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Abstract. We describe a program verification methodology for spec-
ifying global shape properties of data structures by means of axioms
involving predicates on scalar fields, pointer equalities, and pointer dise-
qualities, in the neighborhood of a memory cell. We show that such local
invariants are both natural and sufficient for describing a large class of
data structures. We describe a complete decision procedure for axioms
without disequalities, and practical heuristics for the full language. The
procedure has the key advantage that it can be extended easily with
reasoning for any decidable theory of scalar fields.

1 Introduction

This paper explores a program verification strategy where programs are an-
notated with invariants, and decision procedures are used to prove them. A
key element of such an approach is the specification language, which must pre-
cisely capture shape and alias information but also be amenable to automatic
reasoning. Type systems and alias analyses are often too imprecise. There are
very expressive specification languages (e.g., reachability predicates [15], shape
types [4]) with either negative or unknown decidability results. A few systems
such as TVLA [19] and PALE [13] have similar expressivity and effectiveness,
but use logics with transitive closure and thus incur additional restrictions.

We propose to use local equality axioms for data structure specification
(“LEADS”), such as “for every list node n, n.next.prev = n”, which specifies
a doubly-linked list. This simple idea generalizes to describe a wide variety of
shapes, as subsequent examples will show. And, as each specification constrains
only a bounded fragment of the heap around a distinguished element n (unlike
with transitive closure), it is fairly easy to reason about.

There are two main contributions of this work. First, we present a methodol-
ogy for specifying shapes of data structures, using local specifications. The spec-
ifications use arbitrary predicates on scalar fields and equality between pointer
expressions to constrain the shape of the data structure. We show that such local
specifications can express indirectly a number of important global properties.

The second contribution is a decision procedure for a class of local shape
specifications as described above. The decision procedure is based on the idea
that local shape specifications have the property that any counterexamples are
also local. This decision procedure is not only simple to implement but fits



naturally in a cooperating decision procedure framework that integrates pointer-
shape reasoning with reasoning about scalar values, such as linear arithmetic, or
uninterpreted functions.

A related contribution is to the field of automated deduction, for dealing
with universally quantified assumptions: the matching problem is that of finding
sufficient instantiations of universally quantified facts to prove a goal. Perform-
ing too few instantiations endangers completeness while performing too many
compromises the performance of the algorithm and often even its termination.
For the class of universally quantified axioms that we consider here we show
a complete and terminating matching rule. This is a valuable result in a field
where heuristics are the norm [14,2].

Our experimental results are encouraging. We show that we can describe
the same data structures that are discussed in the PALE publications, with
somewhat better performance results; we can also encode some data structures
that are not expressible using PALE. We also show that the matching rules
are not only complete, but lead to a factor of two improvement in performance
over the heuristics used by Simplify [2], a mature automatic theorem prover.
Furthermore, unlike matching in Simplify, our algorithm will always terminate.

2 Methodology Example

We follow a standard program verification strategy (e.g., [14]), with programmer-
specified invariants for each loop and for the function start (precondition) and
end (postcondition). We use a symbolic verification condition generator to ex-
tract a verification condition for each path connecting two invariants. The em-
phasis in this paper is on the specification mechanism for the invariants and the
decision procedure for proving the resulting verification conditions.

Suppose we wish to verify the procedure in Figure 1, part of a hypothetical
process scheduler written in a Java-like language. It has the job of removing a
process from the list of runnable processes, in preparation for putting it into the
list of sleeping processes. Each list is doubly-linked.

We capture the data structure invariants using the set of axioms in Figure 1,
where the quantifier ranges over list cells. These axioms constitute the data
structure invariant, and must hold at the start and end of the function. Axioms
A1l and A2 express the local invariant that the next and prev fields are inverses.
Axiom A3 says that all the processes in a list have the same state (RUN or SLP),
and axiom A4 says that all the runnable processes have non-increasing priorities.

