSDs of the
redundant intermediate variable zi. The range for �i is still given by f�1; 0; 1g.
Since nevertheless exactly two subrotations are performed per iteration the scale
factor is constant. An increase of about 50 percent in the arithmetic complexity of
the single iterations has to be taken into account due to the double rotations. In the

0,0

x
0,W-1

x
0,0

0,W-1
y

y

sign(p)0

2
0

2
-1

2
-M+1

x
out

y
out

C
o
n
v
e
r
s
i
o
n

C
o
n
v
e
r
s
i
o
n

S
c
a
l
i
n
g

S
c
a
l
i
n
g

2
-2

z
0,W-1

z
0,W

z
0,1

z
0,0

-2

sign(z)
0

sign(z)
1

sign(z)
M-1

sign estimation sign estimation sign estimation

steered 3-2 CS
Adder/Subtractor

steered 4-2 CS
Adder/Subtractor

CS
output

CS
inputs

control α
CS
output

CS
input

control

Figure 24.16 Parallel Architecture for the CORDIC Rotation Mode with sign

estimation and M > n iterations.

correcting iteration method presented in [6, 5] the case �i = 0 is not allowed. Even if
the sign can not be determined from the MSDs, a rotation is performed. Correcting
iterations have to be introduced every m iterations. A worst case number of m+2
MSDs (c.f. [6]) have to be inspected for sign estimation in the single iterations. In
Fig. 24.16 an implementation for the rotation mode with sign estimation is shown
with an input wordlength W and a number of M iterations with M > n and n

being the usual number of iterations. This method was extended to the vectoring
mode in [37]. In [38], a di�erent CFR algorithm is proposed for the rotation mode.
Using this \branching CORDIC", two iterations are performed in parallel if the
sign can not be estimated reliably, each assuming one of the possible choices for
rotation direction. It is shown in [38] that at most two parallel branches can occur.

28 Chapter 24

However, this is equivalent to an almost twofold e�ort in terms of implementation
complexity of the CORDIC rotation engine.

In contrast to the abovementioned approaches a constant scale factor redun-
dant implementation without additional or branching iterations was presented in
[39, 40, 41], the Di�erential CORDIC Algorithm (DCORDIC). It was already men-
tioned (see eq. 8) that the rotation direction in CORDIC is chosen always such
that the remaining rotation angle jAi+1j = jjAij � �m;ij eventually decreases. This
equation can directly be implemented for the zi variable in rotation mode and
the yi variable in vectoring mode. The important observation is that using re-
dundant number systems an MSD �rst implementation of the involved operations
addition/subtraction and absolute value calculation is possible without any kind of
word{level carry propagation. Hence, successive iterations run concurrently with
only a small propagation delay. As an example, the algorithm for the DCORDIC
rotation mode is stated below. Since only absolute values are considered in Eq. (8)

0,0

x
0,W-1

x
0,0

0,W-1
y

y

sign(p)0

2
0

2 2
-n

x
out

y
out

-1

MSD first absolute value

input flags

output flags

CS
output

CS
input

xor

sign(z)
1

3-2 CS Adder

−α
CS
output

CS
input

steered 4-2 CS Adder/Subtractor

CS
output

CS
inputs

control

C
o
n
v
e
r
s
i
o
n

C
o
n
v
e
r
s
i
o
n

S
c
a
l
i
n
g

S
c
a
l
i
n
g

z
0,W-1

z
0,W

z
0,1

z
0,0

-2

sign(z)
0

2’s comp. absolute value

sign

input
output

sign

xor

sign(z)
2

Figure 24.17 Parallel Architecture for the DCORDIC Rotation Mode with n

iterations.

CORDIC Algorithms and Architectures 29

the iteration variable is called ẑi with jẑij = jzij.

jẑi+1j = jjẑij � �ij
sign(zi+1) = sign(zi) � sign(ẑi+1)

xi+1 = xi � sign(zi) � yi � 2�i
yi+1 = yi + sign(zi) � xi � 2�i (22)

As shown in Eq. (22) the sign of the iteration variable zi is achieved by di�erential
decoding the sign of ẑi given the initial sign sign(z0). A negative sign of ẑi corre-
sponds to a sign change for zi. The iteration equations for xi and yi are equal to the
usual algorithm. In order to obtain sign(ẑ1) a single initial ripple propagation from
MSD to LSD has to be taken into account for the MSD �rst absolute value calcula-
tion. The successive signs are calculated with a small bit{level propagation delay.
The resulting parallel architecture for the DCORDIC rotation mode is shown in
Fig. 24.17. Compared to the sign estimation approaches a clear advantage is given
by the fact that no additional iterations are required for the DCORDIC.

