Review

+ The operational semantics is

- simple
. . . - of many flavors (natural, small-step, more or less abstract)
Introduction to Denotational Semantics - not compositional

- Denotational semantics is

- mathematical (the meaning of a syntactic expression is a
mathematical object)
CS263 - compositional

+ Denotational semantics is also called: fixed-point

semantics, mathematical semantics, Scott-Strachey
semantics
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Plan Rough Idea of Denotational Semantics

+ The meaning of an arithmetic expression e in state o
is a number n
+ So, we try to define Afe] as a function that maps the
current state to an integer:
A[] : Aexp — (£ — Z)
- The (£ — Z) is a partial function (uninitialized variables)

+ Define the denotational semantics of IMP
- First attempt, runs into difficulties with "while”

- Second attempt, introduce a restricted form of “while” in the
language: then generalize to real "while"

+ Later (after we see lambda calculus) . L . .
) ) + The meaning of boolean expressions is defined in a
- A more general form of denotational semantics PR
similar way

- Introduction to domain theory .
- Denotational semantics of lambda calculus B[] : Bexp — (= — {true, false})
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Denotational Semantics of Arithmetic Expressions

Denotational Semantics of Boolean Expressions

+ We define inductively a function
Al] : Aexp = (= — Z)

A[n] o = the integer denoted by literal n
A[x] o = o(x) if x € Dom(c)

Alere;] o = Alejo + Ale,]o

Ale*e;]o = Aleo % Ale,]o
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+ We define inductively a function

B[] : Bexp — (= — {true, false})

B[true]o = true

B[false]o = false

B[b; A bsJo = B[b)] o A B[b,] o

Ble; = e,]o = if Afe,] o = Afe,] o then true else false

CS 263 6

Denotational Semantics for Commands

+ Running a command c¢ starting from a state o yields
another state o’

+ We try to define C[c] as a function that maps o to ¢
C[]: Comm — (£ — =)

* Problem: running a command might not yield anything
if the command does not terminatel!

Denotational Semantics of Commands

+ We introduce the special element L (called bottom) to
denote non-termination

+ For any set X, we write X, to denote X U {1}
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Denotational Semantics of Commands

© We try: C[]: Comm — (= — =)

C[skipj o =0

C[x:=e] o=0o[x:= Ale] o]

Cler: 5] 0 = C[c,] (Cleq] o)
Convention:

whenever f € X — Y, we extend f o X, — Y, so that f(1)= L
+ This is called strictness
+ Thus: C[c] L = L for any command
C[if b then c, else ¢,] o = if B[b]o then C[c]o else C[c,]o
Clwhilebdoc] o=?

Examples

¢ C[x:=2;x:=1]o=0[x:=1]

+ C[if true then x :=2; x = lelse ..] 0 = o[x := 1]

+ The semantics does not care of the intermediate
states

We didn’ t need L yet
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Denotational Semantics of WHILE

+ Notation: W = C[while b do c]
+ One idea: rely on the equivalence (as in op. sem.)
while b do ¢ = if b then ¢; while b do ¢ else skip
+ This gives:
W(o) = if B[b]Jo then W(C[c]o) else o

+ This is the unwinding equation
+ But it is not an acceptable definition of W because:
- It defines W in terms of itself

- It is not compositional (defined based on semantics of sub-
expressions)

- It is not evident that such a W exists
- It may not describe W uniquely

CS 263 11

More on WHILE

* The unwinding equation does not specify W uniquely

+ Take Cwhile true do skip]

- The unwinding equation reduces to W(c) = W(0), which is
satisfied by every function W |

+ Take Clwhile x = 0 do x := x - 2]
- The following solution satisfies the equation

o[x:=0] ifo(x)=2kAo(x)>0

W(o) = o otherwise

(forany o)
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New Attempt for WHILE

Idea: introduce an approximation of “while” that has a
finite unrolling
Introduce two new language constructs to IMP:
¢ = ... | while, b do ¢ | forever
while, b do ¢ (with k a natural number constant)
- A bounded "while"

- Execute at most k - 1 iterations of the loop body: loop
forever if more iterations would be needed

“whiley b do ¢ behaves like "forever”
“while,.; b do c" behaves like "if b then c; while, b do c else skip'

Original "while" is like while,

"
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Denotational Semantics of WHILE

