1 Module Pretty: Utility functions for pretty-printing.

The major features provided by this module are

- An `fprintf`-style interface with support for user-defined printers
- The printout is fit to a width by selecting some of the optional newlines
- Constructs for alignment and indentation
- Print ellipsis starting at a certain nesting depth
- Constructs for printing lists and arrays

Pretty-printing occurs in two stages:
• Construct a Pretty.doc object that encodes all of the elements to be printed along with alignment specifiers and optional and mandatory newlines.

• Format the Pretty.doc to a certain width and emit it as a string, to an output stream or pass it to a user-defined function.

The formatting algorithm is not optimal but it does a pretty good job while still operating in linear time. The original version was based on a pretty printer by Philip Wadler which turned out to not scale to large jobs.

API

type doc

The type of unformatted documents. Elements of this type can be constructed in two ways. Either with a number of constructor shown below, or using the Pretty.dprintf function with a printf-like interface. The Pretty.dprintf method is slightly slower so we do not use it for large jobs such as the output routines for a compiler. But we use it for small jobs such as logging and error messages.

Constructors for the doc type.

val nil : doc

Constructs an empty document.

val (++) : doc -> doc -> doc

Concatenates two documents. This is an infix operator that associates to the left.

val concat : doc -> doc -> doc

val text : string -> doc

A document that prints the given string.

val num : int -> doc

A document that prints an integer in decimal form.

val num64 : int64 -> doc

A document that prints a 64-bit int in decimal form.

val real : float -> doc

A document that prints a real number.

val chr : char -> doc

A document that prints a character. This is just like Pretty.text with a one-character string.

val line : doc

A document that consists of a mandatory newline. This is just like (text "\n"). The new line will be indented to the current indentation level, unless you use Pretty.leftflush right after this.
val leftflush : doc
 Use after a Pretty.line[1] to prevent the indentation. Whatever follows next will be
 flushed left. Indentation resumes on the next line.

val break : doc
 A document that consists of either a space or a line break. Also called an optional line
 break. Such a break will be taken only if necessary to fit the document in a given width. If
 the break is not taken a space is printed instead.

val align : doc
 Mark the current column as the current indentation level. Does not print anything. All
 taken line breaks will align to this column. The previous alignment level is saved on a stack.

val unalign : doc
 Reverts to the last saved indentation level.

val mark : doc
 Mark the beginning of a markup section. The width of a markup section is considered 0 for
 the purpose of computing indentation

val unmark : doc
 The end of a markup section

 Syntactic sugar

val indent : int -> doc -> doc
 Indents the document. Same as ((text " ") ++ align ++ doc ++ unalign), with the
 specified number of spaces.

val markup : doc -> doc
 Prints a document as markup. The marked document cannot contain line breaks or
 alignment constructs.

val seq : sep:doc -> doit:('a -> doc) -> elements:'a list -> doc
 Formats a sequence. sep is a separator, doit is a function that converts an element to a
 document.

val docList : ?sep:doc -> doit:('a -> doc) -> unit -> 'a list -> doc
 An alternative function for printing a list. The unit argument is there to make this
 function more easily usable with the Pretty.dprintf[1] interface. The first argument is a
 separator, by default a comma.

val d_list : string -> (unit -> 'a -> doc) -> unit -> 'a list -> doc
 sm: Yet another list printer. This one accepts the same kind of printing function that
 Pretty.dprintf[1] does, and itself works in the dprintf context. Also accepts a string as
 the separator since that’s by far the most common.
val docArray : ?sep:doc ->
(int -> 'a -> doc) -> unit -> 'a array -> doc

Formats an array. A separator and a function that prints an array element. The default
separator is a comma.

val docOpt : ('a -> doc) -> unit -> 'a option -> doc

Prints an 'a option with None or Some

val d_int32 : int32 -> doc

Print an int32

val f_int32 : unit -> int32 -> doc

val d_int64 : int64 -> doc

val f_int64 : unit -> int64 -> doc

module MakeMapPrinter :
 functor (Map : sig
 type key
 type 'a t
 val fold : (key -> 'a -> 'b -> 'b) ->
 'a t -> 'b -> 'b
t end) -> sig

val docMap :
 ?sep:Pretty.doc ->
 (Map.key -> 'a -> Pretty.doc) -> unit -> 'a Map.t -> Pretty.doc

 Format a map, analogous to docList.

val d_map :
 ?dmaplet:(Pretty.doc -> Pretty.doc -> Pretty.doc) ->
 string ->
 (unit -> Map.key -> Pretty.doc) ->
 (unit -> 'a -> Pretty.doc) -> unit -> 'a Map.t -> Pretty.doc

 Format a map, analogous to d_list.

end

Format maps.

module MakeSetPrinter :
 functor (Set : sig
 type elt
 type t
 val fold : (elt -> 'a -> 'a) ->
 t -> 'a -> 'a
 t end) -> sig

val docSet :
 ?sep:Pretty.doc ->
 (Set.elt -> 'a -> Pretty.doc) -> unit -> 'a Set.t -> Pretty.doc

 Format a set, analogous to docList.
end) -> sig

val docSet :
 ?sep:Pretty.doc -> (Set.elt -> Pretty.doc) -> unit -> Set.t -> Pretty.doc

 Format a set, analogous to docList.

val d_set :
 string -> (unit -> Set.elt -> Pretty.doc) -> unit -> Set.t -> Pretty.doc

 Format a set, analogous to d_list.

end

Format sets.

val insert : unit -> doc -> doc

 A function that is useful with the printf-like interface

val dprintf : ('a, unit, doc, doc) format4 -> 'a

 This function provides an alternative method for constructing doc objects. The first
 argument for this function is a format string argument (of type ('a, unit, doc) format);
 if you insist on understanding what that means see the module Printf. The format string
 is like that for the printf function in C, except that it understands a few more formatting
 controls, all starting with the @ character.

 See the gprintf function if you want to pipe the result of dprintf into some other functions.

 The following special formatting characters are understood (these do not correspond to
 arguments of the function):

 • @] Inserts an Pretty.align[1]. Every format string must have matching
 Pretty.align[1] and Pretty.unalign[1].
 • @< Inserts an Pretty.unalign[1].
 • @! Inserts a Pretty.line[1]. Just like "\n"
 • @? Inserts a Pretty.break[1].
 • @< Inserts a Pretty.mark[1].
 • @@ : inserts a @ character

 In addition to the usual printf % formatting characters the following two new characters
 are supported:

 • %t Corresponds to an argument of type unit -> doc. This argument is invoked to
 produce a document
 • %a Corresponds to two arguments. The first of type unit -> 'a -> doc and the
 second of type 'a. (The extra unit is do to the peculiarities of the built-in support for
 format strings in Ocaml. It turns out that it is not a major problem.) Here is an
 example of how you use this:
dprintf "Name=%s, SSN=%7d, Children=@[%a@]\n"
 pers.name pers.ssn (docList (chr ',') ++ break) text)
 pers.children

The result of \texttt{dprintf} is a \texttt{Pretty.doc}[1]. You can format the document and emit it using the functions \texttt{Pretty.fprint}[1] and \texttt{Pretty.sprint}[1].

\begin{verbatim}
val gprintf : (doc -> 'a) -> ('b, unit, doc, 'a) format4 -> 'b
 Like Pretty.dprintf[1] but more general. It also takes a function that is invoked on the constructed document but before any formatting is done. The type of the format argument means that \texttt{'a} is the type of the parameters of this function, \texttt{unit} is the type of the first argument to \texttt{%a} and \texttt{%t} formats, \texttt{doc} is the type of the intermediate result, and \texttt{'b} is the type of the result of gprintf.

val fprint : out_channel -> width:int -> doc -> unit
 Format the document to the given width and emit it to the given channel

val sprint : width:int -> doc -> string
 Format the document to the given width and emit it as a string

val fprintf : out_channel -> ('a, unit, doc) format -> 'a

val printf : ('a, unit, doc) format -> 'a
 Like Pretty.fprintf[1] applied to stdout

val eprintf : ('a, unit, doc) format -> 'a
 Like Pretty.fprintf[1] applied to stderr

val withPrintDepth : int -> (unit -> unit) -> unit
 Invokes a thunk, with printDepth temporarily set to the specified value

The following variables can be used to control the operation of the printer

val printDepth : int ref
 Specifies the nesting depth of the \texttt{align}/unalign pairs at which everything is replaced with ellipsis

val printIndent : bool ref
 If false then does not indent

val fastMode : bool ref
 If set to true then optional breaks are taken only when the document has exceeded the given width. This means that the printout will looked more ragged but it will be faster

val flushOften : bool ref
 If true the it flushes after every print
\end{verbatim}
val countNewLines : int ref
 Keep a running count of the taken newlines. You can read and write this from the client code if you want

val auto_printer : string -> 'a
 A function that when used at top-level in a module will direct the pa_prtype module generate automatically the printing functions for a type

2 Module Errormsg : Utility functions for error-reporting

val logChannel : out_channel ref
 A channel for printing log messages

val debugFlag : bool ref
 If set then print debugging info

val verboseFlag : bool ref
val colorFlag : bool ref
 Set to true if you want error and warning messages to be colored

val redEscStr : string
val greenEscStr : string
val yellowEscStr : string
val blueEscStr : string
val purpleEscStr : string
val cyanEscStr : string
val whiteEscStr : string
val resetEscStr : string
val warnFlag : bool ref
 Set to true if you want to see all warnings.

exception Error
 Error reporting functions raise this exception

val error : ('a, unit, Pretty.doc, unit) format4 -> 'a
 Prints an error message of the form Error: Use in conjunction with s, for example: E.s (E.error ...).

val bug : ('a, unit, Pretty.doc, unit) format4 -> 'a
 Similar to error except that its output has the form Bug: ...

val unimp : ('a, unit, Pretty.doc, unit) format4 -> 'a
Similar to error except that its output has the form Unimplemented: ...

```plaintext
val s : 'a -> 'b
Stop the execution by raising an Error.
```

```plaintext
val hadErrors : bool ref
This is set whenever one of the above error functions are called. It must be cleared manually.
```

```plaintext
val warn : ('a, unit, Pretty.doc, unit) format4 -> 'a
```

```plaintext
val warnOpt : ('a, unit, Pretty.doc, unit) format4 -> 'a
```

```plaintext
val log : ('a, unit, Pretty.doc, unit) format4 -> 'a
Print something to logChannel.
```

```plaintext
val logg : ('a, unit, Pretty.doc, unit) format4 -> 'a
same as Errormsg.log[2] but do not wrap lines
```

```plaintext
val null : ('a, unit, Pretty.doc, unit) format4 -> 'a
Do not actually print (i.e. print to /dev/null).
```

```plaintext
val pushContext : (unit -> Pretty.doc) -> unit
Registers a context printing function.
```

```plaintext
val popContext : unit -> unit
Removes the last registered context printing function.
```

```plaintext
val showContext : unit -> unit
Show the context stack to stderr.
```

```plaintext
val withContext : (unit -> Pretty.doc) -> ('a -> 'b) -> 'a -> 'b
To ensure that the context is registered and removed properly, use the function below.
```

```plaintext
val newline : unit -> unit
val newHline : unit -> unit
val getPosition : unit -> int * string * int
val getHPosition : unit -> int * string
high-level position
```

```plaintext
val setHLine : int -> unit
val setHFile : string -> unit
val setCurrentLine : int -> unit
val setCurrentFile : string -> unit
```

```plaintext
type location = {
  file : string ;
}
```
The file name

line : int ;
The line number

hfile : string ;
The high-level file name, or ”” if not present

hline : int ;
The high-level line number, or 0 if not present

}{
}

Type for source-file locations

val d_loc : unit -> location -> Pretty.doc
val d_hloc : unit -> location -> Pretty.doc
val getLocation : unit -> location
val parse_error : string -> 'a
val locUnknown : location
 An unknown location for use when you need one but you don’t have one

val readingFromStdin : bool ref
 Records whether the stdin is open for reading the goal *

val startParsing : ?useBasename:bool -> string -> Lexing.lexbuf
val startParsingFromString :
val finishParsing : unit -> unit

3 Module Clist: Utilities for managing ”concatenable lists” (clists).

We often need to concatenate sequences, and using lists for this purpose is expensive. This module provides routines to manage such lists more efficiently. In this model, we never do cons or append explicitly. Instead we maintain the elements of the list in a special data structure. Routines are provided to convert to/from ordinary lists, and carry out common list operations.

type 'a clist =
 | CList of 'a list
 The only representation for the empty list. Try to use sparingly.
 | CConsL of 'a * 'a clist
 Do not use this a lot because scanning it is not tail recursive
 | CConsR of 'a clist * 'a
 | CSeq of 'a clist * 'a clist
 We concatenate only two of them at this time. Neither is the empty clist. To be sure always use append to make these
The clist datatype. A clist can be an ordinary list, or a clist preceded or followed by an element, or two clists implicitly appended together

val toList : 'a clist -> 'a list
Convert a clist to an ordinary list

val fromList : 'a list -> 'a clist
Convert an ordinary list to a clist

val single : 'a -> 'a clist
Create a clist containing one element

val empty : 'a clist
The empty clist

val append : 'a clist -> 'a clist -> 'a clist
Append two clists

val checkBeforeAppend : 'a clist -> 'a clist -> bool
A useful check to assert before an append. It checks that the two lists are not identically the same (Except if they are both empty)

val length : 'a clist -> int
Find the length of a clist

val map : ('a -> 'b) -> 'a clist -> 'b clist
Map a function over a clist. Returns another clist

val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b clist -> 'a
A version of fold_left that works on clists

val iter : ('a -> unit) -> 'a clist -> unit
A version of iter that works on clists

val rev : ('a -> 'a) -> 'a clist -> 'a clist
Reverse a clist. The first function reverses an element.

