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Review 

•  The operational semantics is 
–  simple 
–  of many flavors (natural, small-step, more or less abstract) 
–  not compositional 

•  Denotational semantics is 
–  mathematical (the meaning of a syntactic expression is a 

mathematical object) 
–  compositional 

•  Denotational semantics is also called: fixed-point 
semantics, mathematical semantics, Scott-Strachey 
semantics 
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Plan 

•  Define the denotational semantics of IMP 
–  First attempt, runs into difficulties with “while” 
–  Second attempt, introduce a restricted form of “while” in the 

language; then generalize to real “while” 

•  Later (after we see lambda calculus) 
–  A more general form of denotational semantics 
–  Introduction to domain theory 
–  Denotational semantics of lambda calculus 

CS 263 4 

Rough Idea of Denotational Semantics 

•  The meaning of an arithmetic expression e in state σ 
is a number n 

•  So, we try to define A«e¬ as a function that maps the 
current state to an integer: 

                    A«·¬ : Aexp ! (Σ ! Z)  
–  The (Σ ! Z) is a partial function (uninitialized variables) 

•  The meaning of boolean expressions is defined in a 
similar way 

                    B«·¬ : Bexp ! (Σ ! {true, false}) 
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Denotational Semantics of Arithmetic Expressions 

•  We define inductively a function 
                A«·¬ : Aexp ! (Σ ! Z) 
 
A«n¬ σ = the integer denoted by literal n 
A«x¬ σ = σ(x) if x 2 Dom(¾) 
A«e1+e2¬ σ = A«e1¬σ ✚ A«e2¬σ 
A«e1*e2¬σ = A«e1¬σ ✖ A«e2¬σ 
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Denotational Semantics of Boolean Expressions 

•  We define inductively a function 
              B«·¬ : Bexp ! (Σ ! {true, false}) 

B«true¬σ = true 
B«false¬σ = false 

B«b1 Æ b2¬σ = B«b1¬ σ Æ B«b2¬ σ 
B«e1 = e2¬σ = if A«e1¬ σ = A«e2¬ σ then true else false 
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Denotational Semantics for Commands 

•  Running a command c starting from a state σ yields 
another state σ’ 

•  We try to define C«c¬ as a function that maps σ to σ’ 

                      C«·¬ : Comm ! (Σ ! Σ) 
 
•  Problem: running a command might not yield anything 

if the command does not terminate! 
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Denotational Semantics of Commands 

•  We introduce the special element ? (called bottom) to 
denote non-termination 

•  For any set X, we write X? to denote X [ {?} 
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Denotational Semantics of Commands 

•  We try:             C«·¬ : Comm ! (Σ ! Σ?) 
 
C«skip¬ σ = σ 
C«x := e¬ σ = σ[x := A«e¬ σ]  
C«c1; c2¬ σ = C«c2¬ (C«c1¬ σ)  

 Convention:  
     whenever f 2 X ! Y? we extend f to X? ! Y? so that f(?) = ?  

•  This is called strictness 
•  Thus: C«c¬ ? = ? for any command 

C«if b then c1 else c2¬ σ = if B«b¬σ then C«c1¬σ else C«c2¬σ 
C«while b do c¬ σ = ? 
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Examples 

•  C«x := 2; x :=1¬ σ = σ[x := 1] 

•  C«if true then x :=2; x := 1 else …¬ σ = σ[x := 1] 

•  The semantics does not care of the intermediate 
states 

•  We didn’t need ? yet 
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Denotational Semantics of WHILE 

•  Notation: W = C«while b do c¬ 
•  One idea: rely on the equivalence (as in op. sem.) 
         while b do c = if b then c; while b do c else skip 
•  This gives:  
            W(σ) = if B«b¬σ then W(C«c¬σ) else σ 

•  This is the unwinding equation 
•  But it is not an acceptable definition of W because: 

–  It defines W in terms of itself 
•  It is not compositional (defined based on semantics of sub-

expressions) 
–  It is not evident that such a W exists 
–  It may not describe W uniquely 
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More on WHILE 

•  The unwinding equation does not specify W uniquely 

•  Take C«while true do skip¬ 
–  The unwinding equation reduces to W(σ) = W(σ), which is 

satisfied by every function W ! 

