Forward vs. Backward Theorem Proving
Tactics

Automated Deduction - George Necula

Forward vs. Backward Theorem Proving

The state of a prover can be expressed as:
HiA o AH, =76

- Given the hypotheses H, try to derive goal &

- Writtenalsoas [Hy, .., H,] =" G

A forward theorem prover derives new hypotheses, in
hope of deriving &
- If Hy A .. AH, = Hthen

move to state [H, , .. ,H, ,H1="6
- Success state: [H,,..,6,..H,]=76
A forward theorem prover uses heuristics to reach &
- Or it can exhaustively derive everything that is derivable !

Automated Deduction - George Necula 2

Forward Chaining

Consider a theory with proof rule
VX, AiA L ANAL=C
Use this rule for forward chaining

1. instate[H,,.. H, 1="6G
2. Find a substitution ®
3. such that foralli=1, .., mexists j. ®(A) = Hj

4. Then move to state [H;, .. , H,,®(C)]1="6

Automated Deduction - George Necula

Example of Forward Chaining

+ Consider the axiom
vx. a(x) A b(x,y) = c(x)
+ and state
.,a(t), ., b(t, 1), .. =26
move to state
., a(t), ., b(t, 1), .., c(t) =76

+ Ingeneral aruleVx. Aj A .., A A, = Cworks for
forward chaining if Var(C) C U, Var(A)

Automated Deduction - George Necula 4

Backward Theorem Proving

+ A backward theorem prover derives new subgoals
from the goal
- The current stateis [H,, .. , H, =" 6
- IfH A AH, AG A .. NG, =G (G are subgoals)
- Produce "n" new states (all must lead to success):
[H,,..,H,1=76

+ Prolog works like this

Automated Deduction - George Necula 5

Backward Chaining

Consider a theory with proof rule
VX. AiAN L ANAL=C
Use this rule for backward chaining

instate [H;, .. ,H,]1=?6
. Find a substitution ®
. such that ®(C)=6
. foralli=1,..,m

A wN =

Solve the state [H;, .., H, 1= ®(A)

Automated Deduction - George Necula 6

Example of Backward Chaining

Consider the axiom
Vx. a(x) A b(x) = c(x,y)
+ Instate
[..]1=?c(t, 1)
* move to states
[..1=?a(t) and [..1=?b(t)

+ Ingeneral arule Vx. A; A .. A A, = Cworks for
forward chaining if U, Var(A)) € Var(C)

Automated Deduction - George Necula 7

Programming Theorem Provers

+ Backward theorem provers most often use heuristics
+ If it useful to be able to program the heuristics

* Such programs are called tactics and tactic-based
provers have this capability

- E.g. the Edinburgh LCF was a tactic based prover whose
programming language was called the Meta-Language (ML)

A tactic examines the state and either:

- Announces that it is not applicable in the current state, or
- Modifies the proving state

Automated Deduction - George Necula 8

Programming Theorem Provers. Tactics.

+ State = Formula list x Formula
- A set of hypotheses and a goal
+ A tactic given a state has three possible outcomes
- Success: proves the goal
- Change: makes some changes to the state
- Fail: cannot prove the goal, or make changes to the state

+ Write the factic in continuation-passing style
Tactic = State — (proof — o) — (State — a) — (unit — o) —

Automated Deduction - George Necula 9

Congruence Closure as a Tactic

+ Example: a congruence-closure based tactic
cc (h, false)scf=
if contradiction detected then
s proof_of_false

else
let ey, ..., e, new equalities in the congruence closure of h
c(hu{ey, .., ey}, false)

else (* no new equalities *)

f0

- A forward chaining tactic (also called a rewriting step)

Automated Deduction - George Necula 10

Programming Theorem Provers. Tactics.

+ Consider an axiom: Vx. a(x) = b(x)
- Like the clause b(x) :- a(x) in Prolog

+ This could be turned info a tactic
clause (h,g)scf=
if unif(g, b) = ¢ then
c (h, ¢(a))

else

f0

- A backward chaining tactic

Automated Deduction - George Necula 11

Programming Theorem Provers. Tacticals.

