Review

+ The operational semantics is

- simple
. . . - of many flavors (natural, small-step, more or less abstract)
Introduction to Denotational Semantics - not compositional

- Denotational semantics is

- mathematical (the meaning of a syntactic expression is a
mathematical object)
CS263 - compositional

+ Denotational semantics is also called: fixed-point

semantics, mathematical semantics, Scott-Strachey
semantics

€S 263 1 CS 263 2

Plan Rough Idea of Denotational Semantics

+ The meaning of an arithmetic expression e in state o
is a number n
+ So, we try to define Afe] as a function that maps the
current state to an integer:
A[] : Aexp — (£ — Z)
- The (£ — Z) is a partial function (uninitialized variables)

+ Define the denotational semantics of IMP
- First attempt, runs into difficulties with "while”

- Second attempt, introduce a restricted form of “while” in the
language: then generalize to real "while"

+ Later (after we see lambda calculus) . L . .
)) + The meaning of boolean expressions is defined in a
- A more general form of denotational semantics PR
similar way

- Introduction to domain theory .
- Denotational semantics of lambda calculus B[] : Bexp — (= — {true, false})

CS 263 3 CS 263 4

Denotational Semantics of Arithmetic Expressions

Denotational Semantics of Boolean Expressions

+ We define inductively a function
Al] : Aexp = (= — Z)

A[n] o = the integer denoted by literal n
A[x] o = o(x) if x € Dom(c)

Alere;] o = Alejo + Ale,]o

Ale*e;]o = Aleo % Ale,]o

CS 263 5

+ We define inductively a function

B[] : Bexp — (= — {true, false})

B[true]o = true

B[false]o = false

B[b; A bsJo = B[b)] o A B[b,] o

Ble; = e,]o = if Afe,] o = Afe,] o then true else false

CS 263 6

Denotational Semantics for Commands

+ Running a command c¢ starting from a state o yields
another state o’

+ We try to define C[c] as a function that maps o to ¢
C[]: Comm — (£ — =)

* Problem: running a command might not yield anything
if the command does not terminatel!

Denotational Semantics of Commands

+ We introduce the special element L (called bottom) to
denote non-termination

+ For any set X, we write X, to denote X U {1}

CS 263 8

Denotational Semantics of Commands

© We try: C[]: Comm — (= — =)

C[skipj o =0

C[x:=e] o=0o[x:= Ale] o]

Cler: 5] 0 = C[c,] (Cleq] o)
Convention:

whenever f € X — Y, we extend f o X, — Y, so that f(1)= L
+ This is called strictness
+ Thus: C[c] L = L for any command
C[if b then c, else ¢,] o = if B[b]o then C[c]o else C[c,]o
Clwhilebdoc] o=?

Examples

¢ C[x:=2;x:=1]o=0[x:=1]

+ C[if true then x :=2; x = lelse ..] 0 = o[x := 1]

+ The semantics does not care of the intermediate
states

We didn’ t need L yet

CS 263 10

Denotational Semantics of WHILE

+ Notation: W = C[while b do c]
+ One idea: rely on the equivalence (as in op. sem.)
while b do ¢ = if b then ¢; while b do ¢ else skip
+ This gives:
W(o) = if B[b]Jo then W(C[c]o) else o

+ This is the unwinding equation
+ But it is not an acceptable definition of W because:
- It defines W in terms of itself

- It is not compositional (defined based on semantics of sub-
expressions)

- It is not evident that such a W exists
- It may not describe W uniquely

CS 263 11

More on WHILE

* The unwinding equation does not specify W uniquely

+ Take Cwhile true do skip]

- The unwinding equation reduces to W(c) = W(0), which is
satisfied by every function W |

+ Take Clwhile x = 0 do x := x - 2]
- The following solution satisfies the equation

o[x:=0] ifo(x)=2kAo(x)>0

W(o) = o otherwise

(forany o)

CS 263 12

New Attempt for WHILE

Idea: introduce an approximation of “while” that has a
finite unrolling
Introduce two new language constructs to IMP:
¢ = ... | while, b do ¢ | forever
while, b do ¢ (with k a natural number constant)
- A bounded "while"

- Execute at most k - 1 iterations of the loop body: loop
forever if more iterations would be needed

“whiley b do ¢ behaves like "forever”
“while,.; b do c" behaves like "if b then c; while, b do c else skip'

Original "while" is like while,

"

CS 263 13

Denotational Semantics of WHILE

Let W, be shorthand for C]while, b do c]
We can define the W, : = — =, (for k € N):
- We(o)= L
- For k>0, W,(0) = if B[bJo then W, 4(C[c]o) else ¢
-+ With the usual constraint that W,(C[c]o) = L if C [c]o = L