To begin verifying insert, we need a formal precondition:

PRE: x#null A x.prev# null A x.state = RUN

The verification condition generator produces verification conditions, which are
implications where the left-hand side consists of the function precondition along
with the current path predicates, and the right-hand side is the goal to prove.
We use the standard strategy to show validity of the verification condition by
showing that its negation is unsatisfiable. For example, to prove that we do not
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1 // precondition: x is runnable (RUN) and not first in list
2 void remove(Process x) {

runnable
3 X.prev.next = x.next;

. next next next
boar Gonext) I s i i B
5 X.next.prev = x.prev; prev prev prev
6 x.state = SLP; sleeping
7 x.next = x.prev = null; ‘neXt ﬁneXt ﬁnem | I
8% I prev — prev — prev

Al.  Vp.p #null A p.next # null = p.next.prev =7p
A2. Vp.p#null A p.prev # null = p.prev.next = p
A3.  Vp.p #null A p.next # null = p.state = p.next.state

A4.  Vp.p #null A p.next # null A p.state = RUN = p.prio > p.next.prio
Fig. 1. A scheduler remove function and its data structure axioms.

dereference null in x.next on line 3, we must show unsatisfiability of PRE A
x = null. This can be done without any reference to the axioms.

What is harder to show is that the axioms hold when the function returns.
Consider first showing that axiom A3 still holds, which is non-trivial since the
axiom depends on the mutated fields next and state. An update ¢.f = v is
modeled by saying that the function modeling field £ is changed into £[g — v],
with semantics

v ifp=gq

ptlg— 0] = { (upd)

p.f otherwise

The updated values of the next and state fields relevant to A3 are:

next’ = next[x.prev — x.next|[x — null]
state’ = state[x — SLP]

We have to verify that A3 still holds:
Vq. ¢ #null A ¢.next’ #null = g¢.state’ = ¢.next’.state’ (goal)

To prove a formula involving updated fields, such as q.next’, we first elimi-
nate the field updates by performing the case analysis suggested by the update
equation (upd). In each case, what remains to be shown is that a conjunction of
literals involving field accesses is unsatisfiable in the presence of some universally
quantified local equality axioms.

For our example, there are twelve cases to consider: ¢g.next’ has cases q = x,
q = x.prev # x, and q¢ # x A ¢ # x.prev; ¢q.state’ has cases ¢ = x and q # x;
and ¢g.next’.state’ has cases ¢.next’ = x and g.next’ #* x. Several cases can
be shown unsatisfiable without relying on the axioms.

Four cases require using the axioms; one such case is when ¢ = x.prev # x
and ¢g.next’ = x. Consequently ¢g.state’ = g.state, g.next’ = x.next and
q.next’.state’ = x.next.state. We must show ¢.state = x.next.state. We
first instantiate A2 at x (written A2[x/p]) to derive x.prev.next = x, implying
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Injectivity Vp.p #null A p.a#null = pab=2p

Transitivity Vp. p #null A p.a # null = p.ab=pb
Order Vp. p #null A p.a # null = p.ab > pb
Grid Vp. p # null A p.a # null A p.f # null = p.a.f =p.f.a

Fig. 2. Four important axiom forms.

g.next = x. Then we instantiate A3[q/p| to derive g.state = x.state, and finally
A3[x/p] to derive x.state = x.next.state.

The essence of the above discussion is that the verification strategy will per-
form case analysis based on the memory writes and will generate facts that must
be proved unsatisfiable using a number of axiom instantiations. The only diffi-
culty is how to decide what instances of axioms to use; a strategy that instanti-
ates too few axioms will not be complete (we might fail to prove unsatisfiability),
while a strategy that instantiates too many might not terminate.

2.1 Unrestricted Scalar Predicates

Scalar predicates let us connect the shape of a data structure with the data stored
within it. One advantage of our specification strategy is that we we can combine
our satisfiability procedure with that of any predicate that works within the
framework of a Nelson-Oppen theorem prover [16]. While other approaches often
abstract scalars as boolean fields [13,19], we can reason about them precisely.
For example, in order to verify that the function remove shown in Figure 1
preserves the priority ordering axiom A4, we need transitivity of >, so we use a
satisfiability procedure for partial orders. We also use scalar predicates to allow
descriptions for different types of objects to coexist (e.g., a list and a tree), by
predicating axioms on the object’s dynamic type (modeled as a field).

