

CS 263

5

7

Denotational Semantics of Boolean Expressions

- We define inductively a function $B[\![\cdot]\!]: Bexp \to (\Sigma \to \{\text{true}, \, \text{false}\})$

 $\begin{array}{l} B[\![true]\!]\sigma = true\\ B[\![false]\!]\sigma = false\\ B[\![b_1 \wedge b_2]\!]\sigma = B[\![b_1]\!] \;\sigma \wedge B[\![b_2]\!] \;\sigma\\ B[\![e_1 = e_2]\!]\sigma = if\; A[\![e_1]\!] \;\sigma = A[\![e_2]\!] \;\sigma \; then \; true \; else\; false \end{array}$

CS 263

Denotational Semantics for Commands

- + Running a command c starting from a state σ yields another state σ'
- We try to define C[c] as a function that maps σ to σ'

 $\mathcal{C}[\![\cdot]\!]: \mathsf{Comm} \to (\Sigma \to \Sigma)$

• Problem: running a command might not yield anything if the command does not terminate!

CS 263

Denotational Semantics of Commands

- We introduce the special element \bot (called bottom) to denote non-termination
- + For any set X, we write X_{\perp} to denote $X \cup \{ \bot \}$

CS 263

Denotational Semantics of Commands

Examples

- $C[x := 2; x := 1] \sigma = \sigma[x := 1]$
- C[if true then x := 2; x := 1 else ...]] $\sigma = \sigma$ [x := 1]
- The semantics does not care of the intermediate states

CS 263

10

• We didn't need \perp yet

Denotational Semantics of WHILE

- Notation: W = C[while b do c]
- One idea: rely on the equivalence (as in op. sem.) while b do c = if b then c; while b do c else skip
 This gives:
 - $W(\sigma) = if B[b]\sigma$ then $W(C[c]\sigma)$ else σ
- This is the <u>unwinding equation</u>
- But it is not an acceptable <u>definition</u> of W because:
 It defines W in terms of itself
 - Journes will lerms of ITSelt
 It is not <u>compositional</u> (defined based on semantics of subexpressions)
 - It is not evident that such a W existsIt may not describe W uniquely
 - ion ibo tr aniq

CS 263

11

More on WHILE

- · The unwinding equation does not specify W uniquely
- Take C[[while true do skip]]
 The unwinding equation reduces to W(σ) = W(σ), which is satisfied by every function W !
- Take C[[while x ≠ 0 do x := x 2]]
 The following solution satisfies the equation

$$W(\sigma) = \begin{cases} \sigma[x := 0] & \text{if } \sigma(x) = 2k \land \sigma(x) \ge 0 \\ \sigma' & \text{otherwise} \end{cases}$$
(for any σ')
$$CS 263 \qquad 12$$

New Attempt for WHILE

- Idea: introduce an approximation of "while" that has a finite unrolling
 Introduce two new language constructs to IMP:
 c::= ... | while_k b do c | forever
 while_k b do c (with k a natural number *constant*)
- A bounded "while"
 Execute at most k 1 iterations of the loop body: loo
- Execute at most k 1 iterations of the loop body; loop forever if more iterations would be needed

"while₀ b do c" behaves like "forever" "while_{k-1} b do c" behaves like "if b then c; while_k b do c else skip"

Original "while" is like while ∞

13

CS 263

$\begin{array}{l} \textbf{Denotational Semantics of WHILE}\\ \textbf{i.e.} Let W_k be shorthand for C[while_k b do c]\\ \textbf{i.e.} (\textbf{w}) \in \textbf{w} \in \textbf{$

	tatement:		
	<e, ♂=""> ↓ n</e,>	iff	A[[e]] σ = n
	<b, σ=""> ↓ †</b,>	iff	B[[b]]σ = †
	<c, ठ=""> ↓ σ'</c,>	iff	$C[c]\sigma = \sigma' \text{ and } \sigma' \neq \bot$
• т	he case of ar	ithmet	ric and boolean expressions are
e	asy by struct	uraim	auction on expressions

CS 263

Fixed-Point Equations

- The meaning of "while" is a solution for W = F W
- Such a W is called a fixed point of F
- We want the <u>least fixed point</u> (most non-termination of all possible solutions)
 - We need a general way to find least fixed points
- Whether such a least fixed point exists depends on the properties of function F
 - Counterexample: F w x = if w x = \perp then 0 else \perp
 - Assume W is a fixed point
 - F W x = W x = if W x = \perp then 0 else \perp
 - Pick an x, then if W x = \perp then W x = 0 else W x = \perp

- Contradiction. This F has no fixed point !

33

35

Monotonicity

- Good news: the functions F that correspond to contexts in all reasonable languages have least fixed points !
- The only way F f x uses f is by invoking it
- If any such invocation diverges, then F f x diverges !

CS 263

34

Monotonicity (Cont.)

- Consider $f_0 \sqsubseteq f_1$. What can we say about the relationship between F $f_0 \times$ and F $f_1 \times$, for any \times ?
- Assume $Ff_0 x = n \neq \bot$. Show that $Ff_1 x = n$
- In computing $F f_0 \times, f_0$ is invoked a finite number of times
- All those invocations terminate with some values
- The value of f_{0} at other points does not matter !
- But f_1 terminates with same results everywhere f_0 terminates Thus F f_1 × = n (F is a function)
- If F $f_0 x = \bot$, it could be that F $f_1 x \neq \bot$ - Take F f x = f x, $f_0 (0) = \bot$ and $f_1 (0) = 0$
- In general, if $f_0 \sqsubseteq f_1$ then $F f_0 \sqsubseteq F f_1$
- We say that F must be monotonic

CS 263

Monotonicity (Cont.)