•  Take C«while x ≠ 0 do x := x – 2¬ 
–  The following solution satisfies the equation 

 
 

(for any σ’) 

   W(σ) = 
 σ[x := 0]    if σ(x) = 2k Æ σ(x) ¸ 0 
   σ’    otherwise 
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New Attempt for WHILE 

•  Idea: introduce an approximation of “while” that has a 
finite unrolling 

•  Introduce two new language constructs to IMP: 
             c ::= … | whilek b do c | forever 
•  whilek b do c   (with k a natural number constant) 

–  A bounded “while” 
–  Execute at most k – 1 iterations of the loop body; loop 

forever if more iterations would be needed 

“while0 b do c”  behaves like “forever” 
“whilek+1 b do c” behaves like “if b then c; whilek b do c else skip” 

•  Original “while” is like while∞ 
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Denotational Semantics of WHILE 

•  Let Wk be shorthand for C«whilek b do c¬ 
•  We can define the Wk : Σ ! Σ? (for k 2 N) :  

–  W0(σ) = ? 
–  For k > 0, Wk(σ) = if B«b¬σ then Wk-1(C«c¬σ) else σ  

•  With the usual constraint that Wk(C«c¬σ) = ? if C «c¬σ = ? 

•  Another view: 

 
•  Intuitively, we are looking for the “limit” W1 

Wk(σ) = 
σ’ if “while b do c” in state σ terminates in state σ’ in 

fewer than  k iterations of the body 
? otherwise 

CS 263 15 

Denotational Semantics of WHILE 

•  How do we get W from Wk? 

 
•  This is a valid compositional definition of W 

–  Depends only on C«c¬ and B«b¬ 
•  Try the examples again: 

–  For C«while true do skip¬ 
        Wk(σ) = ?   for all k, thus W(σ) = ? 
–  For C«while x ≠ 0 do x := x – 2¬ 
   

W(σ) = 
? if ∀k. Wk(σ) = ? 
Wk(σ)  if k smallest such that Wk(σ) ≠ ? 

   W(σ) = 
 σ[x := 0]    if σ(x) = 2k Æ σ(x) ¸ 0 
   ?    otherwise 
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More on WHILE 

•  The solution is not quite satisfactory because 
–  It has an operational flavor 
–  It does not generalize easily to more complicated semantics 

(e.g., higher-order functions) 

•  The domain theory builds the mathematical tools 
necessary to generalize this result 
–  We will learn some domain theory when we do denotational 

semantics for lambda calculus 

•  However, precisely due to the operational flavor this 
solution is easy to prove sound w.r.t operational 
semantics 
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Equivalence with Operational Semantics 

•  Statement: 
       <e, σ> ⇓ n         iff       A«e¬ σ = n 
       <b, σ> ⇓ t         iff       B«b¬σ = t 
       <c, σ> ⇓ σ’       iff       C«c¬σ = σ’ and ¾’ ≠ ? 

•  Each of these proofs has two directions 

•  The case of arithmetic and boolean expressions are 
easy by structural induction on expressions 

•  The case for commands is more interesting 

CS 263 18 

Equivalence Proof (I) 

 ) If we have a derivation D :: <c, σ> ⇓ σ’ then C«c¬σ = σ’ 
•  The proof is by induction on the structure of D 
•  Notation: 

–  while b do c = w 
–  C«w¬ = W 

•  Must prove that W(σ) = σ’ 

•  We consider only the cases when at the root of D we 
have either while-true or while-false 
–  The other cases are easier  
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Equivalence Proof (II) 

•  Case: the rule at root is while-false 

–   σ’ must be σ 

–  From D1 and using the equivalence for booleans we have that 
B«b¬σ = false 

–  This means that W1(¾) = ¾ 

–  Therefore W(¾) = ¾ 

 

<while b do c, σ> ⇓ σ D :: 
D1 :: <b, σ> ⇓ false 
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Equivalence Proof (III) 

•  Case: the rule at the root of D is while-true 

•  From D1 we get that B«b¬σ = true 
•  By IH on D2 we get that C«c¬σ = σ1 ≠ ?  
•  By IH on D3 we get that W(σ1) = σ’ ≠ ? 

–  There is k smallest such that Wk(¾1) = ¾’ 
•  But for any j, Wj+1(¾) = Wj(C«c¬σ) = Wj(¾1)  
•  Then k + 1 is smallest such that Wk+1(¾) = ¾’ 

–  K + 1 is smallest because Wk(¾) = Wk-1(¾1) = ? 
•  Thus W(¾) = ¾’  (q.e.d.) 