2.2 Useful Axiom Patterns

In the process of specifying data structures, we have identified several very useful
axiom patterns; four are shown in Figure 2. For example, axiom A1 of the sched-
uler example is an instance of the injectivity pattern. Such an injectivity axiom
implies useful must-not-alias facts such as z # y A z.a # null = =z.a # y.a.
Injectivity can specify tree shapes as well, for example:

Vp. p#null A p.left #null = p.left.inv=p A pleftkind=1L
Vp. p#null A pright # null = p.right.inv=p A p.right.kind =R

where kind is a scalar field and L # R. Such axioms specify that left and right
are mutually injective, because inv is the inverse of their union. However, note
that (to support data structures with sharing) pointers are not required to be
injective; the user states when and where injectivity holds.

The axioms A3 and A4 from the example are similar in that they relate the
value of a certain field across the next field, which is in some sense transitive.
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A transitivity axiom can be used to say that two memory cells are in separate
instances of a data structure; we used axiom A3 to require that the runnable
and the sleeping lists are disjoint. More generally, we can prove the powerful
must-not-reach fact z.b # y.b = z.a" # y.a™, where z.a” means the object
reached from x after following the a field n times. But note that transitivity
axioms cannot express must-reach facts.

Axiom A4 is a non-strict order axiom. In its strict form it can be used to
specify the absence of cycles. In this pattern, any transitive and anti-reflexive
binary predicate can be used in place of >.

We defer discussion of the grid pattern to Section 6. A common theme in
these patterns is that we use equalities and scalar predicates to imply disequali-
ties, which are needed to reason precisely about updates. The interplay between
equality axioms and the entailed disequalities is central to our approach.

2.3 Ghost Fields

Often, a data structure does not physically have a field that is needed to specify
its shape. For example, a singly-linked list does not have the back pointers needed
to witness injectivity of the forward pointers. In such cases, we propose to simply
add ghost fields (also known as auxiliary variables, or specification fields), which
are fields that our verification algorithm treats the same as “real” fields, but do
not actually exist when the code is compiled and run. Thus, to specify a singly-
linked list, we add prev as a ghost field and instead specify a doubly-linked
list. For our prototype tool, the programmer must add explicit updates to ghost
fields. Updates to ghost fields often follow a regular pattern, so are presumably
amenable to inference, but in the limit human assistance is required [10].

2.4 Temporary Invariant Breakage

In our tool, the shape descriptions are required to accurately describe the heap
at procedure entry and exit, and at all loop invariant points. But some programs
need their invariants to be broken temporarily at such points. Our solution is to
introduce a special ghost global pointer called (say) broken, and write axioms
of the form

Vp. p # broken = Q(p)

where Q(p) is the nominal invariant. Then the program can set broken to point
at whichever object (if any) does not respect the invariant. Once the object’s
invariant is repaired, broken can be set to null, meaning all invariants hold.

3 The Specification Language

Figure 3 describes the main syntactic elements of the specification language. This
is a two-sorted logic, with pointer values and scalar values. Scalar predicates may
have any arity. We use the notation £ for disjunctions of pointer equalities, D for
disjunctions of pointer disequalities, and C for disjunctions of scalar constraints.
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Globals x € Var Pointer equalities FE =t =t
Variables P € Var Pointer disequal. D n= b £ ta
Pointer fields L € PField Scalar fields S, R € SField
Pointer paths «,8 == ¢ | a.L Scalar predicates P € Pred
Pointer terms ¢,u = null | z | p.a Scalar constraints C = P({1.5,t2.R)

Fig. 3. Specification language.