24.5.3 Recent Developments

Below, some recent research results for the CORDIC algorithm are brie
y
mentioned which can not be treated in detail due to lack of space.
In [42] it is proposed to reduce the number of CORDIC iterations by replacing
the second half of the iterations with a �nal multiplication. Further low latency
CORDIC algorithms were derived in [43, 44] for parallel implementation of the ro-
tation mode and for word{serial recursive implementations of both rotation mode
and vectoring mode in [45]. The computation of sin�1 and cos�1 using CORDIC
was proposed in [46, 47].
Recently, a family of generalized multi{dimensional CORDIC algorithms, so called
Householder CORDIC algorithms, was derived in [48, 49]. Here, a modi�ed iter-
ation leads to scaling factors which are rational functions instead of square roots
of rational functions as in conventional CORDIC. This attractive feature can be
exploited for the derivation of new architectures [48, 49].

30 CORDIC Algorithms and Architectures

REFERENCES

[1] J. E. Volder, \The CORDIC trigonometric computing technique," IRE Trans.

Electronic Computers, vol. EC{8, no. 3, pp. 330{34, September 1959.

[2] J. S. Walther, \A uni�ed algorithm for elementary functions," in AFIPS Spring

Joint Computer Conference, vol. 38, pp. 379{85, 1971.

[3] Y. H. Hu, \CORDIC{based VLSI Architectures for Digital Signal Processing,"
IEEE Signal Processing Magazine, pp. 16{35, July 1992.

[4] Y. H. Hu, \The Quantization E�ects of the CORDIC Algorithm," IEEE Trans-

actions on Signal Processing, vol. 40, pp. 834{844, July 1992.

[5] N. Takagi, T. Asada, and S. Yajima, \A hardware algorithm for computing sine
and cosine using redundant binary representation," Systems and Computers

in Japan, vol. 18, no. 8, pp. 1{9, 1987.

[6] N. Takagi, T. Asada, and S. Yajima, \Redundant CORDIC methods with a
constant scale factor for sine and cosine computation," IEEE Trans. Comput-

ers, vol. 40, no. 9, pp. 989{95, September 1991.

[7] M. D. Ercegovac and T. Lang, \Redundant and on-line CORDIC: Application
to matrix triangularisation and SVD," IEEE Trans. Computers, vol. 38, no. 6,
pp. 725{40, June 1990.

[8] D. H. Daggett, \Decimal{Binary Conversions in CORDIC," IEEE Trans. on

Electronic Computers, vol. EC{8, no. 3, pp. 335{39, September 1959.

[9] X. Hu, R. Harber, and S. C. Bass, \Expanding the Range of Convergence of
the CORDIC Algorithm," vol. 40, pp. 13{20, 1991.

[10] X. Hu and S. C. Bass, \A neglected Error Source in the CORDIC Algorithm,"
in Proceedings IEEE ISCAS'93, pp. 766{769, 1993.

[11] J. R. Cavallaro and F. T. Luk, \Floating point CORDIC for matrix compu-
tations," in IEEE International Conference on Computer Design, pp. 40{42,
1988.

[12] G. J. Hekstra and E. F. Deprettere, \Floating{Point CORDIC," technical re-

port: ET/NT 93.15, Delft University, 1992.

[13] G. J. Hekstra and E. F. Deprettere, \Floating{Point CORDIC," in Proc. 11th

Symp. Computer Arithmetic, (Windsor, Ontario), pp. 130{137, June 1993.

[14] J. R. Cavallaro and F. T. Luk, \CORDIC Arithmetic for a SVD processor,"
Journal of Parallel and Distributed Computing, vol. 5, pp. 271{90, 1988.

[15] A. A. de Lange, A. J. van der Hoeven, E. F. Deprettere, and J. Bu, \An
optimal
oating-point pipeline Cmos CORDIC Processor," in IEEE ISCAS'88,
pp. 2043{47, 1988.

[16] K. Hwang, Computer Arithmetic: Principles, Architectures, and Design. New
York: John Wiley & Sons, 1979.

CORDIC Algorithms and Architectures 31

[17] N. R. Scott, Computer number systems and arithmetic. Englewood Cli�s:
Prentice Hall, 1988.

[18] H. M. Ahmed, Signal processing algorithms and architectures. 1981. Ph.D. The-
sis, Dept. Elec. Eng., Stanford (CA).

[19] R. Mehling and R. Meyer, \CORDIC{AU, a suitable supplementary Unit to a
General{Purpose Signal Processor," AE�U, vol. 43, no. 6, pp. 394{97, 1989.

[20] G. L. Haviland and A. A. Tuszynski, \A CORDIC arithmetic Processor chip,"
IEEE Transactions on Computers, vol. C{29, no. 2, pp. 68{79, Feb. 1980.