Let W, be shorthand for C]while, b do c]
We can define the W, : = — =, (for k € N):
- We(o)= L
- For k>0, W,(0) = if B[bJo then W, 4(C[c]o) else ¢
-+ With the usual constraint that W,(C[c]o) = L if C [c]o = L

Another view:

o if “while b do c¢” in state o terminates in state ¢’ in
W,(0) = fewer than k iterations of the body
1 otherwise

Intuitively, we are looking for the “limit” W
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Denotational Semantics of WHILE

How do we get W from W,?
L if Yk Wy(o) = L
W(o) = .
W (o) if k smallest such that W, (o) = L
This is a valid compositional definition of W
- Depends only on C[c] and B[b]
Try the examples again:
- For C[while true do skip]
W (o) = L forall k, thus W(o) = L
- For C[while x = 0 do x := x - 2]
W(o) = { o[x:=0] if o(x) = 2k Ao(x) >0
1 otherwise
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More on WHILE

The solution is not quite satisfactory because

- It has an operational flavor

- It does not generalize easily to more complicated semantics
(e.g., higher-order functions)

The domain theory builds the mathematical tools
necessary to generalize this result
- We will learn some domain theory when we do denotational
semantics for lambda calculus

However, precisely due to the operational flavor this
solution is easy to prove sound w.r.t operational
semantics
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Equivalence with Operational Semantics

+ Statement:

<e, 0> | n iff Ale]o=n
<b,o> | t iff B[bJo = t
<«c,0> || o iff ClcJo=0¢" and o’ = L

+ Each of these proofs has two directions

+ The case of arithmetic and boolean expressions are
easy by structural induction on expressions

+ The case for commands is more interesting

Equivalence Proof (I)

= If we have a derivation D :: <c, 0> | o’ then C[c]o = ¢’

+ The proof is by induction on the structure of D
+ Notation:

- whilebdoc=w
- Cw =W

+ Must prove that W(o) = ¢’

+ We consider only the cases when at the root of D we

have either while-true or while-false
- The other cases are easier
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Equivalence Proof (II)

-+ Case: the rule at root is while-false

D, i <b, 0> | false
D <whilebdoc,o> | o
- o mustbeoc

- From D, and using the equivalence for booleans we have that
B[bJo = false

- This means that W;(o) = o
- Therefore W(o) = o

Equivalence Proof (IIT)

+ Case: the rule at the root of D is while-true

D;ii<b, 0> | true D,ii<c,0> | o; Djzii<whilebdoc,op o

D=
<whilebdoc, o> |
From D, we get that B[b]o = true
By IH on D, we get that C[cJo = 0;= L
By IH on D; we get that W(o;) = 0" = L
- There is k smallest such that W, (o) = ¢’
But for any j, W;.(0) = W;(C[c]o) = W (o)
+ Then k + 1 is smallest such that W,,,(c) = ¢’
- K+1is smallest because W (o) = W, 4(0y) = L
+ Thus W(o)=¢" (qed.)
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Equivalence Proof (IV)

«<=IfCcJo=0¢ ando” =L
then there exists D : <c, o> | o’
Proof by induction on the structure of the command ¢
We do only the case for WHILE
We know that exists smallest k s.t. W,(0) = ¢’
Sufficient to prove
vkeN. Vo. (if k smallest s.t. W, (0) = 0" = L
then there exists D :<c, 0> || 0" )

This can be proved by mathematical induction on k
- Note that this is nested induction !
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Equivalence Proof (V)

Base: k = 0. Vacuously true.
Inductive case, subcase k = 1.

- Picko, Wy(0)=0" = L

- Therefore B[b]o = false and o = ¢’
- Thus there is Dy :: <b, o> || false

- We construct D as follows:

D; i <b, 0> | false

b <whilebdoc,o> | o
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Equivalence Proof (VI)

Still in inductive case (k > 1)

Pick arbitrary o s.t. k smallest with W, (0) = ¢’ = L
- Since W;(0) = L we have B[b]o = true

- Thus Dy i: <b, 0> || true exists

Since 0’ = | we have o; = C[cJo = L

- By IH (struct. induction) on c there is D, :: <c, 0> | oy
We have forall j : Wi(o) = W;4(0,)

Then k - 1 is smallest s.t. W, y(0,) = L

- By IH (math. induction) there exists Ds i <w, op || o

b D;:i<b, 0> | true D,ii<c,0> | o; Djzii<whilebdoc,op o

<whilebdoc, o> || o
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Comments on Denotational Semantics

Denotational definitions are not necessarily better
than operational semantics, and they usually require
more mathematical work

