
1

CS 263 1

Introduction to Denotational Semantics

CS263

CS 263 2

Review

•  The operational semantics is
–  simple
–  of many flavors (natural, small-step, more or less abstract)
–  not compositional

•  Denotational semantics is
–  mathematical (the meaning of a syntactic expression is a

mathematical object)
–  compositional

•  Denotational semantics is also called: fixed-point
semantics, mathematical semantics, Scott-Strachey
semantics

CS 263 3

Plan

•  Define the denotational semantics of IMP
–  First attempt, runs into difficulties with “while”
–  Second attempt, introduce a restricted form of “while” in the

language; then generalize to real “while”

•  Later (after we see lambda calculus)
–  A more general form of denotational semantics
–  Introduction to domain theory
–  Denotational semantics of lambda calculus

CS 263 4

Rough Idea of Denotational Semantics

•  The meaning of an arithmetic expression e in state σ
is a number n

•  So, we try to define A«e¬ as a function that maps the
current state to an integer:

 A«·¬ : Aexp ! (Σ ! Z)
–  The (Σ ! Z) is a partial function (uninitialized variables)

•  The meaning of boolean expressions is defined in a
similar way

 B«·¬ : Bexp ! (Σ ! {true, false})

2

CS 263 5

Denotational Semantics of Arithmetic Expressions

•  We define inductively a function
 A«·¬ : Aexp ! (Σ ! Z)

A«n¬ σ = the integer denoted by literal n
A«x¬ σ = σ(x) if x 2 Dom(¾)
A«e1+e2¬ σ = A«e1¬σ ✚ A«e2¬σ
A«e1*e2¬σ = A«e1¬σ ✖ A«e2¬σ

CS 263 6

Denotational Semantics of Boolean Expressions

•  We define inductively a function
 B«·¬ : Bexp ! (Σ ! {true, false})

B«true¬σ = true
B«false¬σ = false

B«b1 Æ b2¬σ = B«b1¬ σ Æ B«b2¬ σ
B«e1 = e2¬σ = if A«e1¬ σ = A«e2¬ σ then true else false

CS 263 7

Denotational Semantics for Commands

•  Running a command c starting from a state σ yields
another state σ’

•  We try to define C«c¬ as a function that maps σ to σ’

 C«·¬ : Comm ! (Σ ! Σ)

•  Problem: running a command might not yield anything

if the command does not terminate!

CS 263 8

Denotational Semantics of Commands

•  We introduce the special element ? (called bottom) to
denote non-termination

•  For any set X, we write X? to denote X [{?}

3

CS 263 9

Denotational Semantics of Commands

•  We try: C«·¬ : Comm ! (Σ ! Σ?)

C«skip¬ σ = σ
C«x := e¬ σ = σ[x := A«e¬ σ]
C«c1; c2¬ σ = C«c2¬ (C«c1¬ σ)

 Convention:
 whenever f 2 X ! Y? we extend f to X? ! Y? so that f(?) = ?

•  This is called strictness
•  Thus: C«c¬ ? = ? for any command

C«if b then c1 else c2¬ σ = if B«b¬σ then C«c1¬σ else C«c2¬σ
C«while b do c¬ σ = ?

CS 263 10

Examples

•  C«x := 2; x :=1¬ σ = σ[x := 1]

•  C«if true then x :=2; x := 1 else …¬ σ = σ[x := 1]

•  The semantics does not care of the intermediate
states

•  We didn’t need ? yet

CS 263 11

Denotational Semantics of WHILE

•  Notation: W = C«while b do c¬
•  One idea: rely on the equivalence (as in op. sem.)
 while b do c = if b then c; while b do c else skip
•  This gives:
 W(σ) = if B«b¬σ then W(C«c¬σ) else σ

•  This is the unwinding equation
•  But it is not an acceptable definition of W because:

–  It defines W in terms of itself
•  It is not compositional (defined based on semantics of sub-

expressions)
–  It is not evident that such a W exists
–  It may not describe W uniquely

CS 263 12

More on WHILE

•  The unwinding equation does not specify W uniquely

•  Take C«while true do skip¬
–  The unwinding equation reduces to W(σ) = W(σ), which is

satisfied by every function W !