val docCList :
Pretty.doc -> ('a -> Pretty.doc) -> unit -> 'a clist -> Pretty.doc
A document for printing a clist (similar to docList)
4 Module Stats : Utilities for maintaining timing statistics

type timerModeEnum =
| Disabled
 Do not collect timing information
| SoftwareTimer
 Use OCaml’s Unix.time for timing information
| HardwareTimer
 Use the Pentium’s cycle counter to time code
| HardwareIfAvail
 Use the hardware cycle counter if available; otherwise use SoftwareTimer
 Whether to use the performance counters (on Pentium only)

val reset : timerModeEnum -> unit
 Resets all the timings and specifies the method to use for future timings. Call this before
doing any timing.
 You will get an exception if you pass HardwareTimer to reset and the hardware counters are
 not available

exception NoPerfCount

val countCalls : bool ref
 Flag to indicate whether or not to count the number of calls of to Stats.repeattime[4] or
 Stats.time[4] for each label. (default: false)

val has_performance_counters : unit -> bool
 Check if we have performance counters

val sample_pentium_perfcount_20 : unit -> int
 Sample the current cycle count, in megacycles.

val sample_pentium_perfcount_10 : unit -> int
 Sample the current cycle count, in kilocycles.

val time : string -> ('a -> 'b) -> 'a -> 'b
 Time a function and associate the time with the given string. If some timing information is
 already associated with that string, then accumulate the times. If this function is invoked
 within another timed function then you can have a hierarchy of timings

val repeattime : float -> string -> ('a -> 'b) -> 'a -> 'b
 repeattime is like time but runs the function several times until the total running time is
 greater or equal to the first argument. The total time is then divided by the number of
 times the function was run.
val print : 'a -> string -> unit
 Print the current stats preceeded by a message

val lookupTime : string -> float
 Return the cumulative time of all calls to Stats.time and Stats.repeatTime with the
 given label.

val timethis : ('a -> 'b) -> 'a -> 'b
 Time a function and set lastTime to the time it took

val lastTime : float ref

5 Module Cil : CIL API Documentation.

An html version of this document can be found at http://hal.cs.berkeley.edu/cil

val initCIL : unit -> unit
 Call this function to perform some initialization. Call if after you have set Cil.msvcMode.

val cilVersion : string
 This are the CIL version numbers. A CIL version is a number of the form M.m.r (major,
 minor and release)

val cilVersionMajor : int
val cilVersionMinor : int
val cilVersionRevision : int
 This module defines the abstract syntax of CIL. It also provides utility functions for traversing
 the CIL data structures, and pretty-printing them. The parser for both the GCC and MSVC front-
 ends can be invoked as Frontc.parse: string -> unit -> Cil.file. This function must be
 given the name of a preprocessed C file and will return the top-level data structure that describes
 a whole source file. By default the parsing and elaboration into CIL is done as for GCC source. If
 you want to use MSVC source you must set the Cil.msvcMode to true and must also invoke the
 function Frontc.setMSVCMode: unit -> unit.

 The Abstract Syntax of CIL
 The top-level representation of a CIL source file (and the result of the parsing and elaboration).
 Its main contents is the list of global declarations and definitions. You can iterate over the glob-
 als in a Cil.file using the following iterators: Cil.mapGlobals, Cil.iterGlobals and
 Cil.foldGlobals. You can also use the Cil.dummyFile when you need a Cil.file as a
 placeholder. For each global item CIL stores the source location where it appears (using the type
 Cil.location)

 type file = {
 mutable fileName : string ;
 The complete file name
 mutable globals : global list ;
 List of globals as they will appear in the printed file
 }
mutable globinit : fundec option;
 An optional global initializer function. This is a function where you can put stuff that
 must be executed before the program is started. This function is conceptually at the
 end of the file, although it is not part of the globals list. Use Cil.getGlobInit[5] to
 create/get one.

mutable globinitcalled : bool;
 Whether the global initialization function is called in main. This should always be
 false if there is no global initializer. When you create a global initialization CIL will
 try to insert code in main to call it. This will not happen if your file does not contain
 a function called ”main”

)

Top-level representation of a C source file

type comment = location * string

 Globals. The main type for representing global declarations and definitions. A list of these
 form a CIL file. The order of globals in the file is generally important.

type global =
 | GType of typeinfo * location
 A typedef. All uses of type names (through the TNamed constructor) must be
 preceded in the file by a definition of the name. The string is the defined name and
 always not-empty.
 | GCompTag of compinfo * location
 Defines a struct/union tag with some fields. There must be one of these for each
 struct/union tag that you use (through the TComp constructor) since this is the only
 context in which the fields are printed. Consequently nested structure tag definitions
 must be broken into individual definitions with the innermost structure defined first.
 | GCompTagDecl of compinfo * location
 Declares a struct/union tag. Use as a forward declaration. This is printed without
 the fields.
 | GEnumTag of enuminfo * location
 Declares an enumeration tag with some fields. There must be one of these for each
 enumeration tag that you use (through the TEnum constructor) since this is the only
 context in which the items are printed.
 | GEnumTagDecl of enuminfo * location
 Declares an enumeration tag. Use as a forward declaration. This is printed without
 the items.
 | GVarDecl of varinfo * location
 A variable declaration (not a definition). If the variable has a function type then this
 is a prototype. There can be several declarations and at most one definition for a
 given variable. If both forms appear then they must share the same varinfo structure.
 A prototype shares the varinfo with the fundec of the definition. Either has storage
 Extern or there must be a definition in this file
| GVar of varinfo * initinfo * location
| A variable definition. Can have an initializer. The initializer is updateable so that you can change it without requiring to recreate the list of globals. There can be at most one definition for a variable in an entire program. Cannot have storage Extern or function type.

| GFun of fundec * location
| A function definition.

| GAsm of string * location
| Global asm statement. These ones can contain only a template

| GPragma of attribute * location
| Pragmas at top level. Use the same syntax as attributes

| GText of string
| Some text (printed verbatim) at top level. E.g., this way you can put comments in the output.

A global declaration or definition

Types. A C type is represented in CIL using the type Cil.typ[5]. Among types we differentiate the integral types (with different kinds denoting the sign and precision), floating point types, enumeration types, array and pointer types, and function types. Every type is associated with a list of attributes, which are always kept in sorted order. Use Cil.addAttribute[5] and Cil.addAttributes[5] to construct list of attributes. If you want to inspect a type, you should use Cil.unrollType[5] or Cil.unrollTypeDeep[5] to see through the uses of named types.

CIL is configured at build-time with the sizes and alignments of the underlying compiler (GCC or MSVC). CIL contains functions that can compute the size of a type (in bits) Cil.bitsSizeOf[5], the alignment of a type (in bytes) Cil.alignOf.int[5], and can convert an offset into a start and width (both in bits) using the function Cil.bitsOffset[5]. At the moment these functions do not take into account the packed attributes and pragmas.

```plaintext
type typ =
| TVoid of attributes
| Void type. Also predefined as Cil.voidType[5]

| TInt of ikind * attributes
| An integer type. The kind specifies the sign and width. Several useful variants are predefined as Cil.intType[5], Cil.uintType[5], Cil.longType[5], Cil.charType[5].

| TFloat of fkind * attributes
| A floating-point type. The kind specifies the precision. You can also use the predefined constant Cil.doubleType[5].

| TPtr of typ * attributes
| Pointer type. Several useful variants are predefined as Cil.charPtrType[5], Cil.charConstPtrType[5] (pointer to a constant character), Cil.voidPtrType[5], Cil.intPtrType[5]

| TArray of typ * exp option * attributes
| Array type. It indicates the base type and the array length.
```
Function type. Indicates the type of the result, the name, type and name attributes of the formal arguments (None if no arguments were specified, as in a function whose definition or prototype we have not seen; Some [] means void). Use Cil.argsToList[5] to obtain a list of arguments. The boolean indicates if it is a variable-argument function. If this is the type of a varinfo for which we have a function declaration then the information for the formals must match that in the function’s sformals. Use Cil.setFormals[5], or Cil.setFunctionType[5], or Cil.makeFormalVar[5] for this purpose.

The use of a named type. Each such type name must be preceded in the file by a GType global. This is printed as just the type name. The actual referred type is not printed here and is carried only to simplify processing. To see through a sequence of named type references, use Cil.unrollType[5] or Cil.unrollTypeDeep[5]. The attributes are in addition to those given when the type name was defined.

The most delicate issue for C types is that recursion that is possible by using structures and pointers. To address this issue we have a more complex representation for structured types (struct and union). Each such type is represented using the Cil.compinfo[5] type. For each composite type the Cil.compinfo[5] structure must be declared at top level using GCompTag and all references to it must share the same copy of the structure. The attributes given are those pertaining to this use of the type and are in addition to the attributes that were given at the definition of the type and which are stored in the Cil.compinfo[5].

A reference to an enumeration type. All such references must share the enuminfo among them and with a GEnumTag global that precedes all uses. The attributes refer to this use of the enumeration and are in addition to the attributes of the enumeration itself, which are stored inside the enuminfo.

This is the same as the gcc’s type with the same name.

There are a number of functions for querying the kind of a type. These are Cil.isIntegralType[5], Cil.isArithmeticType[5], Cil.isPointerType[5], Cil.isFunctionType[5], Cil.isArrayType[5].

There are two easy ways to scan a type. First, you can use the Cil.existsType[5] to return a boolean answer about a type. This function is controlled by a user-provided function that is queried for each type that is used to construct the current type. The function can specify whether to terminate the scan with a boolean result or to continue the scan for the nested types.

The other method for scanning types is provided by the visitor interface (see Cil.cilVisitor[5]).

If you want to compare types (or to use them as hash-values) then you should use instead type signatures (represented as Cil.typsig[5]). These contain the same information as types but canonicalized such that simple Ocaml structural equality will tell whether two types are equal. Use Cil.typeSig[5] to compute the signature of a type. If you want to ignore certain type attributes then use Cil.typeSigWithAttrs[5].
type ikind =
 | IChar
 char
 | ISChar
 signed char
 | IUChar
 unsigned char
 | IBool
 _Bool (C99)
 | IInt
 int
 | IUInt
 unsigned int
 | IShort
 short
 | IUShort
 unsigned short
 | ILon
 long
 | ILonLong
 long long (or _int64 on Microsoft Visual C)
 | IULonLong
 unsigned long long (or unsigned _int64 on Microsoft Visual C)

Various kinds of integers

| FFloat
 | FDouble
 | FLongDouble

Various kinds of floating-point numbers

Attributes.

| Attr of string * attrparam list
An attribute has a name and some optional parameters. The name should not start or end with underscore. When CIL parses attribute names it will strip leading and ending underscores (to ensure that the multitude of GCC attributes such as const, _const and _const_ all mean the same thing.)

```ml
type attributes = attribute list
Attributes are lists sorted by the attribute name. Use the functions Cil.addAttribute[5] and Cil.addAttributes[5] to insert attributes in an attribute list and maintain the sortedness.
```

```ml
type attrparam =
| AInt of int
    An integer constant
| AStr of string
    A string constant
| ACons of string * attrparam list
    Constructed attributes. These are printed foo(a1,a2,...,an). The list of parameters can be empty and in that case the parentheses are not printed.
| ASizeOf of typ
    A way to talk about types
| ASizeOfE of attrparam
| ASizeOfS of typsig
    Replacement for ASizeOf in type signatures. Only used for attributes inside typsigs.
| AAlignOf of typ
| AAlignOfE of attrparam
| AAlignOfS of typsig
| AUnOp of unop * attrparam
| ABinOp of binop * attrparam * attrparam
| ADot of attrparam * string
    a.foo *
| AStar of attrparam
    a
| AAddrOf of attrparam
    & a *
| AIndex of attrparam * attrparam
    a1a2
| AQuestion of attrparam * attrparam * attrparam
    a1 ? a2 : a3 *
The type of parameters of attributes
```
Structures. The Cil.compinfo[5] describes the definition of a structure or union type. Each such Cil.compinfo[5] must be defined at the top-level using the GCompTag constructor and must be shared by all references to this type (using either the TComp type constructor or from the definition of the fields).

If all you need is to scan the definition of each composite type once, you can do that by scanning all top-level GCompTag.

Constructing a Cil.compinfo[5] can be tricky since it must contain fields that might refer to the host Cil.compinfo[5] and furthermore the type of the field might need to refer to the Cil.compinfo[5] for recursive types. Use the Cil.mkCompInfo[5] function to create a Cil.compinfo[5]. You can easily fetch the Cil.fieldinfo[5] for a given field in a structure with Cil.getCompField[5].

```plaintext
type compinfo = {
    mutable cstruct : bool ;
    True if struct, False if union
    mutable cname : string ;
    The name. Always non-empty. Use Cil.compFullName[5] to get the full name of a comp (along with the struct or union)
    mutable ckey : int ;
    A unique integer. This is assigned by Cil.mkCompInfo[5] using a global variable in the Cil module. Thus two identical structs in two different files might have different keys. Use Cil.copyCompInfo[5] to copy structures so that a new key is assigned.
    mutable cfields : fieldinfo list ;
    Information about the fields. Notice that each fieldinfo has a pointer back to the host compinfo. This means that you should not share fieldinfo’s between two compinfo’s
    mutable cattr : attributes ;
    The attributes that are defined at the same time as the composite type. These attributes can be supplemented individually at each reference to this compinfo using the TComp type constructor.
    mutable cdefined : bool ;
    This boolean flag can be used to distinguish between structures that have not been defined and those that have been defined but have no fields (such things are allowed in gcc).
    mutable referenced : bool ;
    True if used. Initially set to false.
}
```

The definition of a structure or union type. Use Cil.mkCompInfo[5] to make one and use Cil.copyCompInfo[5] to copy one (this ensures that a new key is assigned and that the fields have the right pointers to parents.).

Structure fields. The Cil.fieldinfo[5] structure is used to describe a structure or union field. Fields, just like variables, can have attributes associated with the field itself or associated with the type of the field (stored along with the type of the field).

```plaintext
type fieldinfo = {
    mutable fcomp : compinfo ;
}```
The host structure that contains this field. There can be only one `compinfo` that contains the field.

```ml
mutable fname : string ;
```

The name of the field. Might be the value of `Cil.missingFieldName[5]` in which case it must be a bitfield and is not printed and it does not participate in initialization

```ml
mutable ftype : typ ;
```

The type

```ml
mutable fbitfield : int option ;
```

If a bitfield then ftype should be an integer type and the width of the bitfield must be 0 or a positive integer smaller or equal to the width of the integer type. A field of width 0 is used in C to control the alignment of fields.