+ The mathematics may pay of f

- Itis trivial to prove that
“If B[by] = B[b,] and C[c,] = C[c,] then C[while b, do ¢,] =
Clwhile b, do ¢,]”

(compare with the operational semantics)

We skipped the domain theory here

- We'll revisit some concepts later for lambda calculus
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Introduction to Domain Theory

Supplement
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A Simplified Setup

+ Consider programs in an eager, deterministic language

with one variable called “x
- All these restrictions are just to simplify the examples

+ Astate o is just the value of x
- Thus we cah use Z instead of =

+ The semantics of a command gives the value of final x
as a function of input x
Clc]: z—12,
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Examples. Revisited

An Ordering of Solutions

+ Take C[while true do skip]
- Unwinding equation reduces to W(x) = W(x)
- Any function satisfies the unwinding equation
- Desired solution is W(x) = L

+ Take C[while x = 0 do x := x - 2]
- Unwinding equation:
W(x) = if x = 0 then W(x - 2) else x
- Solutions (for all values n, m € Z,): Is this correct?
W(x) = if x > 0 then
if x even then O else n
elsem
- Desired solution: W(x) = if x > 0 A even(x) then O else L
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+ The desired solution is the one in which all the
“arbitrariness” is replaced with non-termination
- The arbitrary values in a solution are not uniquely determined
by the semantics of the code

+ We introduce an ordering of semantic functions

letf,geZ—1Z,

Define f C g as
Vx € Z. f(x) = L or f(x) = g(x)

- A “larger” function is obtained by replacing some L in the
“smaller” function with actual values

- Idea: semantic functions “grow” if you grow your time horizon

for running the program
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Alternative Views of Function Ordering

A semantic function f € Z — Z, can be written as
S¢ C Z x 7 as follows:
Se={(xy)Ixez f(x)=y=1}
- Alist of the “terminating” input-values for the function

+ If f C g then

- sCs,

- We say that g refines f

- We say that f approximates g

- We say that g provides more information than f
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The “Best” Solution

+ Consider again C[while x = 0 do x := x - 2]

- Unwinding equation:
W(x) = if x = 0 then W(x - 2) else x
Not all solutions are comparable:
W(x) = if x > 0 then if x even then O else 1 else 2
W(x) = if x > 0 then if x even then O else L else 3
W(x) = if x > 0 then if x even then O else L else | (least, best)

+ Is there always a least solution ?

+ How do we find it ?
+ General framework for answering these questions
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Fixed-Point Equations

Consider the general unwinding equation for while
while b do ¢ = if b then c; while b do ¢ else skip

We define a context C (command with a hole)
C = if b then c; o else skip
while b do ¢ = C[while b do c]
- C does not contain “while b do ¢”

We can find such a context for any looping construct
- Consider: fact n=if n=0 then1else n * fact (n-1)
- C=M.ifn=0thenlelsen*e(n-1)
- fact=C[ fact ]
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Fixed-Point Equations

+ The meaning of a context is a semantic functional
F:(Z— 7))~ (Z— Z,) such that
[CIw]] = F [w]

For “while”: C = if b then c; e else skip
Fw x = if [b] x then w ([c] x) else x
- F depends only on [c] and [b]

+ We can rewrite the unwinding equation for while
- W(x) = if [b] x then W([c] x) else x
- or, Wx=(FW)x forall x,
- or, W = F W (function equality)
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Fixed-Point Equations

The meaning of “while” is a solution for W = F W
Such a W is called a fixed point of F

We want the least fixed point (most hon-termination
of all possible solutions)

- We need a general way to find least fixed points

Whether such a least fixed point exists depends on
the properties of function F

- Counterexample: Fw x = if wx = L then O else L

- Assume W is a fixed point

- FWx=Wx=if Wx=_1thenOelse L

- Pickan x, thenif Wx= 1 thenWx=0else Wx= 1
- Contradiction. This F has&ozﬁ\;ixed point !

Monotonicity

Good news: the functions F that correspond to
contexts in all reasonable languages have least fixed
points |

The only way F f x uses f is by invoking it
If any such invocation diverges, then F f x diverges !
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Monotonicity (Cont.)

+ Consider f, C f;. What can we say about the
relationship between F f, x and F f; x, for any x ?

