Satisfiability Procedure for Arithmetic

- Symbols: \(n, +, -, \geq, \leq, = \)
- Like quantifier-free Presburger arithmetic.
- The sat. problem is to determine the set of a system of linear inequalities.
- Equivalent to the linear programming problem \(\rightarrow \) known to be in \(P \)
- If we add the constraint that \(v \) variables range over integers \(\rightarrow \) integer programming \(\in \text{NP} \) (NP complete)
 \(\rightarrow \) in practice LP algorithms are sound approximations of IP algorithms.
- Pratt observed that most inequalities arising in program verification are of the form \(x - y \leq c \) or \(x \leq c \) or \(y \geq c \)
- There is a simple algorithm for this case.
 Then we will look at Shostak’s generalization of Pratt’s algorithm.
Pratt's algorithm

Let C be a satisfiable set of inequalities $x_i - x_j \leq c$

Note: To handle $x \leq c$ and $x \geq c$ we introduce a variable z (to stand for 0) and we rewrite $x \leq c$ to $x - z \leq c$ and $x \geq c$ to $z - x \leq c$

Claim: the satisfiability of a set of constraints is preserved by this move.

Proof: if Ψ is a sat. interpretation for C then

$\Psi'(x) = \Psi(x) \lor 0$ is another sat. interp. (for any constant a)

Think of C representing a directed graph whose nodes are labelled with variables

For $x_i - x_j \leq c$

add an edge $\overrightarrow{x_i \rightarrow x_j}^c$

Let $S_{ij} = \begin{cases} \text{length of the shortest path from } x_i \text{ to } x_j \\ \infty \text{ if no path exists} \end{cases}$

S_{ij} is well defined if only if there are no negative-weight cycles in the graph.
Assume there is a negative-weight cycle.

\[x_1 - x_2 \leq c_1 \]
\[x_2 - x_3 \leq c_2 \]
\[\vdots \]
\[x_n - x_1 \leq c_n \]

0 \leq c_1 + c_2 + \ldots + c_n < 0

This means that C is not satisfiable.

Thus, satisfiability can be decided by finding negative-weight cycles.

See Bellman-Ford’s algorithm that runs in \(O(|v| \cdot |e| + |v| \cdot |c|) \).

We need to modify slightly the algorithm to make it incremental.

- undoable
- detect all equalities between variables.
- and produce proofs.

First an important lemma.

If C is satisfiable then

\[\delta_{ij} = \max_{\psi} \psi(x_i - x_j) \]

(defined as \(\infty \) if no such maximum)
Proof

for any \(\psi \vdash C \) \((\psi \text{ is a sat. interp. for } C) \)

\[\psi(x_i-x_j) \leq \delta_{ij} \]

(take the path from \(x_i \) to \(x_j \) and add all the constraints. Get \(C \Rightarrow x_i-x_j \leq \delta_{ij} \))

Thus

\[\max_{\psi \vdash C} \psi(x_i-x_j) \leq \delta_{ij} \]

- Now we must show that there exists a sat. interp. \(\psi \) such that \(\psi(x_i-x_j) = \delta_{ij} \)

Define \(\psi(x_k) = \psi(x_j) + \delta_{k,j} \) for all \(k \) such that \(\delta_{k,j} < \infty \)

\(\psi \) satisfies \(C \). Take \(x_e-x_m \leq a \in C \)

\[\psi(x_e-x_m) = \delta_{e,j} - \delta_{m,j} \leq \delta_{e,m} \leq a \]

\[\text{triangle inequality} \]

\[\text{a is the length of one path from } e \text{ to } m \]

\[\text{we still need to consider the case when} \]

- \(\delta_{ij} = \infty \). We must show that \(\psi(x_i-x_j) \) can be arbitrarily large

- \(x_e \) or \(x_m \) are not predecessors of \(j \) in the graph
Lemma 2

- If C is satisfiable and d_{ij} are the shortest path length then

$$C \land x_i - x_j \leq a \text{ is sat } \iff d_{ji} + a \geq 0$$

(This means that we can incrementally check satisfiability)

Proof. $d_{ji} + a < 0$ But $C \Rightarrow x_j - x_i \leq d_{ji}$

Thus $C \land x_i - x_j \leq a \Rightarrow 0 \leq d_{ji} + a$

Now assume $C \land x_i - x_j \leq a$ is not sat

$C \Rightarrow x_i - x_j > a$

$C \Rightarrow x_j - x_i < -a$

But $\max_{x \in \mathcal{E}} \psi(x_j - x_i) = d_{ji}$ \quad \Rightarrow \quad d_{ji} < -a$

Lemma 3

- If C is satisfiable then

$C \Rightarrow x_i = x_j$ if $d_{ij} = d_{ji} = 0.$

Proof easy using the max interpretation of d_{ij}.