[21] E. F. Deprettere, P. Dewilde, and R. Udo, \Pipelined CORDIC architectures
for fast VLSI �ltering and array processing," in Proceedings IEEE ICASSP,
pp. 41 A6.1 { 41 A6.4, March 1984.

[22] J. Bu, E. F. Deprettere, and F. du Lange, \On the optimization of pipelined
silicon CORDIC Algorithm," in Proceedings EUSIPCO 88, pp. 1227{30, 1988.

[23] G. Schmidt, D. Timmermann, J. F. B�ohme, and H. Hahn, \Parameter opti-
mization of the CORDIC Algorithm and implementation in a CMOS chip," in
Proc. EUSIPCO'86, pp. 1219{22, 1986.

[24] A. M. Despain, \Fourier Transform Computers using CORDIC Iterations,"
IEEE Transactions on Computers, vol. C{23, pp. 993{1001, Oct. 1974.

[25] S. Y. Kung, VLSI Array Processors. Englewood Cli�s: Prentice{Hall, 1988.

[26] D. Timmermann, H. Hahn, B. J. Hosticka, and G. Schmidt, \A programmable
CORDIC Chip for Digital Signal Processing Applications," IEEE Transactions

on Solid{State Circuits, vol. 26, no. 9, pp. 1317{1321, 1991.

[27] C. E. Leiserson, F. Rose, and J. Saxe, \Optimizing synchronous circuitry for
retiming," in Proc. of the 3rd Caltech Conf. on VLSI, (Pasadena), pp. 87{116,
March 1983.

[28] N. Takagi, T. Asada, and S. Yajima, \A hardware algorithm for computing
sine and cosine using redundant binary representation," Trans. IEICE Japan

(in japanese), vol. J69{D, no. 6, pp. 841{47, 1986.

[29] Y. H. Hu and S. Naganathan, \E�cient Implementation of the Chirp Z{
Transform using a CORDIC Processor," IEEE Transactions on Signal Pro-

cessing, vol. 38, pp. 352{354, Feb. 1990.

[30] Y. H. Hu and S. Liao, \CALF: A CORDIC adaptive lattice �lter," IEEE

Transactions on Signal Processing, vol. 40, pp. 990{993, April 1992.

[31] T. Noll et al, \A Pipelined 330 MHz Multiplier," IEEE Journal Solid State

Circuits, vol. SC{21, pp. 411{16, 1986.

[32] A. Vandemeulebroecke, E. Vanzieleghem, T. Denayer, and P. G. A. Jespers, \A
new carry{free division algorithm and its application to a single{chip 1024{b
RSA processor," IEEE Journal Solid State Circuits, vol. 25, no. 3, pp. 748{65,
1990.

32 CORDIC Algorithms and Architectures

[33] B. Parhami, \Generalized signed-digit number systems: A unifying framework
for redundant number representations," IEEE Trans. on Computers, vol. 39,
no. 1, pp. 89{98, 1990.

[34] T. Noll, \Carry-save arithmetic for high-speed digital signal processing," in
IEEE ISCAS'90, vol. 2, pp. 982{86, 1990.

[35] T. Noll, \Carry{Save Architectures for High{Speed Digital Signal Processing,"
Journal of VLSI Signal Processing, vol. 3, no. 1/2, pp. 121{140, June 1991.

[36] M. D. Ercegovac and T. Lang, \Implementation of fast angle calculation and
rotation using on-line CORDIC," in IEEE ISCAS'88, pp. 2703{06, 1988.

[37] J. Lee and T. Lang, \Constant{Factor Redundant CORDIC for Angle Calcu-
lation and Rotation," IEEE Trans. Computers, vol. 41, pp. 1016{1035, August
1992.

[38] J. Duprat and J.-M. Muller, \The CORDIC Algorithm: New Results for
Fast VLSI Implementation," IEEE Transactions on Computers, vol. 42, no. 2,
pp. 168{178, 1993.

[39] H. Dawid and H. Meyr, \The Di�erential CORDIC Algorithm: Constant
Scale Factor Redundant Implementation without correcting Iterations," IEEE
Transactions on Computers, vol. 45, no. 3, pp. 307{318, March 1996.

[40] H. Dawid and H. Meyr, \Very high speed CORDIC Implementation: Algo-
rithm Transformation and novel Carry{Save Architecture," in Proceedings of

the European Signal Processing Conference EUSIPCO '92, (Brussels), pp. 358{
372, Elsevier Science Publications, August 1992.

[41] H. Dawid and H. Meyr, \High speed bit{level pipelined Architectures for re-
dundant CORDIC implementation," in Proceedings of the Int. Conf. on Ap-

plication Speci�c Array Processors, (Oakland), pp. 358{372, IEEE Computer
Society Press, August 1992.

