Forward vs. Backward Theorem Proving **Tactics**

Automated Deduction - George Necula

Forward vs. Backward Theorem Proving

• The state of a prover can be expressed as:

$$H_1 \wedge ... \wedge H_n \Rightarrow^{\gamma} G$$

- Given the hypotheses Hi try to derive goal G
- Written also as [H₁, ..., H_n] ⇒ G
- A forward theorem prover derives new hypotheses, in hope of deriving 6
 - If $H_1 \wedge ... \wedge H_n \Rightarrow H$ then
 - move to state [H_1 , ... , H_n , H] \Rightarrow ² G
 - Success state: $[H_1, ..., G, ..., H_n] \Rightarrow^2 G$
- A forward theorem prover uses heuristics to reach 6
 - Or it can exhaustively derive everything that is derivable!

Automated Deduction - George Necula

Forward Chaining

· Consider a theory with proof rule

$$\forall x. A_1 \wedge ... \wedge A_m \Rightarrow C$$

Use this rule for forward chaining

- 1. in state $[H_1, ..., H_n] \Rightarrow G$
- 2. Find a substitution Φ
- 3. such that for all i = 1, ..., m exists j. $\Phi(A_i) = H_i$
- 4. Then move to state $[H_1, ..., H_n, \Phi(C)] \Rightarrow G$

Automated Deduction - George Necula

Example of Forward Chaining

· Consider the axiom

$$\forall x. \ a(x) \land b(x,y) \Rightarrow c(x)$$

and state

..., a(†), ..., b(†, †'), ...
$$\Rightarrow$$
? G

· move to state

...,
$$a(t)$$
, ..., $b(t, t')$, ..., $c(t) \Rightarrow^{9} G$

• In general a rule $\forall x.\ A_1 \land ..., \land A_m \Rightarrow C$ works for forward chaining if $Var(C) \subseteq \cup_{i=1,m} Var(A_i)$

Automated Deduction - George Necula

Backward Theorem Proving

- · A <u>backward</u> theorem prover derives new subgoals from the goal

 - The current state is [H_1 , ..., H_n] \Rightarrow ² G- If $H_1 \wedge ... \wedge H_n \wedge G_1 \wedge ... \wedge G_n \Rightarrow G$ (G_i are subgoals)
 - Produce "n" new states (all must lead to success): $[\;H_1\;,\;...\;,\;H_n\;]\Rightarrow^{\flat} G_i$
- · Prolog works like this

Automated Deduction - George Necula

Backward Chaining

· Consider a theory with proof rule

$$\forall x. A_1 \wedge ... \wedge A_m \Rightarrow C$$

Use this rule for backward chaining

- 1. in state [H_1 , ... , H_n] \Rightarrow ? G
- 2. Find a substitution Φ
- 3. such that $\Phi(C) = G$
- 4. for all i = 1, ..., m
 - Solve the state $[H_1, ..., H_n] \Rightarrow^{\gamma} \Phi(A_i)$

Automated Deduction - George Necula

Example of Backward Chaining

· Consider the axiom

```
\forall x.\ a(x) \land b(x) \Rightarrow c(x,y)
```

In state

[...]
$$\Rightarrow$$
? c(t, t')

· move to states

```
[\dots] \Rightarrow^{?} a(t) and [\dots] \Rightarrow^{?} b(t)
```

• In general a rule $\forall x. A_1 \land ... \land A_m \Rightarrow C$ works for forward chaining if $\cup_{i=1,m} Var(A_i) \subseteq Var(C)$

Automated Deduction - George Necula

Programming Theorem Provers

- Backward theorem provers most often use heuristics
- · If it useful to be able to program the heuristics
- Such programs are called <u>tactics</u> and tactic-based provers have this capability
 - E.g. the Edinburgh LCF was a tactic based prover whose programming language was called the Meta-Language (ML)
- A tactic examines the state and either:
 - Announces that it is not applicable in the current state, or
 - Modifies the proving state

Automated Deduction - George Necula

Programming Theorem Provers. Tactics.