<while b do c, σ> ⇓ σ’ 
D :: 

D1 :: <b, σ> ⇓ true    D2 :: <c, σ> ⇓ σ1      D3 :: <while b do c, σ1> ⇓ σ’ 
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Equivalence Proof (IV) 

 ⇐ If C«c¬σ = σ’ and σ’ ≠ ?  
     then there exists D : <c, σ> ⇓ σ’ 
•  Proof by induction on the structure of the command c 
•  We do only the case for WHILE 
•  We know that exists smallest k s.t. Wk(¾) = ¾’ 
•  Sufficient to prove 
         8k2N.  8¾. ( if k smallest s.t. Wk(¾) = σ’ ≠ ?  
                        then there exists D : <c, σ> ⇓ σ’ ) 

•  This can be proved by mathematical induction on k 
–  Note that this is nested induction ! 
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Equivalence Proof (V) 

•  Base: k = 0. Vacuously true.  
•  Inductive case, subcase k = 1.  

–  Pick ¾, W1(¾) = ¾’ ≠ ? 
–  Therefore B«b¬σ = false and ¾ = ¾’ 
–  Thus there is D1 :: <b, σ> ⇓ false  
–  We construct D as follows:   

<while b do c, σ> ⇓ σ D :: 
D1 :: <b, σ> ⇓ false 
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Equivalence Proof (VI) 

•  Still in inductive case (k > 1) 
•  Pick arbitrary ¾ s.t. k smallest with Wk(¾) = ¾’ ≠ ? 

–  Since W1(¾) = ? we have B«b¬σ = true 
–  Thus D1 :: <b, σ> ⇓ true exists 

•  Since σ’ ≠ ? we have σ1 = C«c¬σ ≠ ? 
–  By IH (struct. induction) on c there is D2 :: <c, σ> ⇓ σ1 

•  We have for all j : Wj(¾) = Wj-1(¾1) 
•  Then k – 1 is smallest s.t. Wk-1(¾1) ≠ ? 

–  By IH (math. induction) there exists D3 :: <w, σ1> ⇓ σ’ 

<while b do c, σ> ⇓ σ’ 
D :: 

D1 :: <b, σ> ⇓ true    D2 :: <c, σ> ⇓ σ1      D3 :: <while b do c, σ1> ⇓ σ’ 

CS 263 24 

Comments on Denotational Semantics 

•  Denotational definitions are not necessarily better 
than operational semantics, and they usually require 
more mathematical work 

•  The mathematics may pay off 
–  It is trivial to prove that 
   “If B«b1¬ = B«b2¬ and C«c1¬ = C«c2¬ then C«while b1 do c1¬ = 

C«while b2 do c2¬” 
(compare with the operational semantics) 

•  We skipped the domain theory here 
–  We’ll revisit some concepts later for lambda calculus 
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Introduction to Domain Theory 

Supplement 
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A Simplified Setup 

•  Consider programs in an eager, deterministic language 
with one variable called “x” 
–  All these restrictions are just to simplify the examples 

•  A state σ is just the value of x 
–  Thus we can use Z instead of Σ 

•  The semantics of a command gives the value of final x 
as a function of input x 
                         C« c ¬ :  Z ! Z? 
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Examples. Revisited 

•  Take C«while true do skip¬ 
–  Unwinding equation reduces to W(x) = W(x) 
–  Any function satisfies the unwinding equation 
–  Desired solution is W(x) = ? 

•  Take C«while x ≠ 0 do x := x – 2¬ 
–  Unwinding equation:  
    W(x) = if x ≠ 0 then W(x – 2) else x 
–  Solutions (for all values n, m 2 Z?):  
     W(x) = if x ¸ 0 then  
                  if x even then 0 else n 
                else m 
–  Desired solution: W(x) = if x ¸ 0 Æ even(x) then 0 else ? 

Is this correct? 
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An Ordering of Solutions  

•  The desired solution is the one in which all the 
“arbitrariness” is replaced with non-termination 
–  The arbitrary values in a solution are not uniquely determined 

by the semantics of the code 
•  We introduce an ordering of semantic functions  

•  Let f, g 2 Z ! Z? 
•  Define f v g  as 
        8x 2 Z. f(x) = ? or f(x) = g(x)  

–  A “larger” function is obtained by replacing some ? in the 
“smaller” function with actual values 

–  Idea: semantic functions “grow” if you grow your time horizon 
for running the program 
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Alternative Views of Function Ordering 

•      A semantic function f 2 Z ! Z? can be written as 
Sf µ Z £ Z as follows: 