```ml
mutable fattr : attributes ;
```

The attributes for this field (not for its type)

```ml
mutable floc : location ;
```

The location where this field is defined

```ml
}
```

Information about a struct/union field

**Enumerations.** Information about an enumeration. This is shared by all references to an enumeration. Make sure you have a `GEnumTag` for each of of these.

```ml
type enuminfo = {
 mutable ename : string ;
 The name. Always non-empty.
 mutable eitems : (string * exp * location) list ;
 Items with names and values. This list should be non-empty. The item values must be compile-time constants.
 mutable eattr : attributes ;
 The attributes that are defined at the same time as the enumeration type. These attributes can be supplemented individually at each reference to this `enuminfo` using the `TEnum` type constructor.
 mutable ereferenced : bool ;
 True if used. Initially set to false
 mutable ekind : ikind ;
 The integer kind used to represent this enum. Per ANSI-C, this should always be `IInt`, but gcc allows other integer kinds
}
```

Information about an enumeration

**Enumerations.** Information about an enumeration. This is shared by all references to an enumeration. Make sure you have a `GEnumTag` for each of of these.

```ml
type typeinfo = {
 mutable tname : string ;
}
```

19
The name. Can be empty only in a GType when introducing a composite or enumeration tag. If empty cannot be referred to from the file

```plaintext
mutable ttype : typ ;

The actual type. This includes the attributes that were present in the typedef

mutable referenced : bool ;

True if used. Initially set to false
```

}  

Information about a defined type

**Variables**. Each local or global variable is represented by a unique Cil.varinfo structure. A global Cil.varinfo can be introduced with the GVarDecl or GVar or GFun globals. A local varinfo can be introduced as part of a function definition Cil.fundec.

All references to a given global or local variable must refer to the same copy of the varinfo. Each varinfo has a globally unique identifier that can be used to index maps and hashtables (the name can also be used for this purpose, except for locals from different functions). This identifier is constructed using a global counter.

It is very important that you construct varinfo structures using only one of the following functions:

- Cil.makeGlobalVar: to make a global variable
- Cil.makeTempVar: to make a temporary local variable whose name will be generated so that to avoid conflict with other locals.
- Cil.makeLocalVar: like Cil.makeTempVar but you can specify the exact name to be used.
- Cil.copyVarinfo: make a shallow copy of a varinfo assigning a new name and a new unique identifier

A varinfo is also used in a function type to denote the list of formals.

```plaintext
type varinfo = {
 mutable vname : string ;
 The name of the variable. Cannot be empty. It is primarily your responsibility to ensure the uniqueness of a variable name. For local variables Cil.makeTempVar helps you ensure that the name is unique.

 mutable vtype : typ ;
 The declared type of the variable.

 mutable vattr : attributes ;
 A list of attributes associated with the variable.

 mutable vstorage : storage ;
 The storage-class

 mutable vglob : bool ;
 True if this is a global variable
```
mutable vinline : bool;
    Whether this varinfo is for an inline function.
mutable vdecl : location;
    Location of variable declaration.
mutable vid : int;
    A unique integer identifier. This field will be set for you if you use one of the
Cil.makeFormalVar[5], Cil.makeLocalVar[5], Cil.makeTempVar[5],
Cil.makeGlobalVar[5], or Cil.copyVarinfo[5].

mutable vaddrof : bool;
    True if the address of this variable is taken. CIL will set these flags when it parses C,
but you should make sure to set the flag whenever your transformation create AddrOf
expression.

mutable vreferenced : bool;
    True if this variable is ever referenced. This is computed by
Rmtmps.removeUnusedTemps. It is safe to just initialize this to False

mutable vdescr : Pretty.doc;
    For most temporary variables, a description of what the var holds. (e.g. for
temporaries used for function call results, this string is a representation of the function
call.)

mutable vdescripure : bool;
    Indicates whether the vdescr above is a pure expression or call. Printing a non-pure
vdescr more than once may yield incorrect results.

}

Information about a variable.

type storage =
    | NoStorage
    The default storage. Nothing is printed
    | Static
    | Register
    | Extern
    Storage-class information

Expressions. The CIL expression language contains only the side-effect free expressions of
C. They are represented as the type Cil.exp[5]. There are several interesting aspects of CIL
expressions:

Integer and floating point constants can carry their textual representation. This way the integer
15 can be printed as 0xF if that is how it occurred in the source.

CIL uses 64 bits to represent the integer constants and also stores the width of the integer
type. Care must be taken to ensure that the constant is representable with the given width.
Use the functions Cil.kinteger[5], Cil.kinteger64[5] and Cil.integer[5] to construct constant
expressions. CIL predefines the constants Cil.zero[5], Cil.one[5] and Cil.mone[5] (for -1).
Use the functions Cil.isConstant[5] and Cil.isInteger[5] to test if an expression is a constant and a constant integer respectively.

CIL keeps the type of all unary and binary expressions. You can think of that type qualifying the operator. Furthermore there are different operators for arithmetic and comparisons on arithmetic types and on pointers.

Another unusual aspect of CIL is that the implicit conversion between an expression of array type and one of pointer type is made explicit, using the StartOf expression constructor (which is not printed). If you apply the AddrOf constructor to an lvalue of type T then you will be getting an expression of type TPtr(T).

You can find the type of an expression with Cil.typeOf[5].

You can perform constant folding on expressions using the function Cil.constFold[5].

```plaintext
type exp =
 | Const of constant
 Constant
 | Lval of lval
 Lvalue
 | SizeOf of typ
 sizeof(<type>). Has **unsigned int** type (ISO 6.5.3.4). This is not turned into a constant because some transformations might want to change types
 | SizeOfE of exp
 sizeof(<expression>)
 | SizeOfStr of string
 sizeof(string_literal). We separate this case out because this is the only instance in which a string literal should not be treated as having type pointer to character.
 | AlignOf of typ
 This corresponds to the GCC __alignof__. Has **unsigned int** type
 | AlignOfE of exp
 | UnOp of unop * exp * typ
 Unary operation. Includes the type of the result.
 | BinOp of binop * exp * exp * typ
 Binary operation. Includes the type of the result. The arithmetic conversions are made explicit for the arguments.
 | CastE of typ * exp
 | AddrOf of lval
 Always use Cil.mkAddrOf[5] to construct one of these. Apply to an lvalue of type T yields an expression of type TPtr(T). Use Cil.mkAddrOrStartOf[5] to make one of these if you are not sure which one to use.
 | StartOf of lval
```
Conversion from an array to a pointer to the beginning of the array. Given an lval of type TArray(T) produces an expression of type TPtr(T). Use Cil.mkAddrOrStartOf[5] to make one of these if you are not sure which one to use. In C this operation is implicit, the StartOf operator is not printed. We have it in CIL because it makes the typing rules simpler.

Expressions (Side-effect free)

**Constants.**

```plaintext
type constant =
 | CInt64 of int64 * ikind * string option
 | CStr of string
 | CWStr of int64 list
 | CChr of char
 | CReal of float * fkind * string option
 | CEnum of exp * string * enuminfo
```

- **Integer constant.** Give the ikind (see ISO9899 6.1.3.2) and the textual representation, if available. (This allows us to print a constant as, for example, 0xF instead of 15.) Use Cil.integer[5] or Cil.kinteger[5] to create these. Watch out for integers that cannot be represented on 64 bits. OCAML does not give Overflow exceptions.

- **String constant.** The escape characters inside the string have been already interpreted. This constant has pointer to character type! The only case when you would like a string literal to have an array type is when it is an argument to sizeof. In that case you should use SizeOfStr.

- **Wide character string constant.** Note that the local interpretation of such a literal depends on Cil.wcharType[5] and Cil.wcharKind[5]. Such a constant has type pointer to Cil.wcharType[5]. The escape characters in the string have not been "interpreted" in the sense that L"A\xabcd" remains "A\xabcd" rather than being represented as the wide character list with two elements: 65 and 43981. That "interpretation" depends on the underlying wide character type.

- **Character constant.** This has type int, so use charConstToInt to read the value in case sign-extension is needed.

- **Floating point constant.** Give the fkind (see ISO 6.4.4.2) and also the textual representation, if available.

- **An enumeration constant with the given value, name, from the given enuminfo.** This is used only if Cil.lowerConstants[5] is true (default). Use Cil.constFoldVisitor[5] to replace these with integer constants.

**Literal constants**

```plaintext
type unop =
 | Neg
 | BNot
```

- **Unary minus**
- **Bitwise complement (˜)**
Logical Not (!)

Unary operators

type binop =
  | PlusA
      arithmetic +
  | PlusPI
      pointer + integer
  | IndexPI
      pointer + integer but only when it arises from an expression e[i] when e is a pointer and not an array. This is semantically the same as PlusPI but CCured uses this as a hint that the integer is probably positive.
  | MinusA
      arithmetic -
  | MinusPI
      pointer - integer
  | MinusPP
      pointer - pointer
  | Mult
  | Div
      /
  | Mod
      %
  | Shiflt
      shift left
  | Shiftrt
      shift right
  | Lt
      < (arithmetic comparison)
  | Gt
      > (arithmetic comparison)
  | Le
      ≤ (arithmetic comparison)
  | Ge
      > (arithmetic comparison)
  | Eq
      == (arithmetic comparison)
| Ne
| != (arithmetic comparison)

| BAnd
| bitwise and

| BXor
| exclusive-or

| BOr
| inclusive-or

| LAnd
| logical and. Unlike other expressions this one does not always evaluate both operands. If you want to use these, you must set Cil.useLogicalOperators[5].

| LOr
| logical or. Unlike other expressions this one does not always evaluate both operands. If you want to use these, you must set Cil.useLogicalOperators[5].

**Binary operations**

**Lvalues.** Lvalues are the sublanguage of expressions that can appear at the left of an assignment or as operand to the address-of operator. In C the syntax for lvalues is not always a good indication of the meaning of the lvalue. For example the C value

\[ a[0][1][2] \]

might involve 1, 2 or 3 memory reads when used in an expression context, depending on the declared type of the variable \( a \). If \( a \) has type int [4][4][4] then we have one memory read from somewhere inside the area that stores the array \( a \). On the other hand if \( a \) has type int *** then the expression really means \( * ( * ( * (a + 0) + 1) + 2) \), in which case it is clear that it involves three separate memory operations.

An lvalue denotes the contents of a range of memory addresses. This range is denoted as a host object along with an offset within the object. The host object can be of two kinds: a local or global variable, or an object whose address is in a pointer expression. We distinguish the two cases so that we can tell quickly whether we are accessing some component of a variable directly or we are accessing a memory location through a pointer. To make it easy to tell what an lvalue means CIL represents lvalues as a host object and an offset (see Cil.lval[5]). The host object (represented as Cil.lhost[5]) can be a local or global variable or can be the object pointed-to by a pointer expression. The offset (represented as Cil.offset[5]) is a sequence of field or array index designators.

Both the typing rules and the meaning of an lvalue is very precisely specified in CIL. The following are a few useful functions for operating on lvalues:

- **Cil.mkMem[5]** - makes an lvalue of Mem kind. Use this to ensure that certain equivalent forms of lvalues are canonized. For example, \(*&x = x\).  

- **Cil.typeOfLval[5]** - the type of an lvalue  

- **Cil.typeOfOffset[5]** - the type of an offset, given the type of the host.

The following equivalences hold:

\[
\begin{align*}
\text{Mem(AddrOf(Mem a, aoff)), off} &= \text{Mem a, aoff + off} \\
\text{Mem(AddrOf(Var v, aoff)), off} &= \text{Var v, aoff + off} \\
\text{AddrOf(Mem a, NoOffset)} &= a
\end{align*}
\]

```plaintext
type lval = lhost * offset

An lvalue

type lhost =
| Var of varinfo
 The host is a variable.
| Mem of exp
 The host is an object of type T when the expression has pointer TPtr(T).
 The host part of an Cil.lval[5].

type offset =
| NoOffset
 No offset. Can be applied to any lvalue and does not change either the starting
 address or the type. This is used when the lval consists of just a host or as a
 terminator in a list of other kinds of offsets.
| Field of fieldinfo * offset
 A field offset. Can be applied only to an lvalue that denotes a structure or a union
 that contains the mentioned field. This advances the offset to the beginning of the
 mentioned field and changes the type to the type of the mentioned field.
| Index of exp * offset
 An array index offset. Can be applied only to an lvalue that denotes an array. This
 advances the starting address of the lval to the beginning of the mentioned array
 element and changes the denoted type to be the type of the array element.
 The offset part of an Cil.lval[5]. Each offset can be applied to certain kinds of lvalues and
 its effect is that it advances the starting address of the lvalue and changes the denoted type,
 essentially focusing to some smaller lvalue that is contained in the original one.
```

**Initializers.** A special kind of expressions are those that can appear as initializers for global
variables (initialization of local variables is turned into assignments). The initializers are
represented as type `Cil.init[5]`. You can create initializers with `Cil.makeZeroInit[5]` and you can
conveniently scan compound initializers them with `Cil.foldLeftCompound[5].`

```plaintext
type init =
| SingleInit of exp
 A single initializer
| CompoundInit of typ * (offset * init) list
```

26
Used only for initializers of structures, unions and arrays. The offsets are all of the form Field(f, NoOffset) or Index(i, NoOffset) and specify the field or the index being initialized. For structures all fields must have an initializer (except the unnamed bitfields), in the proper order. This is necessary since the offsets are not printed. For unions there must be exactly one initializer. If the initializer is not for the first field then a field designator is printed, so you better be on GCC since MSVC does not understand this. For arrays, however, we allow you to give only a prefix of the initializers. You can scan an initializer list with Cil.foldLeftCompound.[5]

Initializers for global variables.

```haskell
type initinfo = {
 mutable init : init option ;
}
```

We want to be able to update an initializer in a global variable, so we define it as a mutable field

**Function definitions.** A function definition is always introduced with a GFun constructor at the top level. All the information about the function is stored into a Cil.fundec[5]. Some of the information (e.g. its name, type, storage, attributes) is stored as a Cil.varinfo[5] that is a field of the fundec. To refer to the function from the expression language you must use the varinfo.

The function definition contains, in addition to the body, a list of all the local variables and separately a list of the formals. Both kind of variables can be referred to in the body of the function. The formals must also be shared with the formals that appear in the function type. For that reason, to manipulate formals you should use the provided functions Cil.makeFormalVar[5] and Cil.setFormals[5] and Cil.makeFormalVar[5].