Another view:

o if “while b do c¢” in state o terminates in state ¢’ in
W,(0) = fewer than k iterations of the body
1 otherwise

Intuitively, we are looking for the “limit” W

CS 263 14

Denotational Semantics of WHILE

How do we get W from W,?
L if Yk Wy(o) = L
W(o) = .
W (o) if k smallest such that W, (o) = L
This is a valid compositional definition of W
- Depends only on C[c] and B[b]
Try the examples again:
- For C[while true do skip]
W (o) = L forall k, thus W(o) = L
- For C[while x = 0 do x := x - 2]
W(o) = { o[x:=0] if o(x) = 2k Ao(x) >0
1 otherwise
CS 263 15

More on WHILE

The solution is not quite satisfactory because

- It has an operational flavor

- It does not generalize easily to more complicated semantics
(e.g., higher-order functions)

The domain theory builds the mathematical tools
necessary to generalize this result
- We will learn some domain theory when we do denotational
semantics for lambda calculus

However, precisely due to the operational flavor this
solution is easy to prove sound w.r.t operational
semantics

CS 263 16

Equivalence with Operational Semantics

+ Statement:

<e, 0> | n iff Ale]o=n
<b,o> | t iff B[bJo = t
<«c,0> || o iff ClcJo=0¢" and o’ = L

+ Each of these proofs has two directions

+ The case of arithmetic and boolean expressions are
easy by structural induction on expressions

+ The case for commands is more interesting

Equivalence Proof (I)

= If we have a derivation D :: <c, 0> | o’ then C[c]o = ¢’

+ The proof is by induction on the structure of D
+ Notation:

- whilebdoc=w
- Cw =W

+ Must prove that W(o) = ¢’

+ We consider only the cases when at the root of D we

have either while-true or while-false
- The other cases are easier

CS 263 18

Equivalence Proof (II)

-+ Case: the rule at root is while-false

D, i <b, 0> | false
D <whilebdoc,o> | o
- o mustbeoc

- From D, and using the equivalence for booleans we have that
B[bJo = false

- This means that W;(o) = o
- Therefore W(o) = o

Equivalence Proof (IIT)

+ Case: the rule at the root of D is while-true

D;ii<b, 0> | true D,ii<c,0> | o; Djzii<whilebdoc,op o

D=
<whilebdoc, o> |
From D, we get that B[b]o = true
By IH on D, we get that C[cJo = 0;= L
By IH on D; we get that W(o;) = 0" = L
- There is k smallest such that W, (o) = ¢’
But for any j, W;.(0) = W;(C[c]o) = W (o)
+ Then k + 1 is smallest such that W,,,(c) = ¢’
- K+1is smallest because W (o) = W, 4(0y) = L
+ Thus W(o)=¢" (qed.)

CS 263 20

Equivalence Proof (IV)

«<=IfCcJo=0¢ ando” =L
then there exists D : <c, o> | o’
Proof by induction on the structure of the command ¢
We do only the case for WHILE
We know that exists smallest k s.t. W,(0) = ¢’
Sufficient to prove
vkeN. Vo. (if k smallest s.t. W, (0) = 0" = L
then there exists D :<c, 0> || 0")

This can be proved by mathematical induction on k
- Note that this is nested induction !

CS 263 21

Equivalence Proof (V)

Base: k = 0. Vacuously true.
Inductive case, subcase k = 1.

- Picko, Wy(0)=0" = L

- Therefore B[b]o = false and o = ¢’
- Thus there is Dy :: <b, o> || false

- We construct D as follows:

D; i <b, 0> | false

b <whilebdoc,o> | o

CS 263 22

Equivalence Proof (VI)

Still in inductive case (k > 1)

Pick arbitrary o s.t. k smallest with W, (0) = ¢’ = L
- Since W;(0) = L we have B[b]o = true

- Thus Dy i: <b, 0> || true exists

Since 0’ = | we have o; = C[cJo = L

- By IH (struct. induction) on c there is D, :: <c, 0> | oy
We have forall j : Wi(o) = W;4(0,)

Then k - 1 is smallest s.t. W, y(0,) = L

- By IH (math. induction) there exists Ds i <w, op || o

b D;:i<b, 0> | true D,ii<c,0> | o; Djzii<whilebdoc,op o

<whilebdoc, o> || o

CS 263 23

Comments on Denotational Semantics

Denotational definitions are not necessarily better
than operational semantics, and they usually require
more mathematical work