            Sf = { (x, y) | x 2 Z, f(x) = y ≠ ? }   
–  A list of the “terminating” input-values for the function 

•  If f v g then 
–   Sf µ Sg   
–  We say that g refines f 
–  We say that f approximates g 
–  We say that g provides more information than f 
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The “Best” Solution 

•  Consider again C«while x ≠ 0 do x := x – 2¬ 
–  Unwinding equation:  
    W(x) = if x ≠ 0 then W(x – 2) else x 

•  Not all solutions are comparable: 
W(x) = if x ¸ 0 then if x even then 0 else 1 else 2 
W(x) = if x ¸ 0 then if x even then 0 else ? else 3 
W(x) = if x ¸ 0 then if x even then 0 else ? else ?  (least, best) 

•  Is there always a least solution ? 
•  How do we find it ? 
•  General framework for answering these questions 
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Fixed-Point Equations 

•  Consider the general unwinding equation for while 
           while b do c ´ if b then c; while b do c else skip 
 

•  We define a context C (command with a hole) 
              C = if b then c; • else skip 
              while b do c ´ C[while b do c] 

–  C does not contain “while b do c” 

•  We can find such a context for any looping construct 
–  Consider: fact n = if n = 0 then 1 else n * fact (n – 1) 
–  C = λn. if n = 0 then 1 else n * • (n – 1) 
–  fact = C [ fact ] 
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Fixed-Point Equations 

•  The meaning of a context is a semantic functional  
    F : (Z ! Z?) ! (Z ! Z?) such that 
                               «C[w]¬ = F «w¬ 

•  For “while”: C = if b then c; • else skip  
          F w x = if «b¬ x then w («c¬ x) else x 
–  F depends only on «c¬ and «b¬ 

•  We can rewrite the unwinding equation for while 
–  W(x) = if «b¬ x then W(«c¬ x) else x  
–  or, W x = (F W) x for all x,  
–  or, W = F W (function equality) 
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Fixed-Point Equations 

•  The meaning of “while” is a solution for W = F W 
•  Such a W is called a fixed point of F  
•  We want the least fixed point (most non-termination 

of all possible solutions) 
–  We need a general way to find least fixed points 

•  Whether such a least fixed point exists depends on 
the properties of function F 
–  Counterexample: F w x = if w x = ? then 0 else ? 
–  Assume W is a fixed point 
–  F W x = W x = if W x = ? then 0 else ? 
–  Pick an x, then if W x = ? then W x = 0 else W x = ? 
–  Contradiction. This F has no fixed point !  
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Monotonicity 

•  Good news: the functions F that correspond to 
contexts in all reasonable languages have least fixed 
points ! 

•  The only way F f x uses f is by invoking it 
•  If any such invocation diverges, then F f x diverges ! 
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Monotonicity (Cont.) 

•  Consider f0 v f1. What can we say about the 
relationship between F f0 x and F f1 x, for any x ?  

•  Assume F f0 x = n ≠ ?. Show that F f1 x = n 
–  In computing F f0 x, f0 is invoked a finite number of times 
–  All those invocations terminate with some values 
–  The value of f0 at other points does not matter ! 
–  But f1 terminates with same results everywhere f0 terminates 
–  Thus F f1 x = n (F is a function) 

•  If F f0 x = ? , it could be that F f1 x ≠ ? 
–  Take F f x = f x, f0 (0) = ? and f1 (0) = 0 

•  In general, if f0 v f1 then F f0 v F f1 

•  We say that F must be monotonic 
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Monotonicity (Cont.) 

•  If we replace the sub-command with one that 
terminates more often, the whole command will 
terminate more often 

•  The following F is not monotonic: 
            F w x = if w x = ? then 0 else ? 

–  This function does not correspond to a computable context 

•  The semantics of computable contexts are monotonic 
–  Can be proved by induction on the structure of context 
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Chains of Approximations 

•  Consider the command while x ≠ 0 then x := x – 1 
•  Semantics: W x = if 0 · x then 0 else ? 
•  Try the following approximations (for arbitrary k) 
                 wk x = if 0 · x · k then 0 else ? 