•  Take C«while x ≠ 0 do x := x – 2¬
–  The following solution satisfies the equation

(for any σ’)

 W(σ) =
 σ[x := 0] if σ(x) = 2k Æ σ(x) ¸ 0
 σ’ otherwise

4

New Attempt for WHILE

•  Idea: introduce an approximation of “while” that has a
finite unrolling

•  Introduce two new language constructs to IMP:
 c ::= … | whilek b do c | forever
•  whilek b do c (with k a natural number constant)

–  A bounded “while”
–  Execute at most k – 1 iterations of the loop body; loop

forever if more iterations would be needed

“while0 b do c” behaves like “forever”
“whilek+1 b do c” behaves like “if b then c; whilek b do c else skip”

•  Original “while” is like while∞

CS 263 13 CS 263 14

Denotational Semantics of WHILE

•  Let Wk be shorthand for C«whilek b do c¬
•  We can define the Wk : Σ ! Σ? (for k 2 N) :

–  W0(σ) = ?
–  For k > 0, Wk(σ) = if B«b¬σ then Wk-1(C«c¬σ) else σ

•  With the usual constraint that Wk(C«c¬σ) = ? if C «c¬σ = ?

•  Another view:

•  Intuitively, we are looking for the “limit” W1

Wk(σ) =
σ’ if “while b do c” in state σ terminates in state σ’ in

fewer than k iterations of the body
? otherwise

CS 263 15

Denotational Semantics of WHILE

•  How do we get W from Wk?

•  This is a valid compositional definition of W

–  Depends only on C«c¬ and B«b¬
•  Try the examples again:

–  For C«while true do skip¬
 Wk(σ) = ? for all k, thus W(σ) = ?
–  For C«while x ≠ 0 do x := x – 2¬

W(σ) =
? if ∀k. Wk(σ) = ?
Wk(σ) if k smallest such that Wk(σ) ≠ ?

 W(σ) =
 σ[x := 0] if σ(x) = 2k Æ σ(x) ¸ 0
 ? otherwise

CS 263 16

More on WHILE

•  The solution is not quite satisfactory because
–  It has an operational flavor
–  It does not generalize easily to more complicated semantics

(e.g., higher-order functions)

•  The domain theory builds the mathematical tools
necessary to generalize this result
–  We will learn some domain theory when we do denotational

semantics for lambda calculus

•  However, precisely due to the operational flavor this
solution is easy to prove sound w.r.t operational
semantics

5

CS 263 17

Equivalence with Operational Semantics

•  Statement:
 <e, σ> ⇓ n iff A«e¬ σ = n
 <b, σ> ⇓ t iff B«b¬σ = t
 <c, σ> ⇓ σ’ iff C«c¬σ = σ’ and ¾’ ≠ ?

•  Each of these proofs has two directions

•  The case of arithmetic and boolean expressions are
easy by structural induction on expressions

•  The case for commands is more interesting

CS 263 18

Equivalence Proof (I)

) If we have a derivation D :: <c, σ> ⇓ σ’ then C«c¬σ = σ’
•  The proof is by induction on the structure of D
•  Notation:

–  while b do c = w
–  C«w¬ = W

•  Must prove that W(σ) = σ’

•  We consider only the cases when at the root of D we
have either while-true or while-false
–  The other cases are easier

CS 263 19

Equivalence Proof (II)

•  Case: the rule at root is while-false

–  σ’ must be σ

–  From D1 and using the equivalence for booleans we have that
B«b¬σ = false

–  This means that W1(¾) = ¾

–  Therefore W(¾) = ¾

<while b do c, σ> ⇓ σ D ::
D1 :: <b, σ> ⇓ false

CS 263 20

Equivalence Proof (III)

•  Case: the rule at the root of D is while-true

•  From D1 we get that B«b¬σ = true
•  By IH on D2 we get that C«c¬σ = σ1 ≠ ?
•  By IH on D3 we get that W(σ1) = σ’ ≠ ?

–  There is k smallest such that Wk(¾1) = ¾’
•  But for any j, Wj+1(¾) = Wj(C«c¬σ) = Wj(¾1)
•  Then k + 1 is smallest such that Wk+1(¾) = ¾’

–  K + 1 is smallest because Wk(¾) = Wk-1(¾1) = ?
•  Thus W(¾) = ¾’ (q.e.d.)