+ The mathematics may pay of f

- Itis trivial to prove that
“If B[by] = B[b,] and C[c,] = C[c,] then C[while b, do ¢,] =
Clwhile b, do ¢,]”

(compare with the operational semantics)

We skipped the domain theory here

- We'll revisit some concepts later for lambda calculus

CS 263 24

Introduction to Domain Theory

Supplement

€S 263 25

A Simplified Setup

+ Consider programs in an eager, deterministic language

with one variable called “x
- All these restrictions are just to simplify the examples

+ Astate o is just the value of x
- Thus we cah use Z instead of =

+ The semantics of a command gives the value of final x
as a function of input x
Clc]: z—12,

CS 263 26

Examples. Revisited

An Ordering of Solutions

+ Take C[while true do skip]
- Unwinding equation reduces to W(x) = W(x)
- Any function satisfies the unwinding equation
- Desired solution is W(x) = L

+ Take C[while x = 0 do x := x - 2]
- Unwinding equation:
W(x) = if x = 0 then W(x - 2) else x
- Solutions (for all values n, m € Z,): Is this correct?
W(x) = if x > 0 then
if x even then O else n
elsem
- Desired solution: W(x) = if x > 0 A even(x) then O else L
CS 263 27

+ The desired solution is the one in which all the
“arbitrariness” is replaced with non-termination
- The arbitrary values in a solution are not uniquely determined
by the semantics of the code

+ We introduce an ordering of semantic functions

letf,geZ—1Z,

Define f C g as
Vx € Z. f(x) = L or f(x) = g(x)

- A “larger” function is obtained by replacing some L in the
“smaller” function with actual values

- Idea: semantic functions “grow” if you grow your time horizon

for running the program
CS 263 28

Alternative Views of Function Ordering

A semantic function f € Z — Z, can be written as
S¢ C Z x 7 as follows:
Se={(xy)Ixez f(x)=y=1}
- Alist of the “terminating” input-values for the function

+ If f C g then

- sCs,

- We say that g refines f

- We say that f approximates g

- We say that g provides more information than f

CS 263

The “Best” Solution

+ Consider again C[while x = 0 do x := x - 2]

- Unwinding equation:
W(x) = if x = 0 then W(x - 2) else x
Not all solutions are comparable:
W(x) = if x > 0 then if x even then O else 1 else 2
W(x) = if x > 0 then if x even then O else L else 3
W(x) = if x > 0 then if x even then O else L else | (least, best)

+ Is there always a least solution ?

+ How do we find it ?
+ General framework for answering these questions

CS 263

Fixed-Point Equations

Consider the general unwinding equation for while
while b do ¢ = if b then c; while b do ¢ else skip

We define a context C (command with a hole)
C = if b then c; o else skip
while b do ¢ = C[while b do c]
- C does not contain “while b do ¢”

We can find such a context for any looping construct
- Consider: fact n=if n=0 then1else n * fact (n-1)
- C=M.ifn=0thenlelsen*e(n-1)
- fact=C[fact]
CS 263

Fixed-Point Equations

+ The meaning of a context is a semantic functional
F:(Z— 7))~ (Z— Z,) such that
[CIw]] = F [w]

For “while”: C = if b then c; e else skip
Fw x = if [b] x then w ([c] x) else x
- F depends only on [c] and [b]

+ We can rewrite the unwinding equation for while
- W(x) = if [b] x then W([c] x) else x
- or, Wx=(FW)x forall x,
- or, W = F W (function equality)

CS 263

Fixed-Point Equations

The meaning of “while” is a solution for W = F W
Such a W is called a fixed point of F

We want the least fixed point (most hon-termination
of all possible solutions)

- We need a general way to find least fixed points

Whether such a least fixed point exists depends on
the properties of function F

- Counterexample: Fw x = if wx = L then O else L

- Assume W is a fixed point

- FWx=Wx=if Wx=_1thenOelse L

- Pickan x, thenif Wx= 1 thenWx=0else Wx= 1
- Contradiction. This F has&ozﬁ\;ixed point !

Monotonicity

Good news: the functions F that correspond to
contexts in all reasonable languages have least fixed
points |

The only way F f x uses f is by invoking it
If any such invocation diverges, then F f x diverges !

CS 263 34

Monotonicity (Cont.)

+ Consider f, C f;. What can we say about the
relationship between F f, x and F f; x, for any x ?