```haskell
type fundec = {
 mutable svar : varinfo ;
 mutable sformals : varinfo list ;
 mutable slocals : varinfo list ;
 mutable smaxid : int ;
 mutable sbody : block ;
}
```
Holds the name and type as a variable, so we can refer to it easily from the program. All references to this function either in a function call or in a prototype must point to the same varinfo.

Formals. These must be in the same order and with the same information as the formal information in the type of the function. Use Cil.setFormals[5] or Cil.setFunctionType[5] or Cil.makeFormalVar[5] to set these formals and ensure that they are reflected in the function type. Do not make copies of these because the body refers to them.

Locals. Does NOT include the sformals. Do not make copies of these because the body refers to them.

Max local id. Starts at 0. Used for creating the names of new temporary variables. Updated by Cil.makeLocalVar[5] and Cil.makeTempVar[5]. You can also use Cil.setMaxId[5] to set it after you have added the formals and locals.

```haskell
mutable sbody : block ;
```
The function body.

```haskell
mutable smaxstmtid : int option ;
 max id of a (reachable) statement in this function, if we have computed it. range = 0 ...
 (smaxstmtid-1). This is computed by Cil.computeCFGInfo[5].

mutable sallstmts : stmt list ;
 After you call Cil.computeCFGInfo[5] this field is set to contain all statements in the
 function
```

```haskell
}
```

Function definitions.

```haskell
type block = {
 mutable battrs : attributes ;
 Attributes for the block
 mutable bstmts : stmt list ;
 The statements comprising the block
}
```

A block is a sequence of statements with the control falling through from one element to the
next

**Statements.** CIL statements are the structural elements that make the CFG. They are repre-
sented using the type Cil.stmt[5]. Every statement has a (possibly empty) list of labels. The
Cil.stmtkind[5] field of a statement indicates what kind of statement it is.


CIL also comes with support for control-flow graphs. The sid field in stmt can be used to give
unique numbers to statements, and the succs and preds fields can be used to maintain a list of
successors and predecessors for every statement. The CFG information is not computed by default.
Instead you must explicitly use the functions Cil.prepareCFG[5] and Cil.computeCFGInfo[5] to
do it.

```haskell
type stmt = {
 mutable labels : label list ;
 Whether the statement starts with some labels, case statements or default statements.
 mutable skind : stmtkind ;
 The kind of statement
 mutable sid : int ;
 A number (≥ 0) that is unique in a function. Filled in only after the CFG is
 computed.
 mutable succs : stmt list ;
 The successor statements. They can always be computed from the skind and the
 context in which this statement appears. Filled in only after the CFG is computed.
 mutable preds : stmt list ;
 The inverse of the succs function.
```
Statements.

```
type label =
 | Label of string * location * bool
 A real label. If the bool is "true", the label is from the input source program. If the bool is "false", the label was created by CIL or some other transformation
 | Case of exp * location
 A case statement. This expression is lowered into a constant if Cil.lowerConstants[5] is set to true.
 | Default of location
 A default statement

Labels

type stmtkind =
 | Instr of instr list
 A group of instructions that do not contain control flow. Control implicitly falls through.
 | Return of exp option * location
 The return statement. This is a leaf in the CFG.
 | Goto of stmt ref * location
 A goto statement. Appears from actual goto's in the code or from goto's that have been inserted during elaboration. The reference points to the statement that is the target of the Goto. This means that you have to update the reference whenever you replace the target statement. The target statement MUST have at least a label.
 | Break of location
 A break to the end of the nearest enclosing Loop or Switch
 | Continue of location
 A continue to the start of the nearest enclosing Loop
 | If of exp * block * block * location
 A conditional. Two successors, the "then" and the "else" branches. Both branches fall-through to the successor of the If statement.
 | Switch of exp * block * stmt list * location
 A switch statement. The statements that implement the cases can be reached through the provided list. For each such target you can find among its labels what cases it implements. The statements that implement the cases are somewhere within the provided block.
 | Loop of block * location * stmt option * stmt option
 A while(1) loop. The termination test is implemented in the body of a loop using a Break statement. If prepareCFG has been called, the first stmt option will point to the stmt containing the continue label for this loop and the second will point to the stmt containing the break label for this loop.

29
```
<table>
<thead>
<tr>
<th>Block of block</th>
</tr>
</thead>
<tbody>
<tr>
<td>Just a block of statements. Use it as a way to keep some block attributes local</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TryFinally of block * block * location</th>
</tr>
</thead>
<tbody>
<tr>
<td>TryExcept of block * (instr list * exp) * block * location</td>
</tr>
<tr>
<td>The various kinds of control-flow statements statements</td>
</tr>
</tbody>
</table>

**Instructions.** An instruction Cil.instr[5] is a statement that has no local (intraprocedural) control flow. It can be either an assignment, function call, or an inline assembly instruction.

type instr =
| Set of lval * exp * location |
| An assignment. The type of the expression is guaranteed to be the same with that of the lvalue |
| Call of lval option * exp * exp list * location |
| A function call with the (optional) result placed in an lval. It is possible that the returned type of the function is not identical to that of the lvalue. In that case a cast is printed. The type of the actual arguments are identical to those of the declared formals. The number of arguments is the same as that of the declared formals, except for vararg functions. This construct is also used to encode a call to "_builtin_va_arg". In this case the second argument (which should be a type T) is encoded SizeOf(T) |
| Asm of attributes * string list * (string option * string * lval) list * (string option * string * exp) list * string list * location |
| There are for storing inline assembly. They follow the GCC specification: |

```
assembler volatile ["...template..." "...template.."
 : "c1" (o1), "c2" (o2), ..., "cN" (oN)
 : "d1" (i1), "d2" (i2), ..., "dM" (iM)
 : "r1", "r2", ..., "nL")
```

where the parts are

- **volatile** (optional): when present, the assembler instruction cannot be removed, moved, or otherwise optimized
- **template**: a sequence of strings, with %0, %1, %2, etc. in the string to refer to the input and output expressions. I think they're numbered consecutively, but the docs don't specify. Each string is printed on a separate line. This is the only part that is present for MSVC inline assembly.
- ",c" (oi): pairs of constraint-string and output-lval; the constraint specifies that the register used must have some property, like being a floating-point register; the constraint string for outputs also has "=" to indicate it is written, or "+" to indicate it is both read and written; ‘oi’ is the name of a C lvalue (probably a variable name) to be used as the output destination
- ",d" (ij): pairs of constraint and input expression; the constraint is similar to the ",c"'s. the 'ij' is an arbitrary C expression to be loaded into the corresponding register
- ",r": registers to be regarded as "clobbered" by the instruction; "memory" may be specified for arbitrary memory effects
an example (from gcc manual):

asm volatile("movc3 %0,%1,%2"
: /* no outputs */
: "g" (from), "g" (to), "g" (count)
: "r0", "r1", "r2", "r3", "r4", "r5");

Starting with gcc 3.1, the operands may have names:

asm volatile("movc3 %[in0],%1,%2"
: /* no outputs */
: [in0] "g" (from), "g" (to), "g" (count)
: "r0", "r1", "r2", "r3", "r4", "r5");

Instructions.

type location = {
   line : int ;
   file : string ;
   byte : int ;
}

Describes a location in a source file.

type typsig =
   | TSArray of typsig * int64 option * attribute list
   | TSPtr of typsig * attribute list
   | TSComp of bool * string * attribute list
   | TSFun of typsig * typsig list * bool * attribute list
   | TSEnum of string * attribute list
   | TSBase of typ

Type signatures. Two types are identical iff they have identical signatures. These contain
the same information as types but canonicalized. For example, two function types that are
identical except for the name of the formal arguments are given the same signature. Also,
TNamed constructors are unrolled.

Lowering Options
val lowerConstants : bool ref
   Do lower constants (default true)

val insertImplicitCasts : bool ref
   Do insert implicit casts (default true)

type featureDescr = {
   fd_enabled : bool ref ;
}
The enable flag. Set to default value

```haskell
def_name : string ;
 This is used to construct an option "--doxxx" and "--dontxxx" that enable and disable
 the feature

def_description : string ;
 A longer name that can be used to document the new options

def_extraopt : (string * Arg.spec * string) list ;
 Additional command line options. The description strings should usually start with a
 space for Arg.align to print the --help nicely.

def_doit : file -> unit ;
 This performs the transformation

def_post_check : bool ;
 Whether to perform a CIL consistency checking after this stage, if checking is enabled
 (--check is passed to cilly). Set this to true if your feature makes any changes for the
 program.
```

To be able to add/remove features easily, each feature should be package as an interface
with the following interface. These features should be

```haskell
val compareLoc : location -> location -> int
 Comparison function for locations. * Compares first by filename, then line, then byte
```

**Values for manipulating globals**

```haskell
val emptyFunction : string -> fundec
 Make an empty function

val setFormals : fundec -> varinfo list -> unit
 Update the formals of a fundec and make sure that the function type has the same
 information. Will copy the name as well into the type.

val setFunctionType : fundec -> typ -> unit
 Set the types of arguments and results as given by the function type passed as the second
 argument. Will not copy the names from the function type to the formals

val setFunctionTypeMakeFormals : fundec -> typ -> unit
 Set the type of the function and make formal arguments for them

val setMaxId : fundec -> unit
 Update the smaxid after you have populated with locals and formals (unless you
 constructed those using Cil.makeLocalVar[5] or Cil.makeTempVar[5].