- State = Formula list × Formula
 - A set of hypotheses and a goal
- · A tactic given a state has three possible outcomes
 - Success: proves the goal
 - Change: makes some changes to the state
 - Fail: cannot prove the goal, or make changes to the state
- Write the tactic in continuation-passing style Tactic = State \rightarrow (proof \rightarrow α) \rightarrow (State \rightarrow α) \rightarrow (unit \rightarrow α) \rightarrow α

Automated Deduction - George Necula

Congruence Closure as a Tactic

• Example: a congruence-closure based tactic

```
cc (h, false) s c f = if contradiction detected then s proof_of_false else let e_1,...,e_n new equalities in the congruence closure of h c (h \cup {e_1,...,e_n}, false) else (* no new equalities *) f ()
```

- A forward chaining tactic (also called a <u>rewriting</u> step)

Automated Deduction - George Necula

Programming Theorem Provers. Tactics.

- Consider an axiom: ∀x. a(x) ⇒ b(x)
 Like the clause b(x):- a(x) in Prolog
- This could be turned into a tactic

- A backward chaining tactic

Automated Deduction - George Necula

Programming Theorem Provers. Tacticals.

- Tactics can be composed using <u>tacticals</u> Examples:
- THEN: tactic \rightarrow tactic \rightarrow tactic THEN t₁ t₂ = $\lambda h \lambda s. \lambda c. \lambda f.$ t₁ h s ($\lambda h'.$ t₂ h' s c f) f
- $\begin{array}{l} \bullet \quad \text{ORELSE}: \texttt{tactic} \rightarrow \texttt{tactic} \rightarrow \texttt{tactic} \\ \quad \text{ORELSE} \ \texttt{t}_1 \ \texttt{t}_2 = \lambda h \lambda s. \lambda c. \lambda f. \ \texttt{t}_1 \ h \ s. c. (\lambda h'. \texttt{t}_2 \ h' \ s. c. f) \end{array}$
- BOTH: tactic \rightarrow tactic \rightarrow tactic • BOTH t₁ t₂ = $\lambda h.\lambda s.\lambda c.\lambda f.$ t₁ h (λ __, t₂ h s c f) c f
- REPEAT: tactic → tactic
 REPEAT + = THEN + (REPEAT +)

Automated Deduction - George Necula

12

Programming Theorem Provers. Tacticals

- · Prolog is just one possible tactic:
 - Given backwards tactics for each clause: $c_1, ..., c_n$
 - Prolog: tactic

```
Prolog = REPEAT (c<sub>1</sub> ORLESE c<sub>2</sub> ORELSE ... ORELSE c<sub>n</sub>)
```

- clauses themselves can invoke Prolog on the subgoals
- This is a very powerful mechanism for semi-automatic theorem proving
 - Used in: Isabelle, HOL, Coq, and many others

Automated Deduction - George Necula

13

Adding Tactical Support to Nelson-Oppen

Automated Deduction - George Necula

Recall Nelson-Oppen

- * The state consists of a set of literals, goal is false [$L_1,...,L_n$] \Rightarrow^2 false
- Nelson-Oppen is a forward theorem prover:
 - The state is [$L_1, ..., L_n$] \Rightarrow ² false
 - If $L_1 \wedge ... \wedge L_n \Rightarrow E$ (an equality) then
 - New state is [L_1 , ... , L_n , E] \Rightarrow false (add the equality)
 - Success state is $[L_1, ..., \underline{L}, ..., \underline{\neg L}, ..., L_n] \Rightarrow^2$ false
- Nelson-Oppen provers exhaustively produce all derivable facts hoping to encounter the goal

Automated Deduction - George Necula

Nelson-Oppen as a Tactical

· Assume that each sat. proc. is a tactic

sat_i: tactic

- sat, (h, false) s c f either
 - Calls s with a proof of false (proved the goal), or
 - \cdot Extends the set of literals with equalities, and calls c, or
 - · Calls f
- Nelson-Oppen: keep extending the set of literals until Contradiction, or no more equalities are possible

no (satlist : tactic list) : tactic = REPEAT (ORELSE_LIST satlist)