Core Language. We have two languages, one a subset of the other. In the
core language, a data structure specification is a finite set of axioms of the form

Vp. EVC (core)

where p ranges over pointer values. Axioms in the core language cannot have
pointer disequalities, but can have scalar field disequalities in C. This language
is expressive enough to describe many common structures, including those of
Figures 1 and 2. Section 4 describes a satisfiability procedure for this language.
Extended Language. The extended language has axioms of the form

Vp. EVCVD (ext)

This language is more expressive; e.g., it allows us to insist that certain pointers
not be null, or to describe additional kinds of reachability, or to require that a
structure be cyclic, among other things. Unfortunately, the extended language
includes specifications with undecidable theories (see below). However, we ex-
tend the satisfiability procedure for the core language to handle many extended
axioms as well, including all forms that we have encountered in our experiments.

Nullable Subterms. Data structure specification axioms naturally have
the following nullable subterms (NS) property: for any pointer term ¢.L or any
scalar term t.5 that appears in the body of an axiom, the axiom also contains
the equality ¢ = null among its disjuncts. This is because fields are not defined
at null. We require that all axioms have the NS property.

Discussion. The keystone of our technical result is the observation that the
NS property ensures the decidability of the axioms in the core language. In con-
trast, if we allow axioms of the form Vp. p.a = p.f8 (in the core language, but
without the NS property), then we could encode any instance of the (undecid-
able) “word problem” [8] as an axiom set and a satisfiability query.

Intuitively, an axiom with the nullable subterms property can be satisfied by
setting to null any unconstrained subterms. This avoids having to materialize
new terms, which in turn ensures termination. Notice however, that if we allow
arbitrary pointer disequalities we can cancel the effect of the NS condition. For
example, the axiom

Vp. p=null V p.a# null

forces t.a to be non-null for any non-null ¢. Thus the unrestricted use of the
disequalities in D makes satisfiability undecidable. In our experiments we ob-
served that pointer disequalities are needed less frequently than other forms,
which motivates separate treatment of the core and extended languages.
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1 unsat(G, DS) =

2 if (G is contradictory then true

8 elseif DS = (DS’ A false) then true

4 elseif a term u € G matches axiom Vp. EVCV D,
5 not yet instantiated for class of w, then
6 for each t;1 =t €&,

7 unsat (G A ti]u/p] = tz2[u/p], DS);

8 for each P(t1.5,t2.R) € C,

9 unsat (G A P(t1[u/p].S,t2[u/p].R), DS);

10 unsat (G, DS A Dlu/p])

11 elseif DS = true then

12 raise Satisfiable(()
13 elseif DS = (DS A (t1 #t2V D))
14 with ¢1 € G and t; € G, then

15 unsat (G Aty #ta, DS');
16 unsat (G, DS A D)

17 else /* search for a cyclic model */

18 for each term ¢; ¢ G where t1 #tz € DS,
19 for each term t3 € GG,

20 unsat (G A t1 =t3, DS);

21 raise MaybeSatisfiable /* give up */

Fig. 4. The basic decision algorithm.
4 A Satisfiability Algorithm

The algorithm is essentially a Nelson-Oppen theorem prover, augmented with
specific matching rules for instantiating the quantified axioms, and deferred,
heuristic treatment of disequalities among uninstantiated terms.

4.1 The Algorithm

The purpose of the algorithm is to determine whether a set of local equality
axioms and a set of ground (unquantified) facts is satisfiable. When used on
axioms without pointer disequalities (core language) the algorithm always ter-
minates with a definite answer. However, in the presence of axioms with pointer
disequalities (extended language) the algorithm may return “maybe satisfiable”.
Note that pointer disequalities in the ground facts do not endanger completeness.

The basic idea of the algorithm is to exploit the observation that in a data
structure described by local axioms, when the facts are satisfiable, they are
satisfiable by a “small” model. Essentially, the algorithm attempts to construct
such a model by setting any unknown values to null.

The algorithm’s central data structure is an equality graph (e-graph) G [16], a
congruence-closed representation of the ground facts. We use the notation t € G
to mean term t is represented in G, and G A f to mean the e-graph obtained by
adding representatives of the terms in formula f to G, and asserting f.