+ Assume F fo x =n= L. Show that F f; x=n
- Incomputing F f, x, fg is invoked a finite number of times
- All those invocations terminate with some values
- The value of f; at other points does not matter !
- But f; terminates with same results everywhere f, terminates
- Thus F f; x = n (F is a function)

« If Ffox=L,it could be that F f; x = L
- Take F fx=fx,f,(0)= Land f; (0)=0

+ Ingeneral,if fo C f; thenF f, C F f;
We say that F must be monotonic
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Monotonicity (Cont.)

If we replace the sub-command with one that
terminates more often, the whole command will
terminate more often

The following F is not monotonic:
Fwx=ifwx=1thenOelse L
- This function does not correspond to a computable context

The semantics of computable contexts are monotonic
- Can be proved by induction on the structure of context
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Chains of Approximations

Consider the command while x = 0 then x :=x - 1
Semantics: W x = if 0 < x then O else L
Try the following approximations (for arbitrary k)
w, X =if 0 < x < kthenOelse L
- w, is the semantics if we allow at most k iterations
+ Show that w, C W
- All w, approximate W
Also, w, C wy,;
- We get more information if we allow more iterations

- w, form a chain of approximations of the true semantics
- We say that W is an upper bound for the chain w,
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Least Upper Bounds

Recall: W x = if 0 < x then O else L
wx=if 0 < x<kthenOelse L
Pick any other upper bound for chain wy
- eg,U=if0<xthenOelseb
+ Wesee that WC U
- W is the least upper bound of the chain w, (written L, w,)
Compute the least upper bound for a chaininZ — 7, :
- for each x, we construct the sequence f; x, f; x, ...
- Thus: (U, f,) x = if 3kf x=n= L thennelse L

- We can verify that W = L, w,
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Solving Fixed Point Equations

Thus W = U w,

Note that wy = Ax. L

Note also that w,, ; = F w,, where F is the meaning of
context if x = 0 then x := x - 1; e else skip

- Thus, W = LFP; = L, F (3x. 1)

Is this true for all functions F ?

CS 263 39

Continuity

Consider F corresponding to a context in our language
Consider a chain gy C ... C g, with Ll, g, = 6
- Note that F g, form a chain also, because F is monotonic

We’ Il show that, for any x, F 6 x = (L, (F g))) x

- We say that such functions F are continuous

If F6x=n= L ,then G was invoked a finite number
of times, and terminated each time

- For each such invocation, there is a j, such that g; terminates
with the same result

- Let max be the maximum such j, for all invocations
- Thus, F g, X=n,and (U, (Fg))x=n

Similar reasoning for F 6 x = L
CS 263 40
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The Fixed-Point Theorem

Denotational Semantics For WHILE

If Fis a semantic functional corresponding to a
context in our language
- F is monotonic and continuous
- For any fixed-point G of F and k € N
Fk(Ax.L)C 6
- The least of all fixed points is
Uy, Fr(x. L)
Proof:
1. by mathematical induction on k.
Base: FO(Ax.L )=Ax.L C 6
Inductive: F*I(Ax. 1 ) = F(FK(Ox.L )) C F(6) = 6
2. Suffices to show that L, FK(A.x.L ) is a fixed-point
F(uy FROx.L ) = Ly Fel(ux. L ) = b, F*(x. L)
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We can use the fixed-point theorem to write the
denotational semantics of while:

[while b do ] = U, F¥ (Ax.L)

where F f x = if [b] x then f ([c] x) else x

Example: [while true do skip] = Ax.L

Example: [while x = O then x := x - 1]

- F(x.Ll)x=ifx=0thenOelse L

- FPP(x.L)x=if x=0thenOelseif x-1=0thenOelse L

=if1>x>0thenOelse L

- FF(xL)x=if2>x>0thenOelse L

- LFPz=if x> O thenOelse L

In general, it is not easy to find the closed form for
LFP!
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Discussion

Domain Theory

We can express the denotational semantics but we
cannot always compute it.