<while b do c, σ> ⇓ σ’
D ::

D1 :: <b, σ> ⇓ true D2 :: <c, σ> ⇓ σ1 D3 :: <while b do c, σ1> ⇓ σ’

6

CS 263 21

Equivalence Proof (IV)

 ⇐ If C«c¬σ = σ’ and σ’ ≠ ?
 then there exists D : <c, σ> ⇓ σ’
•  Proof by induction on the structure of the command c
•  We do only the case for WHILE
•  We know that exists smallest k s.t. Wk(¾) = ¾’
•  Sufficient to prove
 8k2N. 8¾. (if k smallest s.t. Wk(¾) = σ’ ≠ ?
 then there exists D : <c, σ> ⇓ σ’)

•  This can be proved by mathematical induction on k
–  Note that this is nested induction !

CS 263 22

Equivalence Proof (V)

•  Base: k = 0. Vacuously true.
•  Inductive case, subcase k = 1.

–  Pick ¾, W1(¾) = ¾’ ≠ ?
–  Therefore B«b¬σ = false and ¾ = ¾’
–  Thus there is D1 :: <b, σ> ⇓ false
–  We construct D as follows:

<while b do c, σ> ⇓ σ D ::
D1 :: <b, σ> ⇓ false

CS 263 23

Equivalence Proof (VI)

•  Still in inductive case (k > 1)
•  Pick arbitrary ¾ s.t. k smallest with Wk(¾) = ¾’ ≠ ?

–  Since W1(¾) = ? we have B«b¬σ = true
–  Thus D1 :: <b, σ> ⇓ true exists

•  Since σ’ ≠ ? we have σ1 = C«c¬σ ≠ ?
–  By IH (struct. induction) on c there is D2 :: <c, σ> ⇓ σ1

•  We have for all j : Wj(¾) = Wj-1(¾1)
•  Then k – 1 is smallest s.t. Wk-1(¾1) ≠ ?

–  By IH (math. induction) there exists D3 :: <w, σ1> ⇓ σ’

<while b do c, σ> ⇓ σ’
D ::

D1 :: <b, σ> ⇓ true D2 :: <c, σ> ⇓ σ1 D3 :: <while b do c, σ1> ⇓ σ’

CS 263 24

Comments on Denotational Semantics

•  Denotational definitions are not necessarily better
than operational semantics, and they usually require
more mathematical work

•  The mathematics may pay off
–  It is trivial to prove that
 “If B«b1¬ = B«b2¬ and C«c1¬ = C«c2¬ then C«while b1 do c1¬ =

C«while b2 do c2¬”
(compare with the operational semantics)

•  We skipped the domain theory here
–  We’ll revisit some concepts later for lambda calculus

7

CS 263 25

Introduction to Domain Theory

Supplement

CS 263 26

A Simplified Setup

•  Consider programs in an eager, deterministic language
with one variable called “x”
–  All these restrictions are just to simplify the examples

•  A state σ is just the value of x
–  Thus we can use Z instead of Σ

•  The semantics of a command gives the value of final x
as a function of input x
 C« c ¬ : Z ! Z?

CS 263 27

Examples. Revisited

•  Take C«while true do skip¬
–  Unwinding equation reduces to W(x) = W(x)
–  Any function satisfies the unwinding equation
–  Desired solution is W(x) = ?

•  Take C«while x ≠ 0 do x := x – 2¬
–  Unwinding equation:
 W(x) = if x ≠ 0 then W(x – 2) else x
–  Solutions (for all values n, m 2 Z?):
 W(x) = if x ¸ 0 then
 if x even then 0 else n
 else m
–  Desired solution: W(x) = if x ¸ 0 Æ even(x) then 0 else ?

Is this correct?

CS 263 28

An Ordering of Solutions

•  The desired solution is the one in which all the
“arbitrariness” is replaced with non-termination
–  The arbitrary values in a solution are not uniquely determined

by the semantics of the code
•  We introduce an ordering of semantic functions

•  Let f, g 2 Z ! Z?
•  Define f v g as
 8x 2 Z. f(x) = ? or f(x) = g(x)

–  A “larger” function is obtained by replacing some ? in the
“smaller” function with actual values

–  Idea: semantic functions “grow” if you grow your time horizon
for running the program

8

CS 263 29

Alternative Views of Function Ordering

•  A semantic function f 2 Z ! Z? can be written as
Sf µ Z £ Z as follows:

 Sf = { (x, y) | x 2 Z, f(x) = y ≠ ? }
–  A list of the “terminating” input-values for the function

•  If f v g then
–  Sf µ Sg
–  We say that g refines f
–  We say that f approximates g
–  We say that g provides more information than f

CS 263 30

The “Best” Solution

•  Consider again C«while x ≠ 0 do x := x – 2¬
–  Unwinding equation:
 W(x) = if x ≠ 0 then W(x – 2) else x

•  Not all solutions are comparable:
W(x) = if x ¸ 0 then if x even then 0 else 1 else 2
W(x) = if x ¸ 0 then if x even then 0 else ? else 3
W(x) = if x ¸ 0 then if x even then 0 else ? else ? (least, best)

•  Is there always a least solution ?
•  How do we find it ?
•  General framework for answering these questions

CS 263 31

Fixed-Point Equations

•  Consider the general unwinding equation for while
 while b do c ´ if b then c; while b do c else skip

•  We define a context C (command with a hole)
 C = if b then c; • else skip
 while b do c ´ C[while b do c]

–  C does not contain “while b do c”

•  We can find such a context for any looping construct
–  Consider: fact n = if n = 0 then 1 else n * fact (n – 1)
–  C = λn. if n = 0 then 1 else n * • (n – 1)
–  fact = C [fact]

CS 263 32

Fixed-Point Equations

•  The meaning of a context is a semantic functional
 F : (Z ! Z?) ! (Z ! Z?) such that
 «C[w]¬ = F «w¬

•  For “while”: C = if b then c; • else skip
 F w x = if «b¬ x then w («c¬ x) else x
–  F depends only on «c¬ and «b¬

•  We can rewrite the unwinding equation for while
–  W(x) = if «b¬ x then W(«c¬ x) else x
–  or, W x = (F W) x for all x,
–  or, W = F W (function equality)

9

CS 263 33

Fixed-Point Equations

•  The meaning of “while” is a solution for W = F W
•  Such a W is called a fixed point of F
•  We want the least fixed point (most non-termination

of all possible solutions)
–  We need a general way to find least fixed points

•  Whether such a least fixed point exists depends on
the properties of function F
–  Counterexample: F w x = if w x = ? then 0 else ?
–  Assume W is a fixed point
–  F W x = W x = if W x = ? then 0 else ?
–  Pick an x, then if W x = ? then W x = 0 else W x = ?
–  Contradiction. This F has no fixed point !

CS 263 34

Monotonicity

•  Good news: the functions F that correspond to
contexts in all reasonable languages have least fixed
points !

•  The only way F f x uses f is by invoking it
•  If any such invocation diverges, then F f x diverges !

CS 263 35

Monotonicity (Cont.)

•  Consider f0 v f1. What can we say about the
relationship between F f0 x and F f1 x, for any x ?

•  Assume F f0 x = n ≠ ?. Show that F f1 x = n
–  In computing F f0 x, f0 is invoked a finite number of times
–  All those invocations terminate with some values
–  The value of f0 at other points does not matter !
–  But f1 terminates with same results everywhere f0 terminates
–  Thus F f1 x = n (F is a function)

•  If F f0 x = ? , it could be that F f1 x ≠ ?
–  Take F f x = f x, f0 (0) = ? and f1 (0) = 0

•  In general, if f0 v f1 then F f0 v F f1

•  We say that F must be monotonic
CS 263 36

Monotonicity (Cont.)

•  If we replace the sub-command with one that
terminates more often, the whole command will
terminate more often

•  The following F is not monotonic:
 F w x = if w x = ? then 0 else ?

–  This function does not correspond to a computable context

•  The semantics of computable contexts are monotonic
–  Can be proved by induction on the structure of context

10

CS 263 37

Chains of Approximations

•  Consider the command while x ≠ 0 then x := x – 1
•  Semantics: W x = if 0 · x then 0 else ?
•  Try the following approximations (for arbitrary k)
 wk x = if 0 · x · k then 0 else ?