val dummyFunDec : fundec
```
A dummy function declaration handy when you need one as a placeholder. It contains inside a dummy varinfo.

val dummyFile : file
  A dummy file

val saveBinaryFile : file -> string -> unit
  Write a Cil.file in binary form to the filesystem. The file can be read back in later using Cil.loadBinaryFile, possibly saving parsing time. The second argument is the name of the file that should be created.

val saveBinaryFileChannel : file -> out_channel -> unit
  Write a Cil.file in binary form to the filesystem. The file can be read back in later using Cil.loadBinaryFile, possibly saving parsing time. Does not close the channel.

val loadBinaryFile : string -> file
  Read a Cil.file in binary form from the filesystem. The first argument is the name of a file previously created by Cil.saveBinaryFile. Because this also reads some global state, this should be called before any other CIL code is parsed or generated.

val getGlobInit : ?main_name:string -> file -> fundec
  Get the global initializer and create one if it does not already exist. When it creates a global initializer it attempts to place a call to it in the main function named by the optional argument (default "main")

val iterGlobals : file -> (global -> unit) -> unit
  Iterate over all globals, including the global initializer

val foldGlobals : file -> ('a -> global -> 'a) -> 'a -> 'a
  Fold over all globals, including the global initializer

val mapGlobals : file -> (global -> global) -> unit
  Map over all globals, including the global initializer and change things in place

val findOrCreateFunc : file -> string -> typ -> varinfo
  Find a function or function prototype with the given name in the file. If it does not exist, create a prototype with the given type, and return the new varinfo. This is useful when you need to call a libc function whose prototype may or may not already exist in the file.

  Because the new prototype is added to the start of the file, you shouldn’t refer to any struct or union types in the function type.

val new_sid : unit -> int

val prepareCFG : fundec -> unit
  Prepare a function for CFG information computation by Cil.computeCFGInfo. This function converts all Break, Switch, Default and Continue Cil.stmtkind s and Cil.label s into Ifs and Gotos, giving the function body a very CFG-like character. This function modifies its argument in place.
val computeCFGInfo : fundec -> bool -> unit

  Compute the CFG information for all statements in a fundec and return a list of the
  statements. The input fundec cannot have Break, Switch, Default, or Continue
  Cil.stmtkind|5]s or Cil.label|5]s. Use Cil.prepareCFG|5] to transform them away. The
  second argument should be true if you wish a global statement number, false if you wish a
  local (per-function) statement numbering. The list of statements is set in the sallstmts field
  of a fundec.

  NOTE: unless you want the simpler control-flow graph provided by prepareCFG, or you
  need the function’s smaxstmtid and sallstmt fields filled in, we recommend you use
  Cfg.computeFileCFG|9] instead of this function to compute control-flow information.
  Cfg.computeFileCFG|9] is newer and will handle switch, break, and continue correctly.

val copyFunction : fundec -> string -> fundec

  Create a deep copy of a function. There should be no sharing between the copy and the
  original function

val pushGlobal :
  global ->
  types:global list ref ->
  variables:global list ref -> unit

  CIL keeps the types at the beginning of the file and the variables at the end of the file. This
  function will take a global and add it to the corresponding stack. Its operation is actually
  more complicated because if the global declares a type that contains references to variables
  (e.g. in sizeof in an array length) then it will also add declarations for the variables to the
  types stack

val invalidStmt : stmt

  An empty statement. Used in pretty printing

val builtinFunctions : (string, typ * typ list * bool) Hashtbl.t

  A list of the built-in functions for the current compiler (GCC or MSVC, depending on
  !msvcMode). Maps the name to the result and argument types, and whether it is vararg.
  Initialized by Cil.initCIL|5|

  This map replaces gccBuiltins and msvcBuiltins in previous versions of CIL.

val gccBuiltins : (string, typ * typ list * bool) Hashtbl.t

  Deprecated. For compatibility with older programs, these are aliases for
  Cil.builtinFunctions|5|

val msvcBuiltins : (string, typ * typ list * bool) Hashtbl.t

  Deprecated. For compatibility with older programs, these are aliases for
  Cil.builtinFunctions|5|

val builtinLoc : location

  This is used as the location of the prototypes of builtin functions.
Values for manipulating initializers

val makeZeroInit : typ -> init
    Make a initializer for zero-ing a data type

val foldLeftCompound :
    implicit:bool ->
    doinit:(offset -> init -> typ -> 'a -> 'a) ->
    ct:typ -> initl:(offset * init) list -> acc:'a -> 'a
    Fold over the list of initializers in a Compound (not also the nested ones). doinit is called on every present initializer, even if it is of compound type. The parameters of doinit are: the offset in the compound (this is Field(f, NoOffset) or Index(i, NoOffset)), the initializer value, expected type of the initializer value, accumulator. In the case of arrays there might be missing zero-initializers at the end of the list. These are scanned only if implicit is true. This is much like List.fold_left except we also pass the type of the initializer.

This is a good way to use it to scan even nested initializers :

let rec myInit (lv: lval) (i: init) (acc: 'a) : 'a =
    match i with
    | SingleInit e -> ... do something with lv and e and acc ...
    | CompoundInit (ct, initl) ->
        foldLeftCompound "implicit:false
                               "doinit:(fun off' i' t' acc ->
                                         myInit (addOffsetLval lv off') i' acc)
                               "ct:ct
                               "initl:initl
                               "acc:acc

Values for manipulating types

val voidType : typ
    void

val isVoidType : typ -> bool
    is the given type "void"?

val isVoidPtrType : typ -> bool
    is the given type "void *"?

val intType : typ
    int

val uintType : typ
    unsigned int

val longType : typ
    long
val ulongType : typ
    unsigned long

val charType : typ
    char

val charPtrType : typ
    char *

val wcharKind : ikind ref
    wchar_t (depends on architecture) and is set when you call Cil.initCIL[5].

val wcharType : typ ref
val charConstPtrType : typ
    char const *

val voidPtrType : typ
    void *

val intPtrType : typ
    int *

val uintPtrType : typ
    unsigned int *

val doubleType : typ
    double

val upointType : typ ref
    An unsigned integer type that fits pointers. Depends on Cil.msvcMode[5] and is set when you call Cil.initCIL[5].

val typeOfSizeOf : typ ref
    An unsigned integer type that is the type of sizeof. Depends on Cil.msvcMode[5] and is set when you call Cil.initCIL[5].

val kindOfSizeOf : ikind ref
    The integer kind of Cil.typeOfSizeOf[5]. Set when you call Cil.initCIL[5].

val isSigned : ikind -> bool
    Returns true if and only if the given integer type is signed.

val mkCompInfo :
    bool ->
    string ->
    (compinfo ->
        (string * typ * int option * attributes * location) list) ->
    attributes ->
    compinfo
Creates a a (potentially recursive) composite type. The arguments are: (1) a boolean indicating whether it is a struct or a union, (2) the name (always non-empty), (3) a function that when given a representation of the structure type constructs the type of the fields recursive type (the first argument is only useful when some fields need to refer to the type of the structure itself), and (4) a list of attributes to be associated with the composite type. The resulting compinfo has the field ”cdefined” only if the list of fields is non-empty.

val copyCompInfo : compinfo -> string -> compinfo
  Makes a shallow copy of a Cil.compinfo changing the name and the key.

val missingFieldName : string
  This is a constant used as the name of an unnamed bitfield. These fields do not participate in initialization and their name is not printed.

val compFullName : compinfo -> string
  Get the full name of a comp

val isCompleteType : typ -> bool
  Returns true if this is a complete type. This means that sizeof(t) makes sense. Incomplete types are not yet defined structures and empty arrays.

val unrollType : typ -> typ
  Unroll a type until it exposes a non TNamed. Will collect all attributes appearing in TNamed!!!

val unrollTypeDeep : typ -> typ
  Unroll all the TNamed in a type (even under type constructors such as TPtr, TFun or TArray. Does not unroll the types of fields in TComp types. Will collect all attributes

val separateStorageModifiers : attribute list -> attribute list * attribute list
  Separate out the storage-modifier name attributes

val isIntegralType : typ -> bool
  True if the argument is an integral type (i.e. integer or enum)

val isArithmeticType : typ -> bool
  True if the argument is an arithmetic type (i.e. integer, enum or floating point

val isPointerType : typ -> bool
  True if the argument is a pointer type

val isFunctionType : typ -> bool
  True if the argument is a function type

val argsToList :
  (string * typ * attributes) list option ->
  (string * typ * attributes) list
Obtain the argument list ([ ] if None)

val isArrayType : typ -> bool
    True if the argument is an array type

exception LenOfArray
    Raised when Cil.lenOfArray[5] fails either because the length is None or because it is a
    non-constant expression

val lenOfArray : exp option -> int
    Call to compute the array length as present in the array type, to an integer. Raises
    Cil.LenOfArray[5] if not able to compute the length, such as when there is no length or the
    length is not a constant.

val getCompField : compinfo -> string -> fieldinfo
    Return a named fieldinfo in compinfo, or raise Not_found

type existsAction =
    | ExistsTrue
        We have found it
    | ExistsFalse
        Stop processing this branch
    | ExistsMaybe
        This node is not what we are looking for but maybe its successors are
        A datatype to be used in conjunction with existsType

val existsType : (typ -> existsAction) -> typ -> bool
    Scans a type by applying the function on all elements. When the function returns
    ExistsTrue, the scan stops with true. When the function returns ExistsFalse then the
    current branch is not scanned anymore. Care is taken to apply the function only once on
    each composite type, thus avoiding circularity. When the function returns ExistsMaybe
    then the types that construct the current type are scanned (e.g. the base type for TPtr and
    TArray, the type of fields for a TComp, etc).

val splitFunctionType :
    typ ->
    typ * (string * typ * attributes) list option * bool *
    attributes
    Given a function type split it into return type, arguments, is_vararg and attributes. An
    error is raised if the type is not a function type
    Same as Cil.splitFunctionType[5] but takes a varinfo. Prints a nicer error message if the
    varinfo is not for a function
val splitFunctionTypeVI : 
  varinfo ->
  typ * (string * typ * attributes) list option * bool * 
  attributes

Type signatures
Type signatures. Two types are identical iff they have identical signatures. These contain the
same information as types but canonicalized. For example, two function types that are identical ex-
cept for the name of the formal arguments are given the same signature. Also, TNamed constructors
are unrolled.

val d_typsig : unit -> typsig -> Pretty.doc 
  Print a type signature

val typeSig : typ -> typsig 
  Compute a type signature

val typeSigWithAttrs : 
  ?ignoreSign:bool ->
  (attributes -> attributes) -> typ -> typsig
Like Cil.typeSig[5] but customize the incorporation of attributes. Use `ignoreSign: true to
convert all signed integer types to unsigned, so that signed and unsigned will compare the
same.

val setTypeSigAttrs : attributes -> typsig -> typsig
  Replace the attributes of a signature (only at top level)

val typeSigAttrs : typsig -> attributes
  Get the top-level attributes of a signature

Lvalues
val makeVarinfo : bool -> string -> typ -> varinfo 
  Make a varinfo. Use this (rarely) to make a raw varinfo. Use other functions to make locals
  (Cil.makeLocalVar[5] or Cil.makeFormalVar[5] or Cil.makeTempVar[5]) and globals
  (Cil.makeGlobalVar[5]). Note that this function will assign a new identifier. The first
  argument specifies whether the varinfo is for a global.

val makeFormalVar : fundec -> ?where:string -> string -> typ -> varinfo 
  Make a formal variable for a function. Insert it in both the sformals and the type of the
  function. You can optionally specify where to insert this one. If where = "^" then it is
  inserted first. If where = "$" then it is inserted last. Otherwise where must be the name of
  a formal after which to insert this. By default it is inserted at the end.

val makeLocalVar : fundec -> ?insert:bool -> string -> typ -> varinfo 
  Make a local variable and add it to a function’s slocals (only if insert = true, which is the
default). Make sure you know what you are doing if you set insert=false.

Make a temporary variable and add it to a function’s slocals. CIL will ensure that the name of the new variable is unique in this function, and will generate this name by appending a number to the specified string ("_cil_tmp" by default).

The variable will be added to the function’s slocals unless you explicitly set insert=false. (Make sure you know what you are doing if you set insert=false.)

Optionally, you can give the variable a description of its contents that will be printed by descriptiveCilPrinter.

val makeGlobalVar : string -> typ -> varinfo

Make a global variable. Your responsibility to make sure that the name is unique

val copyVarinfo : varinfo -> string -> varinfo

Make a shallow copy of a varinfo and assign a new identifier

val newVID : unit -> int

Generate a new variable ID. This will be different than any variable ID that is generated by Cil.makeLocalVar[5] and friends

val addOffsetLval : offset -> lval -> lval

Add an offset at the end of an lvalue. Make sure the type of the lvalue and the offset are compatible.

val addOffset : offset -> offset -> offset

addOffset o1 o2 adds o1 to the end of o2.

val removeOffsetLval : lval -> lval * offset

Remove ONE offset from the end of an lvalue. Returns the lvalue with the trimmed offset and the final offset. If the final offset is NoOffset then the original lval did not have an offset.

val removeOffset : offset -> offset * offset

Remove ONE offset from the end of an offset sequence. Returns the trimmed offset and the final offset. If the final offset is NoOffset then the original lval did not have an offset.

val typeOfLval : lval -> typ

Compute the type of an lvalue

val typeOffset : typ -> offset -> typ

Compute the type of an offset from a base type

Values for manipulating expressions

val zero : exp
val one : exp
  1
val mone : exp
  -1
val kinteger64 : ikind -> int64 -> exp
  Construct an integer of a given kind, using OCaml’s int64 type. If needed it will truncate
  the integer to be within the representable range for the given kind.

val kinteger : ikind -> int -> exp
  Construct an integer of a given kind. Converts the integer to int64 and then uses
  kinteger64. This might truncate the value if you use a kind that cannot represent the given
  integer. This can only happen for one of the Char or Short kinds

val integer : int -> exp
  Construct an integer of kind IInt. You can use this always since the OCaml integers are 31
  bits and are guaranteed to fit in an IInt

val isInteger : exp -> int64 option
  If the given expression is a (possibly cast’ed) character or an integer constant, return that
  integer. Otherwise, return None.

val i64_to_int : int64 -> int
  Convert a 64-bit int to an OCaml int, or raise an exception if that can’t be done.

val isConstant : exp -> bool
  True if the expression is a compile-time constant

val isConstantOffset : offset -> bool