- Otherwise, we could decide the halting problem

- His halting for input O iff [H] O = L

We have derived this for programs with one variable

+ We can generalize to multiple variables, even to
variables ranging over richer data types, even higher-
order functions

- Domain theory
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A set D is a domain if
- It has a partial order x C y
- Reflexive, transitive, and anti-symmetric

- There is a least element L called bottom
- Any chain x; C .. C X, C ... has a least-upper bound L, x;
« Foralli, x; C L x; (is an upper bound)

« For any y such that (Vi. x; C y), we have L, x; C y (least upper
bound)

Usual sets of semantic values are domains

CS 263 44
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Example of Domains

Example:D=7Z — Z,

- fCg iffforallneZ,fn=_Lorfn=gn

- lp=hn L

- For achain f; the LUB = An. if Jkf, x =m = L thenmelse L

Example: Take a set A and a special element L, then
A, = AU{ L1} is a flat domain:

- aCbiffa=lLora=b

- Forachaina, LUB=if Ska, = L thena,else |

Exercise: If D, and D, are domains, then D; — D, is a
domain, and so is D; x D,
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Monotonicity and Continuity

A function f : D; — D, is monotonic iff
forallx,yeDixCy=fxCfy

A function F : D, — D, is continuous iff
for all chains x; in Dy: F (U; x;) = L; (F x;)

We can show that functions corresponding to usual
language constructs are monotonic and continuous

- Show that F f x = f (f, x) is monotonic and continuous, for any
fo that is monotonic and continuous
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Least Fixed-Point Theorem

If D is adomain, and F: D — D is a continuous function
then

- 1,FL,F(FL1),. formachaininD

- U (F' L) is the least fixed point of F
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Denotation Semantics
Supplemental Material
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The Function Domain

We are interested only in those semantic functions that
are monotonic and continuous
- Notation: [D — E] the set of continuous functions from D to E.
- Theorem: If D and E are domains, then [D — E] is a domain
Proof:
- Define the (induced) partial order on [D — E]
fEp_gg iff WxeD. f(x)Ceg(x)
+ This is the pointwise ordering

- Define the bottom of [D — E]

Lipser  Zaer MxED.Lg
- Define least upper bounds

U £ (Fi) Zaer AXED.Lg (fi(x)
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The Function-Space Domain

Prove completeness of Cp, .
1. lubs exist for all chains. Easy
2. lubs are continuous, hence in [D — E]
- Let (f) be a chain with lub F:
F =1 (f) = L (Fi(x))

- Pick (x;) a chain in D

- To show: F(; (x;)) = L; F(x;)
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The Function-Space Domain (Cont.)

To show: F(U; x;) = U F(x;)

But
F(ux;) = (U (U5 x))
=4 (Uj fi(xj))

- and
U Flxg) = Ly (U fi(x))

Is it the case that U; (U fi(x;)) = L (U; fi(x)) ?
- It happens to be so in this case, but we must prove it
- This only holds because f; are continuous !
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Proof Techniques for Domains

We must prove L; (U fi(x)) = U; (U; fi(x;))

1. How do we prove that x =y for some x,y € E?
- One method: prove x Cyandy C x
- Then by anti-symmetry of C we get the equality

2. How do we prove U (x;) Cy ?
- One method: prove VieN. x; Cy
- Then use the fact that U is the least upper bound

3. How do we prove x C U (y;) ?
- One method: prove JieN. x C y;

- Then use the fact that U is an upper bound
CS 263 52
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Proof Techniques for Domains (Example)

+ We must prove L (1 £x)) = Ly (Up Ful,))
- We could try either proof trick #2 or #3
- Trick #2 is generally more poweful
- Trick #2 works here

* To show (for an arbitrary i) U; fi(x;) E U, (Un fru(X,)
- Trick #2 again

+ To show (for arbitrary i and j) fi(xj) C Uy (U fr(x0)
- Trick #3 twice

+ To show ViVj.3m3n. f,-(xj) C fulxy)
- Easy: pickm=iandn=j

+ The other direction works in a similar manner
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More Domains

+ So, [D — E]is a domain if D and E are domains

D x E is a domain if D and E are domains
(*,y) Epee (X', y") iff xCpx" andy Cey’
Lo e Zder (L. Le)
U (Xi, Y1) =ger (Up Xi, Lg ¥3)
- Convince yourself that these definitions are well-formed

+ Aset D, = DU {L}with the ordering

xCy iffx=yorx= 1
is a domain
- How do chains look in such a domain ?
- Whatisu?
- Such a domain is called a flat domain
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Some Continuous Functions

Function application: app = 4o Af€[D— E]. AxeD.f (x)

+ Function composition:
comp =4 Mfe[E—F1Age[D—E]AxeD.f(g(x))

+ Pairing: mkPair =4, AxeD.AyeE.(x, y)
* Projection: proj =4¢ Mx,y) € D x E. x
+ Case analysis:

case =4, Abebool  AteD.AfeD.if b then t else f
* Proofs of these in Winskel, Chapter 8
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