–  wk is the semantics if we allow at most k iterations
•  Show that wk v W

–  All wk approximate W
•  Also, wk v wk+1

–  We get more information if we allow more iterations
–  wk form a chain of approximations of the true semantics
–  We say that W is an upper bound for the chain wk

CS 263 38

Least Upper Bounds

•  Recall: W x = if 0 · x then 0 else ?
 wk x = if 0 · x < k then 0 else ?
•  Pick any other upper bound for chain wk

–  e.g, U = if 0 · x then 0 else 5
•  We see that W v U

–  W is the least upper bound of the chain wk (written tk wk)
•  Compute the least upper bound for a chain in Z ! Z? :

–  for each x, we construct the sequence f1 x, f2 x, …
–  Thus: (tk fk) x = if 9k.fk x = n ≠ ? then n else ?

–  We can verify that W = tk wk

CS 263 39

Solving Fixed Point Equations

•  Thus W = t wk
•  Note that w0 = λx. ?
•  Note also that wk + 1 = F wk, where F is the meaning of

context if x ≠ 0 then x := x – 1; • else skip

•  Thus, W = LFPF = tk Fk (λx. ?)

•  Is this true for all functions F ?

CS 263 40

Continuity

•  Consider F corresponding to a context in our language
•  Consider a chain g0 v … v gk with tk gk = G

–  Note that F gk form a chain also, because F is monotonic

•  We’ll show that, for any x, F G x = (tk (F gk)) x
–  We say that such functions F are continuous

•  If F G x = n ≠ ? , then G was invoked a finite number
of times, and terminated each time
–  For each such invocation, there is a j, such that gj terminates

with the same result
–  Let max be the maximum such j, for all invocations
–  Thus, F gmax x = n, and (tk (F gk)) x = n

•  Similar reasoning for F G x = ?

11

CS 263 41

The Fixed-Point Theorem

•  If F is a semantic functional corresponding to a
context in our language
–  F is monotonic and continuous
–  For any fixed-point G of F and k 2 N
 Fk(λx.?) v G
–  The least of all fixed points is
 tk Fk(λx.?)

•  Proof:
1.  by mathematical induction on k.
 Base: F0(λx.?) = λx.? v G
 Inductive: Fk+1(λx.?) = F(Fk(λx.?)) v F(G) = G
2. Suffices to show that tk Fk(λx.?) is a fixed-point
 F(tk Fk(λx.?)) = tk Fk+1(λx.?) = tk Fk(λx.?)

CS 263 42

Denotational Semantics For WHILE

•  We can use the fixed-point theorem to write the
denotational semantics of while:

 «while b do c¬ = tk Fk (λx.?)
 where F f x = if «b¬ x then f («c¬ x) else x
•  Example: «while true do skip¬ = λx.?
•  Example: «while x ≠ 0 then x := x – 1¬

–  F (λx.?) x = if x = 0 then 0 else ?
–  F2 (λx.?) x = if x = 0 then 0 else if x – 1 = 0 then 0 else ?
 = if 1 ¸ x ¸ 0 then 0 else ?
–  F3 (λx.?) x = if 2 ¸ x ¸ 0 then 0 else ?
–  LFPF = if x ¸ 0 then 0 else ?

•  In general, it is not easy to find the closed form for
LFP !

CS 263 43

Discussion

•  We can express the denotational semantics but we
cannot always compute it.
–  Otherwise, we could decide the halting problem
–  H is halting for input 0 iff «H¬ 0 ≠ ?

•  We have derived this for programs with one variable

•  We can generalize to multiple variables, even to
variables ranging over richer data types, even higher-
order functions
–  Domain theory

CS 263 44

Domain Theory

•  A set D is a domain if
–  It has a partial order x v y

•  Reflexive, transitive, and anti-symmetric

–  There is a least element ? called bottom

–  Any chain x1 v … v xn v … has a least-upper bound ti xi
•  For all i, xi v ti xi (is an upper bound)
•  For any y such that (8i. xi v y), we have ti xi v y (least upper

bound)

•  Usual sets of semantic values are domains

12

CS 263 45

Example of Domains

•  Example: D = Z ! Z?
–  f v g iff for all n 2 Z, f n = ? or f n = g n
–  ?D = λn. ?
–  For a chain fi the LUB = λn. if 9k.fk x = m ≠ ? then m else ?

•  Example: Take a set A and a special element ?, then
A? = A [{ ?} is a flat domain:
–  a v b iff a = ? or a = b
–  For a chain ai, LUB = if 9k.ak ≠ ? then ak else ?