  True if the given offset contains only field names or constant indices.

val isZero : exp -> bool
  True if the given expression is a (possibly cast’ed) integer or character constant with value
  zero

val charConstToInt : char -> constant
  Given the character c in a (CChr c), sign-extend it to 32 bits. (This is the official way of
  interpreting character constants, according to ISO C 6.4.4.4.10, which says that character
  constants are chars cast to ints) Returns CInt64(sign-extened c, IInt, None)

val convertInts : int64 -> ikind -> int64 -> ikind -> int64 * int64 * ikind
val constFold : bool -> exp -> exp
Do constant folding on an expression. If the first argument is true then will also compute compiler-dependent expressions such as sizeof. See also Cil.constFoldVisitor[5], which will run constFold on all expressions in a given AST node.

val constFoldBinOp : bool -> binop -> exp -> exp -> typ -> exp
Do constant folding on a binary operation. The bulk of the work done by constFold is done here. If the first argument is true then will also compute compiler-dependent expressions such as sizeof

val increm : exp -> int -> exp
Increment an expression. Can be arithmetic or pointer type

val var : varinfo -> lval
Makes an lvalue out of a given variable

val mkAddr0f : lval -> exp
Make an AddrOf. Given an lvalue of type T will give back an expression of type ptr(T). It optimizes somewhat expressions like ",& v“ and ",& v0"

val mkAddr0rStart0f : lval -> exp
Like mkAddr0f except if the type of lval is an array then it uses StartOf. This is the right operation for getting a pointer to the start of the storage denoted by lval.

val mkMem : addr:exp -> off:offset -> lval
Make a Mem, while optimizing AddrOf. The type of the addr must be TPtr(t) and the type of the resulting lval is t. Note that in CIL the implicit conversion between an array and the pointer to the first element does not apply. You must do the conversion yourself using StartOf

val mkString : string -> exp
Make an expression that is a string constant (of pointer type)

val mkCastT : e:exp -> oldt:typ -> newt:typ -> exp
Construct a cast when having the old type of the expression. If the new type is the same as the old type, then no cast is added.

val mkCast : e:exp -> newt:typ -> exp
Like Cil.mkCastT[5] but uses typeOf to get oldt

val stripCasts : exp -> exp
Removes casts from this expression, but ignores casts within other expression constructs. So we delete the (A) and (B) casts from "(A)(B)(x + (C)y)”, but leave the (C) cast.

val typeOf : exp -> typ
Compute the type of an expression

val parseInt : string -> exp

Convert a string representing a C integer literal to an expression. Handles the prefixes 0x and 0 and the suffixes L, U, UL, LL, ULL

Values for manipulating statements

val mkStmt : stmtkind -> stmt
    Construct a statement, given its kind. Initialize the sid field to -1, and labels, succs and preds to the empty list

val mkBlock : stmt list -> block
    Construct a block with no attributes, given a list of statements

val mkStmtOneInstr : instr -> stmt
    Construct a statement consisting of just one instruction

val compactStmts : stmt list -> stmt list
    Try to compress statements so as to get maximal basic blocks. use this instead of List.@ because you get fewer basic blocks

val mkEmptyStmt : unit -> stmt
    Returns an empty statement (of kind Instr)

val dummyInstr : instr
    A instr to serve as a placeholder

val dummyStmt : stmt
    A statement consisting of just dummyInstr

val mkWhile : guard:exp -> body:stmt list -> stmt list
    Make a while loop. Can contain Break or Continue

val mkForIncr :
    iter:varinfo ->
    first:exp ->
    stopat:exp -> incr:exp -> body:stmt list -> stmt list
    Make a for loop for(i=start; i<past; i += incr) { ... }. The body can contain Break but not Continue. Can be used with i a pointer or an integer. Start and done must have the same type but incr must be an integer

val mkFor :
    start:stmt list ->
    guard:exp -> next:stmt list -> body:stmt list -> stmt list
    Make a for loop for(start; guard; next) { ... }. The body can contain Break but not Continue !!!

Values for manipulating attributes

type attributeClass =
| AttrName of bool

43
Attribute of a name. If argument is true and we are on MSVC then the attribute is printed using _declspec as part of the storage specifier

<table>
<thead>
<tr>
<th>AttrFunType of bool</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attribute of a function type. If argument is true and we are on MSVC then the attribute is printed just before the function name</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AttrType</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attribute of a type</td>
</tr>
</tbody>
</table>

Various classes of attributes

val attributeHash : (string, attributeClass) Hashtbl.t

This table contains the mapping of predefined attributes to classes. Extend this table with more attributes as you need. This table is used to determine how to associate attributes with names or types

val partitionAttributes :
  default:attributeClass ->
  attributes ->
  attribute list * attribute list * attribute list

Partition the attributes into classes: name attributes, function type, and type attributes

val addAttribute : attribute -> attributes -> attributes
Add an attribute. Maintains the attributes in sorted order of the second argument

val addAttributes : attribute list -> attributes -> attributes
Add a list of attributes. Maintains the attributes in sorted order. The second argument must be sorted, but not necessarily the first

val dropAttribute : string -> attributes -> attributes
Remove all attributes with the given name. Maintains the attributes in sorted order.

val dropAttributes : string list -> attributes -> attributes
Remove all attributes with names appearing in the string list. Maintains the attributes in sorted order

val filterAttributes : string -> attributes -> attributes
Retains attributes with the given name

val hasAttribute : string -> attributes -> bool
True if the named attribute appears in the attribute list. The list of attributes must be sorted.

val typeAttrs : typ -> attribute list
Returns all the attributes contained in a type. This requires a traversal of the type structure, in case of composite, enumeration and named types
val setTypeAttrs : typ -> attributes -> typ
val typeAddAttributes : attribute list -> typ -> typ
    Add some attributes to a type
val typeRemoveAttributes : string list -> typ -> typ
    Remove all attributes with the given names from a type. Note that this does not remove
attributes from typedef and tag definitions, just from their uses
val expToAttrParam : exp -> attrparam
    Convert an expression into an attrparam, if possible. Otherwise raise NotAnAttrParam
with the offending subexpression

exception NotAnAttrParam of exp

The visitor
type 'a visitAction =
    | SkipChildren
        Do not visit the children. Return the node as it is.
    | DoChildren
        Continue with the children of this node. Rebuild the node on return if any of the
children changes (use == test)
    | ChangeTo of 'a
        Replace the expression with the given one
    | ChangeDoChildrenPost of 'a * ('a -> 'a)
        First consider that the entire exp is replaced by the first parameter. Then continue
with the children. On return rebuild the node if any of the children has changed and
then apply the function on the node

Different visiting actions. 'a will be instantiated with exp, instr, etc.

class type cilVisitor =
    object
        method vvdec : Cil.varinfo -> Cil.varinfo Cil.visitAction
            Invoked for each variable declaration. The subtrees to be traversed are those
            corresponding to the type and attributes of the variable. Note that variable
declarations are all the GVar, GVarDecl, GFun, all the varinfo in formals of function
types, and the formals and locals for function definitions. This means that the list of
formals in a function definition will be traversed twice, once as part of the function
type and second as part of the formals in a function definition.

        method vvrbl : Cil.varinfo -> Cil.varinfo Cil.visitAction
            Invoked on each variable use. Here only the SkipChildren and ChangeTo actions make
sense since there are no subtrees. Note that the type and attributes of the variable are
not traversed for a variable use
    end
method vexpr : Cil.exp -> Cil.exp Cil.visitAction
    Invoked on each expression occurrence. The subtrees are the subexpressions, the types
    (for a Cast or SizeOf expression) or the variable use.

method vlval : Cil.lval -> Cil.lval Cil.visitAction
    Invoked on each lvalue occurrence

method voffs : Cil.offset -> Cil.offset Cil.visitAction
    Invoked on each offset occurrence that is *not* as part of an initializer list
    specification, i.e. in an lval or recursively inside an offset.

method vinitoffs : Cil.offset -> Cil.offset Cil.visitAction
    Invoked on each offset appearing in the list of a CompoundInit initializer.

method vinst : Cil.instr -> Cil.instr list Cil.visitAction
    Invoked on each instruction occurrence. The ChangeTo action can replace this
    instruction with a list of instructions

method vstmt : Cil.stmt -> Cil.stmt Cil.visitAction
    Control-flow statement. The default DoChildren action does not create a new
    statement when the components change. Instead it updates the contents of the original
    statement. This is done to preserve the sharing with Goto and Case statements that
    point to the original statement. If you use the ChangeTo action then you should take
    care of preserving that sharing yourself.

method vblock : Cil.block -> Cil.block Cil.visitAction
    Block.

method vfunc : Cil.fundec -> Cil.fundec Cil.visitAction
    Function definition. Replaced in place.

method vglob : Cil.global -> Cil.global list Cil.visitAction
    Global (vars, types, etc.)

method vinit :
    Cil.varinfo -> Cil.offset -> Cil.init -> Cil.init Cil.visitAction
    Initializers for globals, pass the global where this occurs, and the offset

method vtype : Cil.typ -> Cil.typ Cil.visitAction
    Use of some type. Note that for structure/union and enumeration types the definition
    of the composite type is not visited. Use vglob to visit it.

method vatattr : Cil.attribute -> Cil.attribute list Cil.visitAction
Attribute. Each attribute can be replaced by a list

method vattrparam : Cil.atrrparam -> Cil.atrrparam Cil.visitAction

Attribute parameters.

method queueInstr : Cil.instr list -> unit

Add here instructions while visiting to queue them to precede the current statement or instruction being processed. Use this method only when you are visiting an expression that is inside a function body, or a statement, because otherwise there will no place for the visitor to place your instructions.

method unqueueInstr : unit -> Cil.instr list

Gets the queue of instructions and resets the queue. This is done automatically for you when you visit statements.

end

A visitor interface for traversing CIL trees. Create instantiations of this type by specializing the class Cil.nopCilVisitor[5]. Each of the specialized visiting functions can also call the queueInstr to specify that some instructions should be inserted before the current instruction or statement. Use syntax like self#queueInstr to call a method associated with the current object.

class nopCilVisitor : cilVisitor

Default Visitor. Traverses the CIL tree without modifying anything

val visitCilFile : cilVisitor -> file -> unit

Visit a file. This will will re-cons all globals TWICE (so that it is tail-recursive). Use Cil.visitCilFileSameGlobals[5] if your visitor will not change the list of globals.

val visitCilFileSameGlobals : cilVisitor -> file -> unit

A visitor for the whole file that does not change the globals (but maybe changes things inside the globals). Use this function instead of Cil.visitCilFile[5] whenever appropriate because it is more efficient for long files.

val visitCilGlobal : cilVisitor -> global -> global list

Visit a global

val visitCilFunction : cilVisitor -> fundec -> fundec

Visit a function definition

val visitCilExpr : cilVisitor -> exp -> exp
val visitCilLval : cilVisitor -> lval -> lval

Visit an lvalue

val visitCilOffset : cilVisitor -> offset -> offset
Visit an lvalue or recursive offset

val visitCilInitOffset : cilVisitor -> offset -> offset
  Visit an initializer offset

val visitCilInstr : cilVisitor -> instr -> instr list
  Visit an instruction

val visitCilStmt : cilVisitor -> stmt -> stmt
  Visit a statement

val visitCilBlock : cilVisitor -> block -> block
  Visit a block

val visitCilType : cilVisitor -> typ -> typ
  Visit a type

val visitCilVarDecl : cilVisitor -> varinfo -> varinfo
  Visit a variable declaration

val visitCilInit : cilVisitor -> varinfo -> offset -> init -> init
  Visit an initializer, pass also the global to which this belongs and the offset.

val visitCilAttributes : cilVisitor -> attribute list -> attribute list
  Visit a list of attributes

Utility functions

val msvcMode : bool ref
  Whether the pretty printer should print output for the MS VC compiler. Default is GCC.
  After you set this function you should call Cil.initCIL[5].

val useLogicalOperators : bool ref
  Whether to use the logical operands LAnd and LOr. By default, do not use them because
  they are unlike other expressions and do not evaluate both of their operands

val oldstyleExternInline : bool ref
  Set this to true to get old-style handling of gcc’s extern inline C extension: old-style: the
  extern inline definition is used until the actual definition is seen (as long as optimization is
  enabled) new-style: the extern inline definition is used only if there is no actual definition
  (as long as optimization is enabled) Note that CIL assumes that optimization is always
  enabled ;-) 

val constFoldVisitor : bool -> cilVisitor
  A visitor that does constant folding. Pass as argument whether you want machine specific
  simplifications to be done, or not.
type lineDirectiveStyle =
  | LineComment
    Before every element, print the line number in comments. This is ignored by
    processing tools (thus errors are reported in the CIL output), but useful for visual
    inspection
  | LineCommentSparse
    Like LineComment but only print a line directive for a new source line
  | LinePreprocessorInput
    Use # nnn directives (in gcc mode)
  | LinePreprocessorOutput
    Use #line directives
    Styles of printing line directives

val lineDirectiveStyle : lineDirectiveStyle option ref
  How to print line directives

val print_CIL_Input : bool ref
  Whether we print something that will only be used as input to our own parser. In that case
  we are a bit more liberal in what we print

val printCilAsIs : bool ref
  Whether to print the CIL as they are, without trying to be smart and print nicer code.
  Normally this is false, in which case the pretty printer will turn the while(1) loops of CIL
  into nicer loops, will not print empty "else" blocks, etc. There is one case however in which
  if you turn this on you will get code that does not compile: if you use varargs the
  _builtin_va_arg function will be printed in its internal form.

val lineLength : int ref
  The length used when wrapping output lines. Setting this variable to a large integer will
  prevent wrapping and make #line directives more accurate.

val forgcc : string -> string
  Return the string 's' if we’re printing output for gcc, suppress it if we’re printing for CIL to
  parse back in. the purpose is to hide things from gcc that it complains about, but still be
  able to do lossless transformations when CIL is the consumer

Debugging support
val currentLoc : location ref
  A reference to the current location. If you are careful to set this to the current location then
  you can use some built-in logging functions that will print the location.

val currentGlobal : global ref
  A reference to the current global being visited
CIL has a fairly easy to use mechanism for printing error messages. This mechanism is built on top of the pretty-printer mechanism (see Pretty.doc[1]) and the error-message modules (see Errormsg.error[2]).

Here is a typical example for printing a log message:

```
ignore (Errormsg.log "Expression %a is not positive (at %s:%i)\n
d_exp e loc.file loc.line)
```

and here is an example of how you print a fatal error message that stop the execution:

```
Errormsg.s (Errormsg.bug "Why am I here?"
```

Notice that you can use C format strings with some extension. The most useful extension is "%a" that means to consumer the next two argument from the argument list and to apply the first to unit and then to the second and to print the resulting Pretty.doc[1]. For each major type in CIL there is a corresponding function that pretty-prints an element of that type:

```
val d_loc : unit -> location -> Pretty.doc
 Pretty-print a location
val d_thisloc : unit -> Pretty.doc
 Pretty-print the Cil.currentLoc[5]
val d_ikind : unit -> ikind -> Pretty.doc
 Pretty-print an integer of a given kind
val d_fkind : unit -> fkind -> Pretty.doc
 Pretty-print a floating-point kind
val d_storage : unit -> storage -> Pretty.doc
 Pretty-print storage-class information
val d_const : unit -> constant -> Pretty.doc
 Pretty-print a constant
val derefStarLevel : int
val indexLevel : int
val arrowLevel : int
val addrOfLevel : int
val additiveLevel : int
val comparativeLevel : int
val bitwiseLevel : int
val getParenthLevel : exp -> int
 Parentheses level. An expression "a op b" is printed parenthesized if its parentheses level is ≥ that that of its context. Identifiers have the lowest level and weakly binding operators (e.g. |) have the largest level. The correctness criterion is that a smaller level MUST correspond to a stronger precedence!
```
class type cilPrinter =
  object
    method setCurrentFormals : Cil.varinfo list -> unit
    method setPrintInstrTerminator : string -> unit
    method getPrintInstrTerminator : unit -> string
    method pVDecl : unit -> Cil.varinfo -> Pretty.doc
      Invoked for each variable declaration. Note that variable declarations are all the GVar, GVarDecl, GFun, all the varinfo in formals of function types, and the formals and locals for function definitions.
    method pVar : Cil.varinfo -> Pretty.doc
      Invoked on each variable use.
    method pLval : unit -> Cil.lval -> Pretty.doc
      Invoked on each lvalue occurrence
    method pOffset : Pretty.doc -> Cil.offset -> Pretty.doc
      Invoked on each offset occurrence. The second argument is the base.
    method pInstr : unit -> Cil.instr -> Pretty.doc
      Invoked on each instruction occurrence.
    method pLabel : unit -> Cil.label -> Pretty.doc
      Print a label.
    method pStmt : unit -> Cil.stmt -> Pretty.doc
      Control-flow statement. This is used by Cil.printGlobal[5] and by Cil.dumpGlobal[5].
    method dStmt : out_channel -> int -> Cil.stmt -> unit
      Dump a control-flow statement to a file with a given indentation. This is used by Cil.dumpGlobal[5].
    method dBlock : out_channel -> int -> Cil.block -> unit
      Dump a control-flow block to a file with a given indentation. This is used by Cil.dumpGlobal[5].
    method pBlock : unit -> Cil.block -> Pretty.doc
      Print a block.
    method pGlobal : unit -> Cil.global -> Pretty.doc

51
Global (vars, types, etc.). This can be slow and is used only by Cil.printGlobal[5] but not by Cil.dumpGlobal[5].

method dGlobal : out_channel -> Cil.global -> unit

Dump a global to a file with a given indentation. This is used by Cil.dumpGlobal[5]

method pFieldDecl : unit -> Cil.fieldinfo -> Pretty.doc

A field declaration

method pType : Pretty.doc option -> unit -> Cil.typ -> Pretty.doc

Use of some type in some declaration. The first argument is used to print the declared element, or is None if we are just printing a type with no name being declared. Note that for structure/union and enumeration types the definition of the composite type is not visited. Use vglob to visit it.

method pAttr : Cil.attribute -> Pretty.doc * bool

Attribute. Also return an indication whether this attribute must be printed inside the _attribute_ list or not.

method pAttrParam : unit -> Cil.attrparam -> Pretty.doc

Attribute parameter

method pAttrs : unit -> Cil.attributes -> Pretty.doc

Attribute lists


Print a line-number. This is assumed to come always on an empty line. If the forcefile argument is present and is true then the file name will be printed always. Otherwise the file name is printed only if it is different from the last time time this function is called. The last file name is stored in a private field inside the cilPrinter object.

method pStmtKind : Cil.stmt -> unit -> Cil.stmtkind -> Pretty.doc

Print a statement kind. The code to be printed is given in the Cil.stmtkind[5] argument. The initial Cil.stmt[5] argument records the statement which follows the one being printed; Cil.defaultCilPrinterClass[5] uses this information to prettify statement printing in certain special cases.

method pExp : unit -> Cil.exp -> Pretty.doc

Print expressions

method pInit : unit -> Cil.init -> Pretty.doc

Print initializers. This can be slow and is used by Cil.printGlobal[5] but not by Cil.dumpGlobal[5].
method dInit : out_channel -> int -> Cil.init -> unit

    Dump a global to a file with a given indentation. This is used by Cil.dumpGlobal[5]

end

A printer interface for CIL trees. Create instantiations of this type by specializing the class Cil.defaultCilPrinterClass[5].

class defaultCilPrinterClass : cilPrinter
val defaultCilPrinter : cilPrinter
class plainCilPrinterClass : cilPrinter
    These are pretty-printers that will show you more details on the internal CIL representation, without trying hard to make it look like C
val plainCilPrinter : cilPrinter
class type descriptiveCilPrinter =
    object
        inherit Cil.cilPrinter [5]
        method startTemps : unit -> unit
        method stopTemps : unit -> unit
        method pTemps : unit -> Pretty.doc
    end

class descriptiveCilPrinterClass : bool -> descriptiveCilPrinter
    Like defaultCilPrinterClass, but instead of temporary variable names it prints the description that was provided when the temp was created. This is usually better for messages that are printed for end users, although you may want the temporary names for debugging.
    The boolean here enables descriptive printing. Usually use true here, but you can set enable to false to make this class behave like defaultCilPrinterClass. This allows subclasses to turn the feature off.
val descriptiveCilPrinter : descriptiveCilPrinter
val printerForMaincil : cilPrinter ref
    zra: This is the pretty printer that Maincil will use. by default it is set to defaultCilPrinter
val printType : cilPrinter -> unit -> typ -> Pretty.doc
    Print a type given a pretty printer
val printExp : cilPrinter -> unit -> exp -> Pretty.doc
    Print an expression given a pretty printer
val printLval : cilPrinter -> unit -> lval -> Pretty.doc
    Print an lvalue given a pretty printer
val printGlobal : cilPrinter -> unit -> global -> Pretty.doc
  Print a global given a pretty printer

val printAttr : cilPrinter -> unit -> attribute -> Pretty.doc
  Print an attribute given a pretty printer

val printAttrs : cilPrinter -> unit -> attributes -> Pretty.doc
  Print a set of attributes given a pretty printer

val printInstr : cilPrinter -> unit -> instr -> Pretty.doc
  Print an instruction given a pretty printer

val printStmt : cilPrinter -> unit -> stmt -> Pretty.doc
  Print a statement given a pretty printer. This can take very long (or even overflow the

val printBlock : cilPrinter -> unit -> block -> Pretty.doc
  Print a block given a pretty printer. This can take very long (or even overflow the stack) for

val dumpStmt : cilPrinter -> out_channel -> int -> stmt -> unit
  Dump a statement to a file using a given indentation. Use this instead of Cil.printStmt[5]
  whenever possible.

val dumpBlock : cilPrinter -> out_channel -> int -> block -> unit
  Dump a block to a file using a given indentation. Use this instead of Cil.printBlock[5]
  whenever possible.

val printInit : cilPrinter -> unit -> init -> Pretty.doc
  Print an initializer given a pretty printer. This can take very long (or even overflow the

val dumpInit : cilPrinter -> out_channel -> int -> init -> unit
  Dump an initializer to a file using a given indentation. Use this instead of Cil.printInit[5]
  whenever possible.

val d_type : unit -> typ -> Pretty.doc
  Pretty-print a type using Cil.defaultCilPrinter[5]

val d_exp : unit -> exp -> Pretty.doc
  Pretty-print an expression using Cil.defaultCilPrinter[5]

val d_lval : unit -> lval -> Pretty.doc
  Pretty-print an lvalue using Cil.defaultCilPrinter[5]

val d_offset : Pretty.doc -> unit -> offset -> Pretty.doc
Pretty-print an offset using Cil.defaultCilPrinter[5], given the pretty printing for the base.

val d_init : unit -> init -> Pretty.doc
Pretty-print an initializer using Cil.defaultCilPrinter[5]. This can be extremely slow (or even overflow the stack) for huge initializers. Use Cil.dumpInit[5] instead.

val d_binop : unit -> binop -> Pretty.doc
Pretty-print a binary operator

val d_unop : unit -> unop -> Pretty.doc
Pretty-print a unary operator

val d_attr : unit -> attribute -> Pretty.doc
Pretty-print an attribute using Cil.defaultCilPrinter[5]

val d_attrparam : unit -> attrparam -> Pretty.doc
Pretty-print an argument of an attribute using Cil.defaultCilPrinter[5]

val d_attrlist : unit -> attributes -> Pretty.doc
Pretty-print a list of attributes using Cil.defaultCilPrinter[5]

val d_instr : unit -> instr -> Pretty.doc
Pretty-print an instruction using Cil.defaultCilPrinter[5]

val d_label : unit -> label -> Pretty.doc
Pretty-print a label using Cil.defaultCilPrinter[5]

val d_stmt : unit -> stmt -> Pretty.doc
Pretty-print a statement using Cil.defaultCilPrinter[5]. This can be extremely slow (or even overflow the stack) for huge statements. Use Cil.dumpStmt[5] instead.

val d_block : unit -> block -> Pretty.doc
Pretty-print a block using Cil.defaultCilPrinter[5]. This can be extremely slow (or even overflow the stack) for huge blocks. Use Cil.dumpBlock[5] instead.

val d_global : unit -> global -> Pretty.doc
Pretty-print the internal representation of a global using Cil.defaultCilPrinter[5]. This can be extremely slow (or even overflow the stack) for huge globals (such as arrays with lots of initializers). Use Cil.dumpGlobal[5] instead.

val dn_exp : unit -> exp -> Pretty.doc
Versions of the above pretty printers, that don’t print #line directives
val dn_lval : unit -> lval -> Pretty.doc
val dn_init : unit -> init -> Pretty.doc
val dn_type : unit -> typ -> Pretty.doc
val dn_global : unit -> global -> Pretty.doc
val dn_attrlist : unit -> attributes -> Pretty.doc
val dn_attr : unit -> attribute -> Pretty.doc
val dn_attrparam : unit -> attrparam -> Pretty.doc
val dn_stmt : unit -> stmt -> Pretty.doc
val dn_instr : unit -> instr -> Pretty.doc
val d_shortglobal : unit -> global -> Pretty.doc

Pretty-print a short description of the global. This is useful for error messages

val dumpGlobal : cilPrinter -> out_channel -> global -> unit
Pretty-print a global. Here you give the channel where the printout should be sent.

val dumpFile : cilPrinter -> out_channel -> string -> file -> unit
Pretty-print an entire file. Here you give the channel where the printout should be sent.

the following error message producing functions also print a location in the code. use Errormsg.bug[2]
and Errormsg.unimp[2] if you do not want that

val bug : ('a, unit, Pretty.doc) format -> 'a
Like Errormsg.bug[2] except that Cil.currentLoc[5] is also printed

val unimp : ('a, unit, Pretty.doc) format -> 'a
Like Errormsg.unimp[2] except that Cil.currentLoc[5] is also printed

val error : ('a, unit, Pretty.doc) format -> 'a
Like Errormsg.error[2] except that Cil.currentLoc[5] is also printed

val errorLoc : location -> ('a, unit, Pretty.doc) format -> 'a
Like Cil.error[5] except that it explicitly takes a location argument, instead of using the
Cil.currentLoc[5]

val warn : ('a, unit, Pretty.doc) format -> 'a
Like Errormsg.warn[2] except that Cil.currentLoc[5] is also printed

val warnOpt : ('a, unit, Pretty.doc) format -> 'a
Like Errormsg.warnOpt[2] except that Cil.currentLoc[5] is also printed. This warning is
printed only of Errormsg.warnFlag[2] is set.

val warnContext : ('a, unit, Pretty.doc) format -> 'a
Like Errormsg.warn[2] except that Cil.currentLoc[5] and context is also printed

val warnContextOpt : ('a, unit, Pretty.doc) format -> 'a
Like `Errormsg.warn` except that `Cil.currentLoc` and context is also printed. This warning is printed only if `Errormsg.warnFlag` is set.

```ml
val warnLoc : location -> ('a, unit, Pretty.doc) format -> 'a
Like `Cil.warn` except that it explicitly takes a location argument, instead of using the `Cil.currentLoc`.
```

Sometimes you do not want to see the syntactic sugar that the above pretty-printing functions add. In that case you can use the following pretty-printing functions. But note that the output of these functions is not valid C.

```ml
val d_plainexp : unit -> exp -> Pretty.doc
Pretty-print the internal representation of an expression.

val d_plaininit : unit -> init -> Pretty.doc
Pretty-print the internal representation of an integer.

val d_plainlval : unit -> lval -> Pretty.doc
Pretty-print the internal representation of an lvalue.

val d_plainoffset : unit -> offset -> Pretty.doc
Pretty-print the internal representation of an lvalue offset.

val d_plaintype : unit -> typ -> Pretty.doc
Pretty-print the internal representation of a type.

val dd_exp : unit -> exp -> Pretty.doc
Pretty-print an expression while printing descriptions rather than names of temporaries.

Pretty-print an lvalue on the left side of an assignment. If there is an offset or memory dereference, temporaries will be replaced by descriptions as in `dd_exp`. If the lval is a temp var, that var will not be replaced by a description; use "dd_exp () (Lval lv)" if that’s what you want.

val dd_lval : unit -> lval -> Pretty.doc

ALPHA conversion has been moved to the Alpha module.

```ml
val uniqueVarNames : file -> unit
Assign unique names to local variables. This might be necessary after you transformed the code and added or renamed some new variables. Names are not used by CIL internally, but once you print the file out the compiler downstream might be confused. You might have added a new global that happens to have the same name as a local in some function. Rename the local to ensure that there would never be confusion. Or, viceversa, you might have added a local with a name that conflicts with a global.

**Optimization Passes**

```ml
val peepHole2 : (instr * instr -> instr list option) -> stmt list -> unit
A peephole optimizer that processes two adjacent instructions and possibly replaces them both. If some replacement happens, then the new instructions are themselves subject to optimization.
```
val peepHole1 : (instr -> instr list option) -> stmt list -> unit

Similar to peepHole2 except that the optimization window consists of one instruction, not two

**Machine dependency**

exception SizeOfError of string * typ

Raised when one of the bitsSizeOf functions cannot compute the size of a type. This can happen because the type contains array-length expressions that we don’t know how to compute or because it is a type whose size is not defined (e.g. TFun or an undefined compinfo). The string is an explanation of the error

val unsignedVersionOf : ikind -> ikind

Give the unsigned kind corresponding to any integer kind

val intKindForSize : int -> bool -> ikind

The signed integer kind for a given size (unsigned if second argument is true). Raises Not_found if no such kind exists

val floatKindForSize : int -> fkind

The float kind for a given size. Raises Not_found if no such kind exists

val bytesSizeOfInt : ikind -> int

The size in bytes of the given int kind.

val bitsSizeOf : typ -> int

The size of a type, in bits. Trailing padding is added for structs and arrays. Raises Cil.SizeOfError when it cannot compute the size. This function is architecture dependent, so you should only call this after you call Cil.initCIL. Remember that on GCC sizeof(void) is 1!

val truncateInteger64 : ikind -> int64 -> int64 * bool

Represents an integer as for a given kind. Returns a flag saying whether the value was changed during truncation (because it was too large to fit in k).

val fitsInInt : ikind -> int64 -> bool

True if the integer fits within the kind’s range

val intKindForValue : int64 -> bool -> ikind

Return the smallest kind that will hold the integer’s value. The kind will be unsigned if the 2nd argument is true

val sizeOf : typ -> exp

The size of a type, in bytes. Returns a constant expression or a "sizeof" expression if it cannot compute the size. This function is architecture dependent, so you should only call this after you call Cil.initCIL.

val alignOf_int : typ -> int

58
The minimum alignment (in bytes) for a type. This function is architecture dependent, so you should only call this after you call Cil.initCIL[5].