The algorithm must decide which axioms to instantiate and for which terms.
We first define when a ground pointer term uw matches an equality disjunct t; = to
in an axiom with bound (quantified) variable p, as follows:
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— Either #1[u/p] € G or ta[u/p] € G, when neither ¢; nor ¢ is null, or
— t1 is null and t2[u/p] € G (or vice-versa).

We say that a term matches an axiom if it matches all its pointer equality dis-
juncts. An axiom is instantiated with any term that matches the axiom.
These rules implement an “all/most” strategy of instantiation. For example,
an axiom
Vp. ... V pa.a=ppDb

must include (because of NS) disjuncts p.a = null and p. = null. For a ground
term u to match this axiom, it must match every equality disjunct (from the
definition above), so w.c«, u.(3, and either u.cc.a or u.8.b must be represented.
Consequently, asserting the literal u.c.a = u.8.b will require representing at
most one new term, but no new equivalence classes.

If G is an e-graph, and DS is a conjunction (i.e., a set) of disjunctions of
pointer disequalities, we define a satisfiability procedure unsat(G, DSS) that re-
turns true if the facts represented in G along with DS and the axioms are
unsatisfiable, raises the exception Satisfiable if it is satisfiable, and raises the
exception MaybeSatisfiable if the procedure cannot decide satisfiability (in
presence of axioms with pointer disequalities). Figure 4 contains the pseudocode
for this procedure. This procedure is used by first representing the facts in an
e-graph G, and then invoking unsat(G, true).

Lines 2 and 3 identify contradictions in the e-graph. The judgment “G is
contradictory” may make use of a separate satisfiability procedure for the scalar
predicates. We write DS = (DS’ A false) to deconstruct DS. The heart of the
algorithm is in lines 4-10, which instantiate axioms with terms that match, given
the matching rules described above, and performs the case analysis dictated by
the instantiated axioms. Note that the pointer disequalities are deferred by col-
lecting them in DS (line 10). When line 12 is reached, the axioms are completely
instantiated and all cases fully analyzed, but no contradiction has been found.
Thus, the original G A DS was satisfiable; the current G is a witness.

Lines 13-16 handle pointer disequalities where both sides are already repre-
sented in the e-graph. Finally, lines 17-20 attempt to find a satisfying assignment
for the unrepresented terms in DS by setting them equal to other terms that
are represented. The algorithm searches for cyclic models to accommodate data
structures like cyclic lists.

Recalling the proof from Section 2 that A3 holds after next and state have
been modified, we can now explain how the algorithm would prove it. First,
the update rules are used to split the proof into cases; among those cases is
q # x N\ ¢ = x.prev A x.next # x, which (along with the precondition) is used
to initialize G, and unsat(G, true) is invoked. Next, the algorithm determines
that the term x matches axiom A2, because x.prev € G, and begins asserting
its disjuncts. Only the x.prev.next = x disjunct is not immediately refuted.
Asserting this literal causes the new term x.prev.next to be represented, by
putting it into the same equivalence class as x. Since ¢ = x.prev, the term
g.next is now represented, and so ¢ matches A3, and A3[q/p] is instantiated.
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Finally, as x.next is represented, A3[x/p| is also instantiated. After these three
instantiations, case analysis and reasoning about equality are sufficient.

4.2 Analysis of the Algorithm

Correctness when result is “Unsatisfiable”. The algorithm is always right
when it claims unsatisfiability, which in our methodology means that the goal is
proved. The (omitted) proof is a straightforward induction on the recursion.

Correctness when result is “Satisfiable”. When the algorithm raises
Satisfiable(G’), there is a model ¥ that satisfies the original G A DS A A,
where A is the set of axioms:

U(u) =
(u) null otherwise

{u* ifued@

where by u* we denote the representative of u in the e-graph G’. ¥ satisfies A
because for every pointer term u (represented or not) and axiom A, either Afu/p)
has been instantiated, so G’ satisfies A[u/p] (and so does @), or else u does not
match A, in which case there is a pointer equality t; = to in A that does not
match. By the definition of matching, there are two cases:

— Neither ¢; nor to are null, and t1[u/p] ¢ G and ta[u/p] ¢ G. But then
U(t1[u/p]) = ¥(ta[u/p]) = null, satisfying Alu/p].
— t1 is null and t2[u/p] € G. Then ¥(ta[u/p]) = null, satisfying A[u/p].