+ Tactics can be composed using tacticals
Examples:
+ THEN: tactic — tactic — tactic
THEN t; 1, = AhAsAcAf. t;hs (M. 1, h'scf) f
+ ORELSE : tactic — tactic — tactic
ORELSE 1, t, = AhAsAcAf. t; hs ¢ (Mh't, h's ¢)
BOTH: tactic — tactic — tactic
- BOTH f;t,= AhashcAf. t,h(A_.t,hscf)cf

+ REPEAT : tactic — tactic
REPEAT t = THEN t (REPEAT 1)

Automated Deduction - George Necula 12

Programming Theorem Provers. Tacticals

+ Prolog is just one possible tactic:
- Given backwards tactics for each clause: ¢y, ..., ¢,
- Prolog : tactic
Prolog = REPEAT (c; ORLESE ¢, ORELSE ... ORELSE c,)

- clauses themselves can invoke Prolog on the subgoals
+ This is a very powerful mechanism for semi-automatic

theorem proving
- Used in: Isabelle, HOL, Coq, and many others

Automated Deduction - George Necula 13

Adding Tactical Support to Nelson-Oppen

Automated Deduction - George Necula 14

Recall Nelson-Oppen

+ The state consists of a set of literals, goal is false
[Ly, ... L, 1= false

+ Nelson-Oppen is a forward theorem prover:
- Thestateis[L,, .., L,] =" false
- If Ly A .. AL, = E (an equality) then
- New stateis[L;, .., L,, E]=7false (add the equality)
- Success stateis[L;,..,L,..,=L,.L,]=7false

+ Nelson-Oppen provers exhaustively produce all
derivable facts hoping to encounter the goal

Automated Deduction - George Necula 15

Nelson-Oppen as a Tactical

+ Assume that each sat. proc. is a tactic
sat; tactic
sat; (h, false) s ¢ f either
+ Calls s with a proof of false (proved the goal), or
+ Extends the set of literals with equalities, and calls ¢, or
+ Calls f
* Nelson-Oppen : keep extending the set of literals until
Contradiction, or no more equalities are possible

no (satlist : tactic list) : tactic =
REPEAT (ORELSE_LIST satlist)

Automated Deduction - George Necula 16

Nelson-Oppen and Non-Convex Theories

+ Recall, in a non-convex theory:
- No contradiction is discovered
- No single equality is discovered
- But a disjunction of equalities is discovered
+ Many theories are non-convex
- Theory of sel/upd
true = x =y V sel(upd(m,x,v).y) = sel(m.y)

+ How do we handle such theories with Nelson-Oppen ?

Automated Deduction - George Necula 17

Nelson-Oppen and Non-Convex Theories

Consider the state [L,, .., L,] =" false
candL, AL AL, =E VE,

- We add to the state of Nelson-Oppen disjunctions of
equalities, not just literals
- Most sat. proc. work as before (ighore disjunctions)
- Non-convex sat. proc. add disjunctions

*+ We have a new module Case that processes
disjunctions

- After there is nothing else to do

Automated Deduction - George Necula 18

The Case Analysis Tactic

+ Define the Case tactic
Case (h, false)sc f =
if no disjunctions in h then f ()
elseif Lehand =L VL €hthenc(hu{L}, false)
else pick LV L €h;
c(hu{L}, false);
c(hu{L?}, false)

+ Case splitting for Nelson-Oppen is useful
- for non-convex theories
- for adding backwards chaining sat. procs.

Automated Deduction - George Necula 19

Recall: Nelson-Oppen with Proof Generation

NO: (pair of L:f and pf L) list — pf false

NO F =
match asat(F), bsat(F) with
| Contrad, _ ->d
| _, Contrad->d

I Eq(x=y,d),_>NO(Fu{(x=y d)})
| Eq(x=y,d)>NO(Fu{(x=y,d)}
| Sat, Sat -> raise NoProof
+ With the following properties:
- If asat F = Contrad, thend : pf false
- Ifasat F=Eq(x=vy,d),thend: pf (eq xy)

Automated Deduction - George Necula 20

Propagating Disjunctions of Equalities

+ To propagate disjunctions we perform a case split:
+ If adisjunction of equalities E; v E, is discovered:
- Must try to derive a contradiction for each E; assumption !
NO F =
match asat(F), bsat(F) with

| Disj (x;=y; V Xz =y, d) =
let d; = Mhy: pf (eq X1 ;). NO (FU {(x;=y;, h)) D)
let d, = Ah,: pf (eq X, y2). NO (FU{ (X2 =Yy, h,) })
oredd; d,
with ore: IT A B,C:f. pf (or A B) —
(pf A= pf C) — (pf B — pf C) —» pf C

Automated Deduction - George Necula 21

Handling Non-Convex Theories

- Case splitting is expensive
- Must backtrack (performance --)

- Must implement all satisfiability procedures in incremental
fashion (simplicity --)

- Insome cases the splitting can be prohibitive:
- Take pointers for example.
upd(upd(...Cupd(m, iy, X), ., inq, X), in, X) =
upd(...(upd(m, j1, X), ., jn1, X) A
sel(m, i) # x A ... A sel(m, i) # x
entails Vi # iy
(a conjunction of length n entails n? disjuncts)

Automated Deduction - George Necula 22