•  Exercise: If D1 and D2 are domains, then D1 ! D2 is a
domain, and so is D1 £ D2

CS 263 46

Monotonicity and Continuity

•  A function f : D1 ! D2 is monotonic iff
 for all x, y 2 D: x v y) f x v f y

•  A function F : D1 ! D2 is continuous iff
 for all chains xi in D1: F (ti xi) = ti (F xi)

•  We can show that functions corresponding to usual
language constructs are monotonic and continuous
–  Show that F f x = f (f0 x) is monotonic and continuous, for any

f0 that is monotonic and continuous

CS 263 47

Least Fixed-Point Theorem

•  If D is a domain, and F: D ! D is a continuous function
then
–  ?, F ?, F (F ?) , … form a chain in D
–  ti (Fi ?) is the least fixed point of F

CS 263 48

Denotation Semantics
Supplemental Material

13

CS 263 49

The Function Domain

•  We are interested only in those semantic functions that
are monotonic and continuous
–  Notation: [D ! E] the set of continuous functions from D to E.
–  Theorem: If D and E are domains, then [D ! E] is a domain

•  Proof:
–  Define the (induced) partial order on [D ! E]
 f v[D ! E] g iff 8x2D. f(x) vE g(x)

•  This is the pointwise ordering
–  Define the bottom of [D ! E]
 ?[D! E] =def λx2D.?E
–  Define least upper bounds
 t[D ! E] hfii =def λx2D.tE hfi(x)i

CS 263 50

The Function-Space Domain

•  Prove completeness of v[D ! E]
1.  lubs exist for all chains. Easy
2.  lubs are continuous, hence in [D ! E]

–  Let hfii be a chain with lub F:
 F = ti hfii = λx.ti hfi(x)i

–  Pick hxji a chain in D

–  To show: F(tj hxji) = tj F(xj)

CS 263 51

The Function-Space Domain (Cont.)

•  To show: F(tj xj) = t F(xj)

•  But
F(t xj) = (ti fi)(ti xj)
 = ti (tj fi(xj))

•  and
 tj F(xj) = tj (ti fi(xj))

•  Is it the case that ti (tj fi(xj)) = tj (ti fi(xj)) ?
–  It happens to be so in this case, but we must prove it
–  This only holds because fi are continuous !

CS 263 52

Proof Techniques for Domains

•  We must prove ti (tj fi(xj)) = tj (ti fi(xj))

1.  How do we prove that x = y for some x, y 2 E?
–  One method: prove x v y and y v x
–  Then by anti-symmetry of v we get the equality

2.  How do we prove t hxii v y ?
–  One method: prove 8i2N. xi v y
–  Then use the fact that t is the least upper bound

3.  How do we prove x v t hyii ?
–  One method: prove 9i2N. x v yi

–  Then use the fact that t is an upper bound

14

CS 263 53

Proof Techniques for Domains (Example)

•  We must prove ti (tj fi(xj)) v tn (tm fm(xn))
–  We could try either proof trick #2 or #3
–  Trick #2 is generally more poweful
–  Trick #2 works here

•  To show (for an arbitrary i) tj fi(xj) v tn (tm fm(xn))
–  Trick #2 again

•  To show (for arbitrary i and j) fi(xj) v tn (tm fm(xn))
–  Trick #3 twice

•  To show 8i8j.9m9n. fi(xj) v fm(xn)
–  Easy: pick m = i and n = j

•  The other direction works in a similar manner
CS 263 54

More Domains

•  So, [D ! E] is a domain if D and E are domains
•  D £ E is a domain if D and E are domains

 (x, y) vD£E (x’, y’) iff x vD x’ and y vE y’
 ?D £ E =def (?D, ?E)
 t (xi, yi) =def (tD xi, tE yi)
–  Convince yourself that these definitions are well-formed

•  A set D? = D [{?} with the ordering
 x v y iff x = y or x = ?

 is a domain
–  How do chains look in such a domain ?
–  What is t ?
–  Such a domain is called a flat domain

CS 263 55

Some Continuous Functions

•  Function application: app = def λf2[D! E]. λx2D.f (x)
•  Function composition:
 comp =def λf2[E!F].λg2[D!E].λx2D.f(g(x))
•  Pairing: mkPair =def λx2D.λy2E.(x, y)
•  Projection: proj =def λ(x, y) 2 D £ E. x
•  Case analysis:
 case =def λb2bool?.λt2D.λf2D.if b then t else f
•  Proofs of these in Winskel, Chapter 8