That is, the matching rules guarantee that if an axiom has not been instan-
tiated, it can be satisfied by setting unrepresented terms to null.
Termination. The essence of the termination argument is that none of the
steps of the algorithm increases the number of pointer equivalence classes in
the e-graph. Whenever a new pointer term ¢t might be created in the process
of extending the e-graph, it is created while adding the fact ¢ = ¢/, where ¢’ is
already in the e-graph. This is ensured by the matching rule that requires one
side of each equality to be present in the e-graph. Furthermore, if ¢ is of the form
t".L, then by the NS property, the disjunct #’ = null is also part of axiom and
thus the matching rule requires t” to be already in the e-graph. Thus ¢ is the
only new term and is added to an existing equivalence class. There are only a
finite number of equality and scalar constraints over a fixed number of pointer
equivalence classes; once all entailed constraints are found, the algorithm halts.
Soundness and completeness on the Core Language. For the core
language, the algorithm stays above line 13, because DS is always empty (true).
As it always terminates, it must always return either Satisfiable or Unsatisfiable.
Complexity. The algorithm has exponential complexity, because of the case
analysis that is performed in processing updates and conditional axioms. If we
have n nodes in the e-graph representing the facts, ¢ axioms with at most &
disjuncts each, then there could be a total of n x a axiom instantiations. We can
think of the algorithm exploring a state space that resembles a tree. Each node
in the tree corresponds to an instance of an axiom, and has a branching factor
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k. Consequently its running time is O(k™*S(n)), where S(n) is the complexity
bound for the underlying satisfiability procedure for scalar constraints.

5 Disequalities

Axioms with disequalities are necessary for specifying some shape properties,
such as never-null pointers and cyclic structures. These often take the form of
termination conditions, for example

Vp. Q(p) = p.next # null

This poses a challenge for automated reasoning, as the basic approach is to
search for a finite model, so we try to set pointers to null wherever possible,
but setting p.next to null is impossible if Q(p) is known to be true.

In the context of the algorithm in Figure 4, this issue arises when we reach
line 17: all axioms have been instantiated, and G is consistent, but there remain
some disequalities DS among terms not represented in G. We cannot report
satisfiability because the consequences of D.S have not yet been considered.

One approach, shown in Figure 4, is to explicitly check for a cyclic model: try
setting unrepresented terms equal to existing terms. When the axioms describe
a cyclic structure, this may be the only way to find a finite model.

Another approach (not shown in the figure for reasons of space) is to sim-
ply grow the model, representing the terms in DS by creating new equivalence
classes. Of course, doing so jeopardizes termination, since the new equivalence
classes may trigger additional axiom instantiations. So, the programmer may
specify an expansion horizon k, and the algorithm will then not create an equiv-
alence class more than k£ “hops” away from the original set of classes. Typically,
we use the bound k = 2.

If the heuristics fail, the algorithm may report MaybeSatisfiable; but the
algorithm will never make a false claim (in particular, the expansion bound is
not involved in a claim of unsatisfiability).

More generally (and optimistically), it is possible to show for specific axiom
sets that the above heuristics are complete: that the algorithm will never report
MaybeSatisfiable. However, it remains future work to develop a systematic way
of constructing completeness arguments for axiom sets containing disequalities.