–  wk is the semantics if we allow at most k iterations 
•  Show that wk v W 

–  All wk approximate W 
•  Also, wk v wk+1 

–  We get more information if we allow more iterations 
–  wk form a chain of approximations of the true semantics 
–  We say that W is an upper bound for the chain wk  
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Least Upper Bounds 

•  Recall: W x = if 0 · x then 0 else ? 
              wk x = if 0 · x < k then 0 else ?   
•  Pick any other upper bound for chain wk 

–  e.g, U = if 0 · x then 0 else 5 
•  We see that W v U  

–  W is the least upper bound of the chain wk (written tk wk) 
•  Compute the least upper bound for a chain in Z ! Z? : 

–  for each x, we construct the sequence f1 x, f2 x, … 
–  Thus: (tk fk) x = if 9k.fk x = n ≠ ? then n else ? 

–  We can verify that W = tk wk 
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Solving Fixed Point Equations 

•  Thus W = t wk 
•  Note that w0 = λx. ? 
•  Note also that wk + 1 = F wk, where F is the meaning of 

context if x ≠ 0 then x := x – 1; • else skip 

•  Thus, W = LFPF = tk Fk (λx. ?) 

•  Is this true for all functions F ?  
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Continuity 

•  Consider F corresponding to a context in our language 
•  Consider a chain g0 v … v gk with tk gk = G 

–  Note that F gk form a chain also, because F is monotonic 

•   We’ll show that, for any x, F G x = (tk (F gk)) x 
–  We say that such functions F are continuous 

•  If F G x = n ≠ ? , then G was invoked a finite number 
of times, and terminated each time 
–  For each such invocation, there is a j, such that gj terminates 

with the same result 
–  Let max be the maximum such j, for all invocations 
–  Thus, F gmax x = n, and (tk (F gk)) x = n 

•  Similar reasoning for F G x = ? 
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The Fixed-Point Theorem 

•  If F is a semantic functional corresponding to a 
context in our language 
–  F is monotonic and continuous 
–  For any fixed-point G of F and  k 2 N 
            Fk(λx.? ) v G 
–  The least of all fixed points is 
           tk Fk(λx.?) 

•  Proof: 
1.  by mathematical induction on k.    
    Base: F0(λx.? ) = λx.? v G 
    Inductive: Fk+1(λx.? ) = F(Fk(λx.? )) v F(G) = G 
2. Suffices to show that tk Fk(λx.? ) is a fixed-point 
              F(tk Fk(λx.? )) = tk Fk+1(λx.? ) = tk Fk(λx.? ) 
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Denotational Semantics For WHILE 

•  We can use the fixed-point theorem to write the 
denotational semantics of while: 

     «while b do c¬ = tk Fk (λx.?) 
             where F f x = if «b¬ x then f («c¬ x) else x 
•  Example: «while true do skip¬ = λx.? 
•  Example: «while x ≠ 0 then x := x – 1¬  

–   F (λx.?) x = if x = 0 then 0 else  ?   
–  F2 (λx.?) x = if x = 0 then 0 else if x – 1 = 0 then 0 else  ?  
                      = if 1 ¸ x ¸ 0 then 0 else  ?  
–  F3 (λx.?) x = if 2 ¸ x ¸ 0 then 0 else  ?  
–  LFPF = if x ¸ 0 then 0 else ? 

•  In general, it is not easy to find the closed form for 
LFP ! 
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Discussion 

•  We can express the denotational semantics but we 
cannot always compute it. 
–  Otherwise, we could decide the halting problem 
–  H is halting for input 0 iff «H¬ 0 ≠ ? 

•  We have derived this for programs with one variable 

•  We can generalize to multiple variables, even to 
variables ranging over richer data types, even higher-
order functions 
–  Domain theory 
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Domain Theory 

•  A set D is a domain if 
–  It has a partial order x v y 

•  Reflexive, transitive, and anti-symmetric 

–  There is a least element ? called bottom 

–  Any chain x1 v … v xn v … has a least-upper bound ti xi 
•  For all i, xi v ti xi  (is an upper bound) 
•  For any y such that (8i. xi v y), we have ti xi v y (least upper 

bound) 

•  Usual sets of semantic values are domains 
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Example of Domains 

•  Example: D = Z ! Z? 
–  f v g  iff for all n 2 Z, f n = ? or f n = g n 
–  ?D = λn. ? 
–  For a chain fi the LUB = λn. if 9k.fk x = m ≠ ? then m else ?  

•  Example: Take a set A and a special element ?, then 
A? = A [ { ?} is a flat domain:   
–  a v b iff a = ? or a = b  
–  For a chain ai,   LUB = if 9k.ak ≠ ? then ak else ? 

