Motivation

- We focus mainly on automated deduction in this class.

- There are many interesting theories that we don’t yet know how to decide automatically. For instance:
 - Formalizing large parts of traditional math
 - Or proving the soundness of particular proof-carrying code systems
Outline

- Come up with a suitably general encoding for propositions and proofs
- See how systems like Coq can make it easier to generate formal proofs
- Revisit a past lecture by using Coq to prove the correctness of JML-annotated Java programs
- Go in the opposite direction by translating Coq proofs into executable ML programs
Proof checking via type checking

- Recall the discussion of proof representation in an earlier lecture.
- We can express logical propositions with an ML-style datatype.
- If we add dependent types, we can even express deduction rules as terms.
- A supposed proof proves some proposition only if it type-checks to have that proposition’s type.
Review: Conjunction

\[\textit{and} : \text{prop} \rightarrow \text{prop} \rightarrow \text{prop}\]

\[
\frac{A}{A \land B} \land I
\]

\[\textit{andi} : \Pi A : \text{prop}. \Pi B : \text{prop}. A \rightarrow B \rightarrow (\text{and} A B)\]

\[
\frac{A \land B}{A} \land E_1
\]

\[\textit{ande1} : \Pi A : \text{prop}. \Pi B : \text{prop}. (\text{and} A B) \rightarrow A\]
The other propositional connectives can be described with similar-looking terms.

While ML doesn’t support dependent types in general, the types for propositional proof constructors all fit into a format that it does support.

Instead of defining a new type of propositions, we can use the language of ML types itself as our proposition type!

ML polymorphism allows quantification over types.
Demo: Proof checker

- This means that every ML compiler already contains the essential machinery for checking a complete proof system for propositional logic!

See demo....
But is all that necessary?

- ML contains many more features than would be required if we just wanted a proof checker.
- Also, it’s not clear whether it would support all new logical formalisms we might come up with.
- Coq uses the *Calculus of Inductive Constructions* (CIC), a system powerful enough to allow the definition of the logical connectives using a simple extension of lambda calculus.
CIC

- Start with the simply typed lambda calculus.
- Add dependently-typed polymorphism.
- Add a way to define recursive data types and primitive recursive functions over them.
- These features are all that 99% of Coq developments use.
Defining connectives

Inductive and

: Prop -> Prop -> Prop :=
| andi : forall (A B : Prop),
 A -> B -> and A B.

Inductive or

: Prop -> Prop -> Prop :=
| ori1 : forall (A B : Prop),
 A -> or A B
| ori2 : forall (A B : Prop),
 B -> or A B.
Defining equality

Inductive eq
 : forall (T:Type), T -> T -> Prop :=
 | eqi : forall (T : Type) (X : T),
 eq X X.
Interactive proving

- Coq works mostly using backwards reasoning.
- You begin a proof by specifying a goal to be proved.
- You specify a series of tactics that in general produce multiple sub-goals with different sets of hypotheses.

See demo....
In a past lecture, we saw how to use ESC/Java to find many bugs in Java programs.

We also saw many ways to trick ESC/Java into accepting buggy programs.

We’ve seen how to produce verification conditions for programs annotated with specifications.

However, today’s automated tools are generally not clever enough to prove these conditions.
Manual correctness proofs

- *Krakatoa* is a verification condition generator for Java programs annotated with JML.

- It can generate a series of Coq lemma statements that together imply that that a Java program meets its spec.

- A human has to go through and prove the tricky parts of these lemmas.
Benefits

- If you can prove all of the lemmas, then you can be sure that the program meets its specification.
- There is no chance that a bug-finding tool’s heuristics just weren’t smart enough to find a bug.

See demo for insertion sort....
Compiling proofs into programs

- Most Coq proofs use constructive logic.
- It is well-known that such proofs have computational interpretations.
- The early example of propositional-logic-in-ML should give some of the intuition behind this.
This means that it is possible to develop a program by proving that its specification is satisfiable!

See demo....