[42] D. Timmermann, H. Hahn, and B. J. Hosticka, \Modi�ed CORDIC algorithm
with reduced iterations," Electronics Letters, vol. 25, no. 15, pp. 950{951, 1989.

[43] D. Timmermann and I. Sundsbo, \Area and Latency e�cient CORDIC Archi-
tectures," in Proc. ISCAS'92, pp. 1093{1096, 1992.

[44] D. Timmermann, H. Hahn, and B. Hosticka, \Low Latency Time CORDIC
Algorithms," IEEE Trans. Computers, vol. 41, no. 8, pp. 1010{1015, 1992.

[45] J. Villalba and T. Lang, \Low Latency Word Serial CORDIC," in Proceedings

IEEE Conf. Application speci�c Systems, Architectures and Processors ASAP,
(Zurich), pp. 124{131, July 1997.

[46] C. Mazenc, X. Merrheim, and J. M. Muller, \Computing functions cos�1 and
sin�1 using Cordic," IEEE Trans. Computers, vol. 42, no. 1, pp. 118{122, 1993.

[47] T. Lang and E. Antelo, \CORDIC{based Computation of ArcCos and Arc-
Sin," in Proceedings IEEE Conf. Application speci�c Systems, Architectures

and Processors ASAP, (Zurich), pp. 132{143, July 1997.

CORDIC Algorithms and Architectures 33

[48] S.F.Hsiao and J.M.Delosme, \Householder CORDIC algorithms," IEEE

Transactions on Computers, vol. C{44, no. 8, pp. 990{1001, Aug. 1995.

[49] S.F.Hsiao and J.M.Delosme, \Parallel Singular Value Decomposition of Com-
plex Matrices usijng Multi{dimensional CORDIC Algorithms," IEEE Trans-

actions on Signal Processing, vol. 44, no. 3, pp. 685{697, March 1996.

[50] J. Lee and T. Lang, \On-line CORDIC for generalized singular value decom-
position," in SPIE Vol. 1058 High Speed Computing II, pp. 235{47, 1989.

[51] S. Note, J. van Meerbergen, F. Catthoor, and H. de Man, \Automated syn-
thesis of a high speed CORDIC algorithm with the Cathedral-III compilation
system," in Proceedings IEEE ISCAS'88, pp. 581{84, 1988.

[52] R. K�unemund, H. S�oldner, S. Wohlleben, and T. Noll, \CORDIC Processor
with Carry-Save Architecture," in Proc. ESSCIRC'90, pp. 193{96, 1990.

[53] H. X. Lin and H. J. Sips, \On-line CORDIC Algorithms," IEEE Trans. Com-

puters, no. 8, pp. 1038{52, August 1990.

[54] H. Yoshimura, T. Nakanishi, and H. Yamauchi, \A 50 MHz CMOS geometri-
cal mapping processor," IEEE Transactions on Circuits and Systems, vol. 36,
no. 10, pp. 1360{63, 1989.

34 CORDIC Algorithms and Architectures

LIST OF FIGURES

Chapter 24

24.1 Rotation trajectory for the circular coordinate system (m = 1). 3

24.2 Rotation trajectory for the linear coordinate system (m = 0). 3

24.3 Rotation trajectory for the hyperbolic coordinate system (m = �1). 4

24.4 Basic structure of a processing element for one CORDIC iteration. 6

24.5 Rotation trajectory for the rotation mode in the circular coordinate system. 7

24.6 Rotation trajectory for the vectoring mode in the circular coordinate system. 8

24.7 Format of the internal CORDIC variables. 11

24.8 CORDIC dependence graph for rotation mode and vectoring mode. 18

24.9 Unfolded (pipelined) CORDIC signal
ow graph. 19

24.10Folded (recursive) CORDIC signal
ow graph. 19

24.11Programmable CORDIC processing element. 21

24.12Dependence graph for the classical vector rotation. 22

24.13Carry ripple addition (left hand side) and 3{2 Carry Save addition (right hand side). 24

24.14Addition of two Carry Save numbers (4{2 Carry Save addition). 25

24.15Addition and sign calculation using a ripple adder (left hand side), CS adder and

LSD �rst (middle) as well as MSD �rst (right hand side) sign calculation. 26

24.16Parallel Architecture for the CORDIC Rotation Mode with sign estimation and

M > n iterations. 27

24.17Parallel Architecture for the DCORDIC Rotation Mode with n iterations. 28

35

36 CORDIC Algorithms and Architectures

LIST OF TABLES

Chapter 24

24.1 CORDIC shift sequences. 10

24.2 Functions calculated by the CORDIC algorithm. 10

24.3 Architectural properties for three CORDIC architectures. 20

37