6 Experiments

Our algorithm has been implemented as a modified version of the Simplify [2]
theorem prover. To evaluate the expressiveness of our specification language, we
compare our prototype verifier to the Pointer Assertion Logic Engine (PALE) [13].
To measure the effectiveness of our decision algorithm, we compare it to the un-
modified Simplify. For several example programs, we measure the lines of anno-
tation, which axiom forms are used (from Figure 2, plus disequalities), and the
time to verify on a 1.1GHz Athlon Linux PC with 768MB RAM. See Figure 5.
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Annot. lines Axiom Forms Verify Time (s)

example LOC  PALE Ours  # inj trans order grid =~ PALE Simplify Ours
bubblesort 47 10 31 2 1.9 0.9 0.6
doublylinked 73 35 69 4 1 2.6 29 19
taillist 73 38 94 3 4 24 1.8 1.3
redblacktree 146 112 224 4 4 19.4 36.5 22.0
gc_copy 38 58 11 2 50.2 15.6
btree 163 185 27 6 96.7 26.4
set_as_list 36 73 12 1 4 19 1.3
pc_keyb 1116 163 2 40.1 38.1
scull 534 360 4 5 58.2 46.4

Fig. 5. Programs verified, with comparison to PALE when available.

We are able to verify all of the examples distributed with PALE', however
PALE requires less than half the lines of annotation. There are three reasons:
(1) in PALE, the backbone tree is concisely specified by the data keyword,
whereas our axioms must spell it out with injectivity, (2) PALE specifications
use transitive closure, whereas we use the more verbose transitivity axioms, and
(3) our language does not assume the program is type-safe (it is C, after all), so
we have explicit axioms to declare where typing invariants hold. We plan to add
forms of syntactic sugar to address these points.

We also selected two data structures that cannot
be specified in PALE. gc_copy is the copy phase
of a copying garbage collector, and has the job of
building an isomorphic copy of the from-space, as
shown at right. This isomorphism, embodied by the
forwarding pointers f, is specified by the “grid” or
“homomorphism” axiom Vp. ... = p.a.f =p.f.a.
This axiom (along with injectivity of f) describes a data structure where the
targets of £ pointers are isomorphic images of the sources.

The btree benchmark is a B-+-tree implementation, interesting in part be-
cause we can verify that the tree is balanced, by using scalar constraints

Vp. p#null A pleft #null = p.level =p.left.level +1
Vp. p#null A p.right # null = p.level = p.right.level + 1

along with disequality constraints that force all leaves to have the same level:

Vp. p#null A p.left =null = p.level =0
Vp. p#null A p.right =null = p.level =0

However, this specification is also noteworthy because there is no bound k& on the
size of models as advocated in Section 5: the facts x.1level = 100 and x # null
(plus the axioms) are satisfiable only by models with at least 100 elements.
Fortunately, such pathological hypotheses do not seem to arise in practice.

! In the case of the taillist example, the verified property is slightly weaker due to
the encoding of reachability via transitivity.
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The set_as_list example uses a linked list to represent a set. We use a ghost
field s, associated with each node in the list, with intended invariant

Vn. n.s={2 | 3i € N. n(next)'.data=uz}

That is, s contains all data elements at or below the node. But since our language
does not allow “n(.next)"”, we instead write

S1. Vn. n.anext #null = n.s = {n.data} Un.next.s
S2.  Vn. naext =null = n.s = {n.data}

Axiom S1 imposes a lower bound on s, allowing one to conclude (among other
things) must-not-reach facts. Axiom S2 imposes an upper bound, and allows
conclusion of must-reach facts, but includes a pointer disequality disjunct. To
reason about set-theoretic concepts, we use the procedure in [1]. This exam-
ple highlights the way our technique can integrate with powerful off-the-shelf
“scalar” concepts to specify the relationship between shape and data.

Finally, pc_keyb and scull are two Linux device drivers. These real-world
examples demonstrate the applicability of the technique, and the benefits of in-
tegrated pointer and scalar reasoning; for example, their data structures feature
arrays of pointers, which are difficult to model in PALE or TVLA.

An important contribution of this work is the particular matching rules used
to instantiate the axioms. Simplify has heuristics for creating matching rules for
arbitrary universally-quantified facts. As expected, we find that our matching
rules, which instantiate the axioms in strictly fewer circumstances, lead to better
performance (compare timing columns “Simplify” and “Ours” in Figure 5). In
fact, Simplify’s heuristics will often lead to infinite matching loops, especially
while trying to find counterexamples for invalid goals. This is not to denounce
Simplify’s heuristics—they do a good job for a wide variety of axiom sets—just
to emphasize that in the case of axioms expressing data structure shape within
our methodology, one can have a more efficient and predictable algorithm.

