Modern SAT Solvers

CS294 - Automated Deduction
Manu Sridharan

Overview

- Focus on techniques used in today’s fast solvers
- Introduction to SAT / backtracking search
- Optimizations
- Witness for UNSAT
- Recommended reading
 - Shlyakhter, “Main Techniques for Solving Real-World SAT Instances”, http://ilya.cc/area/
 - Zhang and Malik, “Validating SAT Solvers Using an Independent Resolution-Based Checker…”

SAT problem

- Input: boolean formula in CNF format
 - Conjunction of clauses, where each clause is a disjunction of literals (AND of ORs)
 - Literal: boolean variable or its negation
- Output: either
 - A satisfying assignment, giving each boolean variable a value 0 or 1 such that all clauses are true
 - UNSAT, indicating no such assignment exists

Formula: \((x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_3)\)
Satisfying Assignment: \([< x_1, 1 >, < x_2, 1 >, < x_3, 1 >]\)

More on SAT

- Many real-world problems reduce to SAT
 - Software and hardware verification
 - AI planning
- SAT is NP-complete
 - Intractable in the worst case
- But, many large practical instances are tractable
 - Take advantage of higher-level structure

Backtracking Search (Davis–Putnam)

- Maintain partial assignment to vars
 - See if it can be extended to a satisfying assignment
- Step 1: boolean constraint propagation (BCP)
 - Assign variables whose setting is implied by current partial assignment
 - Given clause \(x_1 \lor x_2 \lor \neg x_3\) and partial assignment \(\{x_1, 0\}, \{x_3, 1\}\), must have \(x_2, 1\) (clause is unit clause)
 - For setting \(x_1, 1\), \(x_2, 1\), \(x_2, 1\) is the antecedent clause and \(\{x_1, 0\}, \{x_3, 1\}, \{x_2, 1\}\) are antecedent settings
 - If all variables assigned and no falsified clauses, print satisfying assignment
 - Also called unit propagation

Backtracking Search, Cont.

- Step 2: search
 - If no clauses falsified by BCP, give some unassigned var a tentative value (a decision)
 - Choose variable using decision heuristic
 - Mark decision as open, since only one setting has been attempted for var
 - Repeat BCP
 - If some clause falsified by BCP (a conflict), backtrack
 - Find last open decision setting
 - Set var from open decision to opposite value, and undo later settings (due to unit propagation)
 - Mark decision as closed
 - If no open decisions, formula is unsatisfiable
Optimizing BCP

- BCP takes 80-90% of solver time
- Classic implementation:
 - For each clause, keep counts of satisfied, falsified, and unresolved literals
 - When literal is set or unset, visit all clauses with literal and update counters
- Drawback: setting and unsetting literals expensive

Watched Literals

- When does a clause matter during search?
 - Going from 2 non-falsified literals to 1 (unit clause)
 - Going from 1 non-falsified literal to 0 (conflict)
- Choose 2 watched literals in each clause
 - Invariant: watched literals are non-falsified if clause is not satisfied
 - When literal is falsified, visit all clauses in which it is watched
 - If another unwatched non-falsified literal exists, it becomes watched
 - Otherwise, either unit clause, conflict, or already set

Advantages of Watched Literals

- Fewer clauses visited when literal is set
- Unassignment is constant time!
 - Watched literals unchanged
 - No literals falsified
 - Final watched literals will be first to be unassigned
- Frequent re-assignments of literals faster
 - Once literal is assigned false, becomes unwatched in most clauses
 - So, after unassigning literal, re-assignment is faster
 - Important for certain decision heuristics

Learning: Idea

- At conflict, backtracking ensures that current partial assignment not explored again
- But, only a subset of current partial assignment may be responsible for conflict
- Subset can be ruled out by adding a clause
 - To rule out (x₁ ∨ x₂, 0), add clause x₁ ∨ x₂
- Learning attempts to find such assignment subsets and add clauses to exclude them

Learning: Implementation

- Build implication graph
 - Nodes are settings in partial assignment, with special node for conflict clause
 - Edges correspond to antecedent settings
 - From each setting for literals in antecedent clause to implied setting
 - From each setting causing conflict to conflict clause node
- Learned clause is an antecedent set
 - Immediate predecessors of conflict clause node an antecedent set
 - Can replace node in antecedent set with all of its predecessors (essentially resolution)
 - Try to find small antecedent set (more unit propagation)

Learning: Why It Helps

- At a high level, excludes larger parts of search space
 - Extra unit propagation
- As search progresses, new clauses reflect "deeper" conflicts
 - Based on original CNF and previously added clauses
- Independent subproblems are not conflated by decision heuristic
Non-Chronological Backtracking
- Normal backtracking flips most recent open decision setting
- Latest decision may not have caused conflict
 - Due to learned clauses
- Non-chronological backtracking flips most recent open decision contributing to conflict
- Easy to implement along with learning
 - For each variable setting, maintain decision level, height of decision stack at time of setting
 - Backtrack to latest decision level of literals in learned clause

Restarts
- Solving time varies widely under different decision sequences
 - Some decision sequences much better than average, some much worse
- Restarts simply start the search from scratch after K backtracks
 - May need some randomness in decision heuristic
 - Keep learned clauses to filter search space
 - Increases probability of finding good sequence; hopefully bails out of very bad sequences
- Completeness through gradually increasing K or learning

Decision Heuristic
- How to choose variable to set during search
- Difficult to develop
 - Bad early decision can be very costly
 - Hard to detect badness, esp. with a hard satisfiable problem
- Learning, non-chronological backtracking, and restarts compensate for difficulty

VSIDS
- Variable State Independent Decaying Sum
- For each literal, keep counter of how many learned clauses it appears in
 - Periodically divide by constant to bias to recently learned clauses
- At each decision, choose literal with highest counter
- Partial assignments more likely to lead to solution
 - Learned clauses are resolvents of earlier clauses
 - Assignment satisfying resolvent extendable to one satisfying original clauses
- Possibly leads to shorter learned clauses
 - Learned clauses share more literals, shortening resolvents

Checking UNSAT result
- For satisfiable formulas, satisfying assignment is witness
- Would like "witness" for UNSAT answers as well
 - Optimizations may lead to bugs, eg. in SAT 2002 competition
- CNF formula is UNSAT iff empty clause can be derived using sequence of resolutions
- By instrumenting learning, solver can produce a "trace" showing sequence of resolutions to perform

Producing the UNSAT trace
- Keep all learned clauses
 - Do closed decisions using BCP
- Assign each clause an ID
- For each learned clause, record its ID and ID's of clauses involved in its generation
- Before returning UNSAT
 - Record ID of some final conflicting clause
 - Record all assigned vars, along with values and ID's of antecedent clauses
Verifying the UNSAT trace

- Start with a final conflicting clause
- Repeatedly choose literal from clause, and resolve clause with antecedent of literal's var
 - Check that antecedent is unit clause for var
- Continue until empty clause is derived
- Learned clauses must be reconstructed
 - Construct recursively, using ID's recorded in trace
 - At each resolution step, ensure one var is shared, with opposite polarity
- Original clauses encountered form an unsat core
 - Subset of clauses that are still unsatisfiable
 - Useful for explaining unsatisfiability, finding bugs

The End