•  Exercise: If D1 and D2 are domains, then D1 ! D2 is a 
domain, and so is D1 £ D2    
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Monotonicity and Continuity 

•  A function f : D1 ! D2 is monotonic iff 
         for all x, y 2 D: x v y ) f x v f y 

•  A function F : D1 ! D2 is continuous iff 
       for all chains xi in D1: F (ti xi) = ti (F xi) 

•  We can show that functions corresponding to usual 
language constructs are monotonic and continuous 
–  Show that F f x = f (f0 x) is monotonic and continuous, for any 

f0 that is monotonic and continuous   
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Least Fixed-Point Theorem 

•  If D is a domain, and F: D ! D is a continuous function 
then  
–   ?, F ?, F (F ?) , … form a chain in D 
–   ti (Fi ?) is the least fixed point of F 
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Denotation Semantics 
Supplemental Material 
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The Function Domain 

•  We are interested only in those semantic functions that 
are monotonic and continuous 
–  Notation: [D ! E] the set of continuous functions from D to E. 
–  Theorem: If D and E are domains, then [D ! E] is a domain 

•  Proof: 
–  Define the (induced) partial order on [D ! E] 
               f v[D ! E] g    iff     8x2D. f(x) vE g(x) 

•  This is the pointwise ordering 
–  Define the bottom of [D ! E] 
                    ?[D! E]      =def   λx2D.?E 
–  Define least upper bounds 
                   t[D ! E] hfii =def λx2D.tE hfi(x)i 
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The Function-Space Domain 

•  Prove completeness of v[D ! E] 
1.  lubs exist for all chains. Easy 
2.  lubs are continuous, hence in [D ! E] 

–  Let hfii be a chain with lub F: 
       F  = ti hfii = λx.ti hfi(x)i 

–  Pick hxji a chain in D 

–  To show: F(tj hxji) = tj F(xj) 
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The Function-Space Domain (Cont.) 

•  To show: F(tj xj) = t F(xj) 

•  But  
F(t xj) = (ti fi)(ti xj) 
           = ti (tj fi(xj)) 
            

•  and 
 tj F(xj) = tj (ti fi(xj)) 
 

•  Is it the case that ti (tj fi(xj)) = tj (ti fi(xj)) ? 
–  It happens to be so in this case, but we must prove it 
–  This only holds because fi are continuous ! 
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Proof Techniques for Domains 

•  We must prove ti (tj fi(xj)) = tj (ti fi(xj)) 

1.  How do we prove that x = y for some x, y 2 E? 
–  One method: prove x v y and y v x 
–  Then by anti-symmetry of v we get the equality 

2.  How do we prove t hxii v y ? 
–  One method: prove 8i2N.  xi v y 
–  Then use the fact that t is the least upper bound 

3.  How do we prove x v t hyii ? 
–  One method: prove 9i2N. x v yi 

–  Then use the fact that t is an upper bound 
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Proof Techniques for Domains (Example) 

•  We must prove ti (tj fi(xj)) v tn (tm fm(xn)) 
–  We could try either proof trick #2 or #3  
–  Trick #2 is generally more poweful 
–  Trick #2 works here 

•  To show (for an arbitrary i) tj fi(xj) v tn (tm fm(xn)) 
–  Trick #2 again 

•  To show (for arbitrary i and j) fi(xj) v tn (tm fm(xn)) 
–  Trick #3 twice 

•  To show 8i8j.9m9n. fi(xj) v fm(xn) 
–  Easy: pick m = i and n = j 

•  The other direction works in a similar manner 
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More Domains 

•  So, [D ! E] is a domain if D and E are domains 
•  D £ E is a domain if D and E are domains 

        (x, y) vD£E (x’, y’)  iff  x vD x’ and y vE y’  
        ?D £ E =def  (?D, ?E) 
        t (xi, yi) =def (tD xi, tE yi) 
–  Convince yourself that these definitions are well-formed 

•  A set D? = D [ {?} with the ordering 
       x v y   iff x = y or x = ?  

   is a domain 
–  How do chains look in such a domain ? 
–  What is t ?  
–  Such a domain is called a flat domain 
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Some Continuous Functions 

•  Function application: app = def λf2[D! E]. λx2D.f (x) 
•  Function composition:  
             comp =def λf2[E!F].λg2[D!E].λx2D.f(g(x)) 
•  Pairing: mkPair =def λx2D.λy2E.(x, y) 
•  Projection: proj =def λ(x, y) 2 D £ E. x 
•  Case analysis: 
     case =def λb2bool?.λt2D.λf2D.if b then t else f 
•  Proofs of these in Winskel, Chapter 8 