- If we replace the sub-command with one that terminates more often, the whole command will terminate more often
- The following F is not monotonic: F w x = if w x = \perp then 0 else \perp
 - This function does not correspond to a computable context
- The semantics of computable contexts are monotonic
 Can be proved by induction on the structure of context

CS 263

- w_k is the semantics if we allow at most k iterations
- Show that w_k ⊑ W
- All w_k approximate W
- Also, $\mathbf{w}_{\mathbf{k}} \sqsubseteq \mathbf{w}_{\mathbf{k}+1}$
 - We get more information if we allow more iterations
 - w_{k} form a $\underline{chain \ of \ approximations}$ of the true semantics
 - We say that W is an <u>upper bound</u> for the chain \boldsymbol{w}_k

CS 263

Solving Fixed Point Equations	Continuity	
• Thus W = $\sqcup w_k$	 Consider F corresponding to a context in our 	' language
• Note that $w_0 = \lambda x$. \perp	• Consider a chain $g_0 \sqsubseteq \sqsubseteq g_k$ with $\bigsqcup_k g_k = G$	
• Note also that $w_{k+1} = F w_k$, where F is the meaning or context if $x \neq 0$ then $x \coloneqq x - 1$, ealse skip	- Note that $F g_k$ form a chain also, because F is more	otonic
	• We'll show that, for any x, FG x = $(\sqcup_k (Fq_k))$) ×
Thus $W = I E P = U E k (\lambda \times U)$	- We say that such functions F are <u>continuous</u>	·
Finds, w - $L\Gamma P_F - \Box_k \Gamma^{(X, \perp)}$	• If F G x = $n \neq \perp$, then G was invoked a finite	number
	of times, and terminated each time	
Is this true for all functions F?	 For each such invocation, there is a j, such that g_j with the same result 	terminates
	- Let max be the maximum such j, for all invocations	
	- Thus, $Fg_{max} \times = n$, and $(\bigsqcup_k (Fg_k)) \times = n$	
	 Similar reasoning for F G x = 1 	
CS 263 39	CS 263	40

The Fixed-Point Theorem

CS 263

41

Discussion Domain Theory • We can express the denotational semantics but we A set D is a <u>domain</u> if cannot always compute it. - It has a partial order $x \sqsubseteq y$ - Otherwise, we could decide the halting problem • Reflexive, transitive, and anti-symmetric - H is halting for input 0 iff [[H]] $0 \neq \bot$ - There is a least element \perp called bottom • We have derived this for programs with one variable - Any chain $x_1\sqsubseteq ... \sqsubseteq x_n\sqsubseteq ...$ has a least-upper bound $\sqcup_i x_i$ • For all i, $x_i \sqsubseteq \sqcup_i x_i$ (is an upper bound) • We can generalize to multiple variables, even to • For any y such that ($\forall i. \; x_i \sqsubseteq y$), we have $\sqcup_i x_i \sqsubseteq y$ (least upper bound) variables ranging over richer data types, even higherorder functions • Usual sets of semantic values are domains - Domain theory 44 CS 263 43 CS 263

To show: $F(\sqcup_j \times_j) = \sqcup F(\times_j)$	
But $F(\sqcup \times_j) = (\sqcup_i f_i)(\sqcup_i \times_j)$ $= \sqcup_i (\sqcup_j f_i(\times_j))$	
and ⊔j F(xj) = ⊔j (⊔i fi(xj))	
Is it the case that $\sqcup_i (\sqcup_j f_i(x_j)) = \sqcup_j (\sqcup_i f_i(x_j))$? - It happens to be so in this case, but we must prove it - This only holds because f_i are continuous !	
CS 263	51

Proof Techniques for Domains (Example)

- We must prove $\sqcup_i (\sqcup_j f_i(x_j)) \sqsubseteq \sqcup_n (\sqcup_m f_m(x_n))$ We could try either proof trick #2 or #3

 - Trick #2 is generally more poweful - Trick #2 works here
- To show (for an arbitrary i) $\sqcup_j f_i(x_j) \sqsubseteq \sqcup_n (\sqcup_m f_m(x_n))$ - Trick #2 again
- To show (for arbitrary i and j) $f_i(x_j) \sqsubseteq \sqcup_n (\sqcup_m f_m(x_n))$ - Trick #3 twice
- To show $\forall i \forall j. \exists m \exists n. f_i(x_j) \sqsubseteq f_m(x_n)$ - Easy: pick m = i and n = j
- The other direction works in a similar manner

CS 263

53

55

Some Continuous Functions

- Function application: app = $_{def} \lambda f \in [D \rightarrow E]$. $\lambda x \in D.f(x)$
- Function composition:
 - $comp =_{def} \lambda f \in [E \rightarrow F]. \lambda g \in [D \rightarrow E]. \lambda x \in D.f(g(x))$
- Pairing: mkPair =_{def} λx∈D.λy∈E.(x, y)
- Projection: proj =_{def} \lambda(\textbf{x},\textbf{y}) \in D \times E. \textbf{x}
- Case analysis:
 - case =_{def} \lambda b \in bool_{\bot}.\lambda t \in D.\lambda f \in D.if b then t else f
- Proofs of these in Winskel, Chapter 8

CS 263