7 Related Work

As explained in Section 1, most existing approaches to specifying shape are either
too imprecise or too difficult to reason about automatically. Here, we consider
alternative approaches with similar expressiveness and effectiveness.

PALE [13], the Pointer Assertion Logic Engine, uses graph types [7] to spec-
ify a data structure as consisting of a spanning tree backbone augmented with
auxiliary pointers. One disadvantage is the restriction that the data structure
have a tree backbone: disequality constraints that force certain pointers to not
be null are not possible, since every tree pointer is implicitly nullable, cyclic
structures are awkward, and grid structures such as the garbage collector exam-
ple in Section 6 are impossible. The second disadvantage is that only boolean
scalar fields are allowed. Thus, all scalar values must first be abstracted into a
set of boolean ghost fields, and updates inserted accordingly.
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TVLA [12,19], the Three Valued Logic Analyzer, uses abstract interpreta-
tion over a heap description that includes 1/2 or “don’t know” values. It obtains
shape precision through the use of instrumentation predicates, which are essen-
tially ghost boolean fields with values defined by logical formulas. In general,
the programmer specifies how instrumentation predicates evolve across updates,
though TVLA can conservatively infer update rules that are often sufficiently
precise. The primary advantage of TVLA is it infers loop invariants automati-
cally, by fixpoint iteration. The disadvantage is that the obligation of proving
that a shape is preserved across updates is delegated to the instrumentation
predicate evolution rules, which are not fully automated. Also, as with PALE,
scalar values must be abstracted as boolean instrumentation predicates.

PALE and TVLA include transitive closure operators, and hence can rea-
son directly about reachability, but they pay a price: PALE has non-elementary
complexity and requires tree backbones, and TVLA has difficulty evolving in-
strumentation predicates when they use transitive closure. The difficulties of
reasoning about transitive closure have been recently explored by Immerman et.
al [6], with significant negative decidability results. Our technique is to approx-
imate reachability using transitivity axioms, giving up some shape precision in
exchange for more precision with respect to scalar values.

The shape analysis algorithm of Hackett and Rugina [5] partitions the heap
into regions and infers points-to relationships among them. Its shape descriptions
are less precise; it can describe singly-linked lists but not doubly-linked lists.

Roles [9] characterize an object by the types it points to, and the types that
point at it. Role specifications are similar to our injectivity axioms. The role
analysis in [9] provides greater automation but it can express fewer shapes.

Separation logic [18] includes a notion of temporal locality, exploited by a
frame rule that allows reasoning about only those heap areas accessed by a
procedure. We believe such a notion is essentially orthogonal to, and could be
useful with, the spatial locality notions of this paper.

Early work on data structures showed that the property of an object being
uniquely generated (e.g., every instance of cons(1,2) is the same object) has de-
cidable consequences [17], a result related to the decidability of the consequences
of the injectivity axioms presented here. However, the early work does not admit
more refined notions of shape, as it does not address the use of quantifiers.

Our work uses methods most similar to the Extended Static Checker [3]
and Boogie/Spec# [11]. However, while we suspect that specifications similar to
elements described here have been written before while verifying programs, we
are unaware of any attempts to explore their expressiveness or decidability.

8 Conclusion

We have presented a language for describing data structure shapes along with
scalar field relationships. The language is relatively simple because it can only
talk about local properties of a neighborhood of nodes, yet is capable of ex-
pressing a wide range of global shape constraints sufficient to imply the kind
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of must-not-alias information needed for strong update reasoning. Furthermore,
it is sufficiently tractable to admit a simple decision procedure, extensible with
arbitrary decidable scalar predicates. Using this language we have verified a
number of small example programs, of both theoretical and practical interest.

9
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