(This gives us an easy way to detect all equalities)
Lemma 4

If C is satisfiable and $C \land x_i = x_j \land a$ is satisfiable then

$$d_{ki}^{' min} = \min (d_{ke}, d_{ki} + a + d_{je})$$

Proof: simple given the shortest-path interpretation of d_{ke}

(This means that an incremental step has an easy way to recompute S)

\Rightarrow complexity $O(n^2)$ for each step

Lemma 5

C is satisfiable in integers

C is satisfiable in reals

Easy based on path interpretation of d_{ij}

This is a special case when a SAT proc for R is also one for \mathbb{N}

$!!$ But the theory is only convex in $\mathbb{R} !!$
Algorithm

- we use an undoStack to allow undo
- we use a data structure to store d_{ij}
 (sparse array with easy access to the line and column of i)
- we use a data structure P_{ij} with invariant

 \[
 \text{if } d_{ij} < \infty \text{ then } \\
 P_{ij} = (x_k - x_e \leq a, \text{pref}) \text{ such that } \\
 d_{ij} = d_{ik} + a + d_{ej} \text{ and } \\
 \text{pref: pref} (x_k - x_e \leq a)
 \]

 (P_{ij} tells us that the shortest path from i to j passes through k and l)
assert \((x_i-x_j \leq a, \text{prf})\)
 - addNode \(x_i\) and \(x_j\) if necessary
 - if \(d_{ij} \leq a\) then return
 - if \(d_{ji} + a < 0\) then
 raise Contra \((\text{mkPrattCondPrf}(i, j, a, \text{prf}))\)
 - for each \(k \in \text{Column}(i), l \in \text{Line}(j)\)
 if \(d_{ke} > d_{ki} + a + d_{ji}\) then
 push \((k, l, d_{ke}, \text{Prf})\) on the undoStack
 \(d_{ke} \leftarrow d_{ki} + a + d_{ji}\)
 \(\text{Prf} \leftarrow (x_i-x_j \leq a, \text{prf})\)

\[=\]

\(\text{acc} \leftarrow \text{nil}\)
 - for each \(k, l\)
 if \(d_{ke} = d_{lk} = 0\) then
 \(\text{acc} = \text{acc} \cup \{(x_k=x_l, \text{mkPrattEqPrf}(k, l))\}\)

 - return \(\text{acc}\)

addNode \(x_i\)
 - set \(d_{ii} = 0\), \(d_{ij} = d_{ji} = \infty\) for \(j \neq i\)
 - push \((\text{add } x_i)\) on the undoStack

undo
 pop \((\text{add } x_i)\) from undoStack
 remove \(x_i\)
 pop \((k, l, d_{ke}, \text{Prf})\) from undoStack
 \(d_{ke} \leftarrow a\)
 \(\text{Prf} \leftarrow \text{Prf}\).
Example with Pratt

Consider the set of inequalities:

\[x \geq u, \quad y \leq 0, \quad u + 3 \geq x, \quad x + 1 \leq y, \quad u + 1 \geq 0 \quad v + 2 \geq 0 \quad v - 3 \leq u - 2 \]

After asserting \[x \geq u, \quad y \leq 0, \quad u + 3 \leq x \] we have

\[
\begin{array}{cccc}
\times & u & y & z \\
\hline
x & 0 & \theta & 0 \\
u & 0 & 0 & 0 \\
y & 0 & 0 & 0 \\
z & 0 & 0 & 0 \\
\end{array}
\]

After asserting \[x + 1 \leq y \] (OK, since \(\delta_{yx} + 1 \geq 0 \))

\[
\begin{array}{cccc}
\times & u & y & z \\
\hline
x & 0 & 3 & -1 & -1 \\
u & 0 & 0 & -1 & -1 \\
y & 0 & 0 & 0 & 0 \\
z & 0 & 0 & 0 & 0 \\
\end{array}
\]
After asserting $u + 1 \geq 0$ (Ok since $5u_2 + 1 \geq 0$)

\[
\begin{array}{cccc}
\text{X} & \text{M} & \text{Y} & \text{Z} \\
\hline
\text{X} & 0 & 0 & -1 & -1 \\
\text{Y} & 0 & 0 & -1 & -1 \\
\text{Z} & 1 & 1 & 0 & 0 \\
\text{V} & 1 & 1 & 0 & 0 \\
\end{array}
\]

Detects equalities $x = u$ and $y = z$

After asserting $v + 2 \geq 0$ (Ok since $5v_2 + 2 \geq 0$)

\[
\begin{array}{cccc}
\text{X} & \text{U} & \text{Y} & \text{Z} & \text{V} \\
\hline
\text{X} & 0 & 0 & -1 & -1 & 1 \\
\text{U} & 0 & 0 & -1 & -1 & 1 \\
\text{Y} & 1 & 1 & 0 & 0 & 0 \\
\text{Z} & 1 & 1 & 0 & 0 & 2 \\
\text{V} & 1 & 1 & 0 & 0 & 2 \\
\end{array}
\]

Now try to add $x \leq u - 2$.

Contrary since $5u_2 + -2 < 0$