+ Assume F fo x =n= L. Show that F f; x=n
- Incomputing F f, x, fg is invoked a finite number of times
- All those invocations terminate with some values
- The value of f; at other points does not matter !
- But f; terminates with same results everywhere f, terminates
- Thus F f; x = n (F is a function)

« If Ffox=L,it could be that F f; x = L
- Take F fx=fx,f,(0)= Land f; (0)=0

+ Ingeneral,if fo C f; thenF f, C F f;
We say that F must be monotonic

CS 263 35

Monotonicity (Cont.)

If we replace the sub-command with one that
terminates more often, the whole command will
terminate more often

The following F is not monotonic:
Fwx=ifwx=1thenOelse L
- This function does not correspond to a computable context

The semantics of computable contexts are monotonic
- Can be proved by induction on the structure of context

CS 263 36

Chains of Approximations

Consider the command while x = 0 then x :=x - 1
Semantics: W x = if 0 < x then O else L
Try the following approximations (for arbitrary k)
w, X =if 0 < x < kthenOelse L
- w, is the semantics if we allow at most k iterations
+ Show that w, C W
- All w, approximate W
Also, w, C wy,;
- We get more information if we allow more iterations

- w, form a chain of approximations of the true semantics
- We say that W is an upper bound for the chain w,

CS 263 37

Least Upper Bounds

Recall: W x = if 0 < x then O else L
wx=if 0 < x<kthenOelse L
Pick any other upper bound for chain wy
- eg,U=if0<xthenOelseb
+ Wesee that WC U
- W is the least upper bound of the chain w, (written L, w,)
Compute the least upper bound for a chaininZ — 7, :
- for each x, we construct the sequence f; x, f; x, ...
- Thus: (U, f,) x = if 3kf x=n= L thennelse L

- We can verify that W = L, w,

CS 263 38

Solving Fixed Point Equations

Thus W = U w,

Note that wy = Ax. L

Note also that w,, ; = F w,, where F is the meaning of
context if x = 0 then x := x - 1; e else skip

- Thus, W = LFP; = L, F (3x. 1)

Is this true for all functions F ?

CS 263 39

Continuity

Consider F corresponding to a context in our language
Consider a chain gy C ... C g, with Ll, g, = 6
- Note that F g, form a chain also, because F is monotonic

We’ Il show that, for any x, F 6 x = (L, (F g))) x

- We say that such functions F are continuous

If F6x=n= L ,then G was invoked a finite number
of times, and terminated each time

- For each such invocation, there is a j, such that g; terminates
with the same result

- Let max be the maximum such j, for all invocations
- Thus, F g, X=n,and (U, (Fg))x=n

Similar reasoning for F 6 x = L
CS 263 40

10

The Fixed-Point Theorem

Denotational Semantics For WHILE

If Fis a semantic functional corresponding to a
context in our language
- F is monotonic and continuous
- For any fixed-point G of F and k € N
Fk(Ax.L)C 6
- The least of all fixed points is
Uy, Fr(x. L)
Proof:
1. by mathematical induction on k.
Base: FO(Ax.L)=Ax.L C 6
Inductive: F*I(Ax. 1) = F(FK(Ox.L)) C F(6) = 6
2. Suffices to show that L, FK(A.x.L) is a fixed-point
F(uy FROx.L) = Ly Fel(ux. L) = b, F*(x. L)
CS 263 41

We can use the fixed-point theorem to write the
denotational semantics of while:

[while b do] = U, F¥ (Ax.L)

where F f x = if [b] x then f ([c] x) else x

Example: [while true do skip] = Ax.L

Example: [while x = O then x := x - 1]

- F(x.Ll)x=ifx=0thenOelse L

- FPP(x.L)x=if x=0thenOelseif x-1=0thenOelse L

=if1>x>0thenOelse L

- FF(xL)x=if2>x>0thenOelse L

- LFPz=if x> O thenOelse L

In general, it is not easy to find the closed form for
LFP!

CS 263 42

Discussion

Domain Theory

We can express the denotational semantics but we
cannot always compute it.