Automated Deduction - George Necula

16

14

Nelson-Oppen and Non-Convex Theories

- · Recall, in a non-convex theory:
 - No contradiction is discovered
 - No single equality is discovered
 - But a disjunction of equalities is discovered
- Many theories are non-convex
 - Theory of sel/upd

true $\Rightarrow x = y \lor sel(upd(m,x,v),y) = sel(m,y)$

· How do we handle such theories with Nelson-Oppen?

Automated Deduction - George Necula

${\bf Nelson\hbox{-}{\it Oppen}\ and\ Non\hbox{-}{\it Convex}\ Theories}$

- Consider the state [$L_1, ..., L_n$] \Rightarrow ? false
- and $L_1 \wedge ... \wedge L_n \Rightarrow E_1 \vee E_2$
- We add to the state of Nelson-Oppen disjunctions of equalities, not just literals
 - Most sat. proc. work as before (ignore disjunctions)
 - Non-convex sat. proc. add disjunctions
- We have a new module Case that processes disjunctions
 - After there is nothing else to do

Automated Deduction - George Necula

18

The Case Analysis Tactic

```
 Define the Case tactic
 Case (h, false) s c f =
```

```
if no disjunctions in h then f () elseif L \in h and \neg L \lor L' \in h then c (h \cup { L'}, false) else pick L \lor L' \in h; c (h \cup { L}, false); c (h \cup { L'}, false)
```

- \cdot Case splitting for Nelson-Oppen is useful
 - for non-convex theories
 - for adding backwards chaining sat. procs.

Automated Deduction - George Necula

19

Recall: Nelson-Oppen with Proof Generation

```
NO: (pair of L:f and pf L) list \rightarrow pf false NO F = match asat(F), bsat(F) with | Contra d, \_ \rightarrow d | \_, Contra d \rightarrow d | Eq (x = y, d), \_ \rightarrow NO (F \cup { (x = y, d) }) | \_, Eq (x = y, d) \rightarrow NO (F \cup { (x = y, d) }) | Sat, Sat \rightarrow raise NoProof
```

- With the following properties:
 - If asat F = Contra d, then d : pf false
 - If asat F = Eq(x = y, d), then $d : pf(eq \times y)$

Automated Deduction - George Necula

Necula 20

Propagating Disjunctions of Equalities

- To propagate disjunctions we perform a case split:
- If a disjunction of equalities $E_1 \vee E_2$ is discovered:
- Must try to derive a contradiction for $\underline{each} \; E_i$ assumption ! NO F =

Automated Deduction - George Necula

21

Handling Non-Convex Theories

- Case splitting is expensive
 - Must backtrack (performance --)
 - Must implement all satisfiability procedures in incremental fashion (simplicity --)
- In some cases the splitting can be prohibitive:
 - Take pointers for example.

```
\begin{split} & \mathsf{upd}(\mathsf{upd}(\mathsf{...}(\mathsf{upd}(\mathsf{m},i_1,\times),\mathsf{...},i_{n-1},\times),i_n,\times) = \\ & \mathsf{upd}(\mathsf{...}(\mathsf{upd}(\mathsf{m},j_1,\times),\mathsf{...},j_{n-1},\times) \wedge \\ & \mathsf{sel}(\mathsf{m},i_1) \neq \times \wedge \mathsf{...} \wedge \mathsf{sel}(\mathsf{m},i_n) \neq \times \\ & \mathsf{entails} \ \lor_{j \neq k} \ i_j \neq i_k \\ & (\mathsf{a} \ \mathsf{conjunction} \ \mathsf{of} \ \mathsf{length} \ \mathsf{n} \ \mathsf{entails} \ \mathsf{n}^2 \ \mathsf{disjuncts}) \end{split}
```

Automated Deduction - George Necula

22