```plaintext
val bitsOffset : typ -> offset -> int * int
 Give a type of a base and an offset, returns the number of bits from the base address and the width (also expressed in bits) for the subobject denoted by the offset. Raises Cil.SizeOfError[5] when it cannot compute the size. This function is architecture dependent, so you should only call this after you call Cil.initCIL[5].
```

```plaintext
val char_is_unsigned : bool ref
 Whether "char" is unsigned. Set after you call Cil.initCIL[5]
```

```plaintext
val little_endian : bool ref
 Whether the machine is little endian. Set after you call Cil.initCIL[5]
```

```plaintext
val underscore_name : bool ref
 Whether the compiler generates assembly labels by prepending "_" to the identifier. That is, will function foo() have the label "foo", or "_foo"? Set after you call Cil.initCIL[5]
```

```plaintext
val locUnknown : location
 Represents a location that cannot be determined
```

```plaintext
val get_instrLoc : instr -> location
 Return the location of an instruction
```

```plaintext
val get_globalLoc : global -> location
 Return the location of a global, or locUnknown
```

```plaintext
val get_stmtLoc : stmtkind -> location
 Return the location of a statement, or locUnknown
```

```plaintext
val dExp : Pretty.doc -> exp
 Generate an Cil.exp[5] to be used in case of errors.
```

```plaintext
val dInstr : Pretty.doc -> location -> instr
 Generate an Cil.instr[5] to be used in case of errors.
```

```plaintext
val dGlobal : Pretty.doc -> location -> global
 Generate a Cil.global[5] to be used in case of errors.
```

```plaintext
val mapNoCopy : ('a -> 'a) -> 'a list -> 'a list
 Like map but try not to make a copy of the list
```

```plaintext
val mapNoCopyList : ('a -> 'a list) -> 'a list -> 'a list
 Like map but each call can return a list. Try not to make a copy of the list
```

```plaintext
val startsWith : string -> string -> bool
```

59
sm: return true if the first is a prefix of the second string

val endsWith : string -> string -> bool
  return true if the first is a suffix of the second string

val stripUnderscores : string -> string
  If string has leading and trailing _, strip them.

An Interpreter for constructing CIL constructs

type formatArg =
  | Fe of exp
  | Feo of exp option
    For array lengths
  | Fu of unop
  | Fb of binop
  | Fk of ikind
  | FE of exp list
    For arguments in a function call
  | Ff of (string * typ * attributes)
    For a formal argument
  | FF of (string * typ * attributes) list
    For formal argument lists
  | Fva of bool
    For the ellipsis in a function type
  | Fv of varinfo
  | Fl of lval
  | Flo of lval option
  | Fo of offset
  | Fc of compinfo
  | Fi of instr
  | FI of instr list
  | Ft of typ
  | Fd of int
  | Fg of string
  | Fs of stmt
  | FS of stmt list
  | FA of attributes
  | Fp of attrparam
  | FP of attrparam list
  | FX of string
    The type of argument for the interpreter

val d_formatarg : unit -> formatArg -> Pretty.doc
  Pretty-prints a format arg
val warnTruncate : bool ref
  Emit warnings when truncating integer constants (default true)

val envMachine : Machdep.mach option ref
  Machine model specified via CIL_MACHINE environment variable

6 Module Formatcil : An Interpreter for constructing CIL constructs

val cExp : string -> (string * Cil.formatArg) list -> Cil.exp
  Constructs an expression based on the program and the list of arguments. Each argument consists of a name followed by the actual data. This argument will be placed instead of occurrences of "%v:name" in the pattern (where the "v" is dependent on the type of the data). The parsing of the string is memoized. * Only the first expression is parsed.

val cLval : string -> (string * Cil.formatArg) list -> Cil.lval
  Constructs an lval based on the program and the list of arguments. Only the first lvalue is parsed. The parsing of the string is memoized.

val cType : string -> (string * Cil.formatArg) list -> Cil.typ
  Constructs a type based on the program and the list of arguments. Only the first type is parsed. The parsing of the string is memoized.

val cInstr :
  string -> Cil.location -> (string * Cil.formatArg) list -> Cil.instr
  Constructs an instruction based on the program and the list of arguments. Only the first instruction is parsed. The parsing of the string is memoized.

val cStmt :
  string ->
  (string -> Cil.typ -> Cil.varinfo) ->
  Cil.location -> (string * Cil.formatArg) list -> Cil.stmt

val cStmts :
  string ->
  (string -> Cil.typ -> Cil.varinfo) ->
  Cil.location -> (string * Cil.formatArg) list -> Cil.stmt list
  Constructs a list of statements

val dExp : string -> Cil.exp -> Cil.formatArg list option
  Deconstructs an expression based on the program. Produces an optional list of format arguments. The parsing of the string is memoized.

val dLval : string -> Cil.lval -> Cil.formatArg list option
Deconstructs an lval based on the program. Produces an optional list of format arguments. The parsing of the string is memoized.

val dType : string -> Cil.typ -> Cil.formatArg list option
  Deconstructs a type based on the program. Produces an optional list of format arguments. The parsing of the string is memoized.

val dInstr : string -> Cil.instr -> Cil.formatArg list option
  Deconstructs an instruction based on the program. Produces an optional list of format arguments. The parsing of the string is memoized.

val noMemoize : bool ref
  If set then will not memoize the parsed patterns

val test : unit -> unit
  Just a testing function

7  Module Alpha : ALPHA conversion

type 'a undoAlphaElement
  This is the type of the elements that are recorded by the alpha conversion functions in order to be able to undo changes to the tables they modify. Useful for implementing scoping

type 'a alphaTableData
  This is the type of the elements of the alpha renaming table. These elements can carry some data associated with each occurrence of the name.

val newAlphaName :
  alphaTable:(string, 'a alphaTableData ref) Hashtbl.t ->
  undolist:'a undoAlphaElement list ref option ->
  lookupname:string -> data:'a -> string * 'a
  Create a new name based on a given name. The new name is formed from a prefix (obtained from the given name by stripping a suffix consisting of __ followed by up to 9 digits), followed by a special separator and then by a positive integer suffix. The first argument is a table mapping name prefixes to some data that specifies what suffixes have been used and how to create the new one. This function updates the table with the new largest suffix generated. The "undolist" argument, when present, will be used by the function to record information that can be used by Alpha.undoAlphaChanges[7] to undo those changes. Note that the undo information will be in reverse order in which the action occurred. Returns the new name and, if different from the lookupname, the location of the previous occurrence. This function knows about the location implicitly from the Cil.currentLoc[5].

val registerAlphaName :
  alphaTable:(string, 'a alphaTableData ref) Hashtbl.t ->
  undolist:'a undoAlphaElement list ref option ->
  lookupname:string -> data:'a -> unit
Register a name with an alpha conversion table to ensure that when later we call newAlphaName we do not end up generating this one

```ocaml
val docAlphaTable : unit -> (string, 'a alphaTableData ref) Hashtbl.t -> Pretty.doc
 Split the name in preparation for newAlphaName. The prefix returned is used to index into
 the hashtable. The next result value is a separator (either empty or the separator chosen to
 separate the original name from the index)
```

```ocaml
val getAlphaPrefix : lookupname:string -> string
val undoAlphaChanges :
 alphaTable:(string, 'a alphaTableData ref) Hashtbl.t ->
 undolist:'a undoAlphaElement list -> unit
 Undo the changes to a table
```

8 Module Cilower : A number of lowering passes over CIL

```ocaml
val lowerEnumVisitor : Cil.cilVisitor
 Replace enumeration constants with integer constants
```

9 Module Cfg : Code to compute the control-flow graph of a function or file.

This will fill in the preds and succs fields of Cil.stmt[5]
  This is required for several other extensions, such as Dataflow[10].

```ocaml
val computeFileCFG : Cil.file -> unit
 Compute the CFG for an entire file, by calling cfgFun on each function.
val clearFileCFG : Cil.file -> unit
 clear the sid, succs, and preds fields of each statement.
val cfgFun : Cil.fundec -> int
 Compute a control flow graph for fd. Stmts in fd have preds and succs filled in
val clearCFGinfo : Cil.fundec -> unit
 clear the sid, succs, and preds fields of each statment in a function
val printCfgChannel : out_channel -> Cil.fundec -> unit
 print control flow graph (in dot form) for fundec to channel
val printCfgFilename : string -> Cil.fundec -> unit
```

63
Print control flow graph (in dot form) for fundec to file

val start_id : int ref
Next statement id that will be assigned.

val allStmts : Cil.file -> Cil.stmt list
Return all statements in a file - valid after computeFileCfg only

10 Module Dataflow: A framework for data flow analysis for CIL code.

Before using this framework, you must initialize the Control-flow Graph for your program, e.g using Cfg.computeFileCFG[9]

type 'a action =
  | Default
    The default action
  | Done of 'a
    Do not do the default action. Use this result
  | Post of ('a -> 'a)
    The default action, followed by the given transformer

type 'a stmtaction =
  | SDefault
    The default action
  | SDone
    Do not visit this statement or its successors
  | SUse of 'a
    Visit the instructions and successors of this statement as usual, but use the specified state instead of the one that was passed to doStmt

type 'a guardaction =
  | GDefault
    The default state
  | GUse of 'a
    Use this data for the branch
  | GUnreachable
    The branch will never be taken.

module type ForwardsTransfer =
  sig
    val name : string
For debugging purposes, the name of the analysis

val debug : bool ref

Whether to turn on debugging

type t

The type of the data we compute for each block start. May be imperative.

val copy : t -> t

Make a deep copy of the data

val stmtStartData : t Inthash.t

For each statement id, the data at the start. Not found in the hash table means nothing is known about the state at this point. At the end of the analysis this means that the block is not reachable.

val pretty : unit -> t -> Pretty.doc

Pretty-print the state

val computeFirstPredecessor : Cil.stmt -> t -> t

Give the first value for a predecessors, compute the value to be set for the block

val combinePredecessors : Cil.stmt ->
  old:t ->
  t -> t option

Take some old data for the start of a statement, and some new data for the same point. Return None if the combination is identical to the old data. Otherwise, compute the combination, and return it.

val doInstr : Cil.instr ->
  t -> t Dataflow.action

The (forwards) transfer function for an instruction. The Cil.currentLoc[5] is set before calling this. The default action is to continue with the state unchanged.

val doStmt : Cil.stmt ->
  t ->
  t Dataflow.stmtaction

The (forwards) transfer function for a statement. The Cil.currentLoc[5] is set before calling this. The default action is to do the instructions in this statement, if applicable, and continue with the successors.

val doGuard : Cil.exp ->
  t ->
  t Dataflow.guardaction
Generate the successor to an If statement assuming the given expression is nonzero. Analyses that don’t need guard information can return GDefault; this is equivalent to returning GUne during this branch will not be taken and should not be explored. This will be called twice per If, once for "then" and once for "else".

```ml
val filterStmt : Cil.stmt -> bool

Whether to put this statement in the worklist. This is called when a block would normally be put in the worklist.
```

```ml
module ForwardsDataFlow :
 functor (T : ForwardsTransfer) -> sig
 val compute : Cil.stmt list -> unit
 Fill in the T.stmtStartData, given a number of initial statements to start from. All of the initial statements must have some entry in T.stmtStartData (i.e., the initial data should not be bottom)
end
```

```ml
module type BackwardsTransfer =
 sig
 val name : string
 For debugging purposes, the name of the analysis
 val debug : bool ref
 Whether to turn on debugging
 type t
 The type of the data we compute for each block start. In many presentations of backwards data flow analysis we maintain the data at the block end. This is not easy to do with JVML because a block has many exceptional ends. So we maintain the data for the statement start.
 val pretty : unit -> t -> Pretty.doc
 Pretty-print the state
 val stmtStartData : t Inthash.t
 For each block id, the data at the start. This data structure must be initialized with the initial data for each block
 val funcExitData : t
end
```
The data at function exit. Used for statements with no successors. This is usually bottom, since we'll also use doStmt on Return statements.

```ocaml
define (val combineStmtStartData) (Cil.stmt ->
 old:t ->
 t -> t option)

 When the analysis reaches the start of a block, combine the old data with the one we have just computed. Return None if the combination is the same as the old data, otherwise return the combination. In the latter case, the predecessors of the statement are put on the working list.

val combineSuccessors : t ->
 t -> t

 Take the data from two successors and combine it.

val doStmt : Cil.stmt -> t Dataflow.action

 The (backwards) transfer function for a branch. The Cil.currentLoc[5] is set before calling this. If it returns None, then we have some default handling. Otherwise, the returned data is the data before the branch (not considering the exception handlers).

val doInstr : Cil.instr ->
 t -> t Dataflow.action

 The (backwards) transfer function for an instruction. The Cil.currentLoc[5] is set before calling this. If it returns None, then we have some default handling. Otherwise, the returned data is the data before the branch (not considering the exception handlers).

val filterStmt : Cil.stmt -> Cil.stmt -> bool

 Whether to put this predecessor block in the worklist. We give the predecessor and the block whose predecessor we are (and whose data has changed).
```

end

```ocaml
module BackwardsDataFlow :
 functor (T : BackwardsTransfer) -> sig

 define (val compute) (Cil.stmt list -> unit)

 Fill in the T.stmtStartData, given a number of initial statements to start from (the sinks for the backwards data flow). All of the statements (not just the initial ones!) must have some entry in T.stmtStartData. If you want to use bottom for the initial data, you should pass the complete list of statements to compute, so that everything is visited. findStmts may be useful here.

 end

val findStmts : Cil.fundec -> Cil.stmt list * Cil.stmt list
```

67
Returns \((\text{all}_\text{stmts}, \text{sink}_\text{stmts})\), where \(\text{all}_\text{stmts}\) is a list of the statements in a function, and \(\text{sink}_\text{stmts}\) is a list of the return statements (including statements that fall through the end of a void function). Useful when you need an initial set of statements for BackwardsDataFlow.compute.

11 Module Dominators : Compute dominators using data flow analysis

Author: George Necula 5/28/2004

\textbf{val computeIDom : } ?\text{doCFG}:\text{bool} \to \text{Cil}.\text{fundec} \to \text{Cil}.\text{stmt} \text{ option } \text{Inthash}.\text{t} \\
Invoke on a code after filling in the CFG info and it computes the immediate dominator information. We map each statement to its immediate dominator (None for the start statement, and for the unreachable statements).

\textbf{type tree} \\
\textbf{val computeDomTree : } ?\text{doCFG}:\text{bool} \to \text{Cil}.\text{fundec} \to \text{Cil}.\text{stmt} \text{ option } \text{Inthash}.\text{t} \ast \text{tree} \\
\quad \text{return} \text{the } \text{IDoms} \text{ and a map from statement ids to the set of statements that are dominated}

\textbf{val getIdom : } \text{Cil}.\text{stmt} \text{ option } \text{Inthash}.\text{t} \to \text{Cil}.\text{stmt} \to \text{Cil}.\text{stmt} \text{ option} \\
\quad \text{This is like Inthash.find but gives an error if the information is Not_found}

\textbf{val dominates : } \text{Cil}.\text{stmt} \text{ option } \text{Inthash}.\text{t} \to \text{Cil}.\text{stmt} \to \text{Cil}.\text{stmt} \to \text{bool} \\
\quad \text{Check whether one statement dominates another.}

\textbf{val children : } \text{tree} \to \text{Cil}.\text{stmt} \to \text{Cil}.\text{stmt} \text{ list} \\
\quad \text{Return a list of statements dominated by the argument}

\textbf{type order =} \\
\quad \text{| PreOrder} \\
\quad \text{| PostOrder}

\textbf{val domTreeIter : } \text{(Cil}.\text{stmt} \to \text{unit}) \to \text{order} \to \text{tree} \to \text{unit} \\
\quad \text{Iterate over a dominator tree}

\textbf{val findNaturalLoops :} \\
\text{Cil}.\text{fundec} \to \text{Cil}.\text{stmt} \text{ option } \text{Inthash}.\text{t} \to \text{(Cil}.\text{stmt} \ast \text{Cil}.\text{stmt} \text{ list}) \text{ list} \\
\quad \text{Compute the start of the natural loops. This assumes that the "idom" field has been computed. For each start, keep a list of origin of a back edge. The loop consists of the loop start and all predecessors of the origins of back edges, up to and including the loop start}