- Otherwise, we could decide the halting problem

- His halting for input O iff [H] O = L

We have derived this for programs with one variable

+ We can generalize to multiple variables, even to
variables ranging over richer data types, even higher-
order functions

- Domain theory

CS 263 43

A set D is a domain if
- It has a partial order x C y
- Reflexive, transitive, and anti-symmetric

- There is a least element L called bottom
- Any chain x; C .. C X, C ... has a least-upper bound L, x;
« Foralli, x; C L x; (is an upper bound)

« For any y such that (Vi. x; C y), we have L, x; C y (least upper
bound)

Usual sets of semantic values are domains

CS 263 44

11

Example of Domains

Example:D=7Z — Z,

- fCg iffforallneZ,fn=_Lorfn=gn

- lp=hn L

- For achain f; the LUB = An. if Jkf, x =m = L thenmelse L

Example: Take a set A and a special element L, then
A, = AU{ L1} is a flat domain:

- aCbiffa=lLora=b

- Forachaina, LUB=if Ska, = L thena,else |

Exercise: If D, and D, are domains, then D; — D, is a
domain, and so is D; x D,

CS 263 45

Monotonicity and Continuity

A function f : D; — D, is monotonic iff
forallx,yeDixCy=fxCfy

A function F : D, — D, is continuous iff
for all chains x; in Dy: F (U; x;) = L; (F x;)

We can show that functions corresponding to usual
language constructs are monotonic and continuous

- Show that F f x = f (f, x) is monotonic and continuous, for any
fo that is monotonic and continuous

CS 263 46

Least Fixed-Point Theorem

If D is adomain, and F: D — D is a continuous function
then

- 1,FL,F(FL1),. formachaininD

- U (F' L) is the least fixed point of F

5263 47

Denotation Semantics
Supplemental Material

CS 263 48

12

The Function Domain

We are interested only in those semantic functions that
are monotonic and continuous
- Notation: [D — E] the set of continuous functions from D to E.
- Theorem: If D and E are domains, then [D — E] is a domain
Proof:
- Define the (induced) partial order on [D — E]
fEp_gg iff WxeD. f(x)Ceg(x)
+ This is the pointwise ordering

- Define the bottom of [D — E]

Lipser Zaer MxED.Lg
- Define least upper bounds

U £ (Fi) Zaer AXED.Lg (fi(x)

CS 263 49

The Function-Space Domain

Prove completeness of Cp, .
1. lubs exist for all chains. Easy
2. lubs are continuous, hence in [D — E]
- Let (f) be a chain with lub F:
F =1 (f) = L (Fi(x))

- Pick (x;) a chain in D

- To show: F(; (x;)) = L; F(x;)

CS 263 50

The Function-Space Domain (Cont.)

To show: F(U; x;) = U F(x;)

But
F(ux;) = (U (U5 x))
=4 (Uj fi(xj))

- and
U Flxg) = Ly (U fi(x))

Is it the case that U; (U fi(x;)) = L (U; fi(x)) ?
- It happens to be so in this case, but we must prove it
- This only holds because f; are continuous !

CS 263 51

Proof Techniques for Domains

We must prove L; (U fi(x)) = U; (U; fi(x;))

1. How do we prove that x =y for some x,y € E?
- One method: prove x Cyandy C x
- Then by anti-symmetry of C we get the equality

2. How do we prove U (x;) Cy ?
- One method: prove VieN. x; Cy
- Then use the fact that U is the least upper bound

3. How do we prove x C U (y;) ?
- One method: prove JieN. x C y;

- Then use the fact that U is an upper bound
CS 263 52

13

Proof Techniques for Domains (Example)

+ We must prove L (1 £x)) = Ly (Up Ful,))
- We could try either proof trick #2 or #3
- Trick #2 is generally more poweful
- Trick #2 works here

* To show (for an arbitrary i) U; fi(x;) E U, (Un fru(X,)
- Trick #2 again

+ To show (for arbitrary i and j) fi(xj) C Uy (U fr(x0)
- Trick #3 twice

+ To show ViVj.3m3n. f,-(xj) C fulxy)
- Easy: pickm=iandn=j

+ The other direction works in a similar manner

CS 263 53

More Domains

+ So, [D — E]is a domain if D and E are domains

D x E is a domain if D and E are domains
(*,y) Epee (X', y") iff xCpx" andy Cey’
Lo e Zder (L. Le)
U (Xi, Y1) =ger (Up Xi, Lg ¥3)
- Convince yourself that these definitions are well-formed

+ Aset D, = DU {L}with the ordering

xCy iffx=yorx= 1
is a domain
- How do chains look in such a domain ?
- Whatisu?
- Such a domain is called a flat domain

CS 263 54

Some Continuous Functions

Function application: app = 4o Af€[D— E]. AxeD.f (x)

+ Function composition:
comp =4 Mfe[E—F1Age[D—E]AxeD.f(g(x))

+ Pairing: mkPair =4, AxeD.AyeE.(x, y)
* Projection: proj =4¢ Mx,y) € D x E. x
+ Case analysis:

case =4, Abebool AteD.AfeD.if b then t else f
* Proofs of these in Winskel, Chapter 8

14

