Principal type-schemes for functional programs

Luis Damas* and Robin Milner

Edinburgh University

1. Introduction of successful use of the language, both in LCF and
This paper is concerned with the polymorphic other research and in teaching to undergraduates,
type discipline of ML, which is a general purpose it has become important to answer these questions -
functional programming language, although it was particularly because the combination of flexibility
first introduced as a metalanguage (whence its (due to polymorphism), robustness (due to semantic
name) for conducting proofs in the LCF proof system soundness) and detection of errors at compile time
[GMW] . The type discipline was studied in [Mil], has proved to be one of the strongest aspects of ML.

where it was shown to be semantically sound, in a
The discipline can be well illustrated by a
sense made precise below, but where one important
small example. Let us define in ML the function
question was left open: does the type-checking
"map", which maps a given function over a given list
algorithm - or more precisely, the type assignment
- that is,
algorithm (since types are assigned by the compiler,
map f [x1;...;xn] = [£(x1);...;E£(xn)]
and need not be mentioned by the programmer) - find
The required declaration is
the most general type possible for every expression
letrec map f s = if null s then nil
and declaration? Here we answer the question in -
else cons(f(hd s)) (map £ (t1 s))
the affirmative, for the purely applicative part
The type-checker will deduce a type-scheme for "map"
of ML. It follows immediately that it is decid-

from existing type-schemes for "null", "“nil", "cons",
able whether a program is well-typed, in contrast

"hd" and "tl"; the term "type-scheme" is appropriate
with the elegant and slightly more permissive type

since all these objects are polymorphic. In fact,
discipline of Coppo [Cop]. After several years

from
* The work of this author is supported by the

Portuguese Instituto Nacional de Investigacao null : Va(o list = bool)

Cientifica.
nil : Va(a list)

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

cons : Vo(a = (a list - o list))
hd : Va{a list = a)
tl : Va(o list - o list)

will be deduced

» 1982 ACM 0-89791-085-6/82/001/0207 $00.75

map : VoVB((x = B) = (a list -» B list)).

207

Types are built from type constants (bool,...) and

type variables (a,B,...) using type operators (such
as infixed - for functions and postfixed "list" for
lists); a type-scheme is a type with (possibly)

quantification over type variables at the outermost.

Thus, the main result of this paper is that the
type-scheme deduced for such a declaration (and more
generally, for any ML expression) is a principal
type-scheme, i.e. that any other type-scheme for the
declaration is a generic instance of it. This is

a generalisation of Hindley's result for Combinatory

Logic [Hin].

ML may be contrasted with ALGOL 68, in which
there is no polymorphism, and with Russell [DD], in
which parametric types appear explicitly as argu-
ments to polymorphic functions. The generic types
of Ada may be compared with type schenmes. For sim-
plicity, our definitions and results here are form-
ulated for a skeletal lanquage, since their extension
to ML is a routine matter. For example, recursion
is omitted since it can be introduced by simply add-
ing the polymorphic fixed-point operator

fix : VYo((a=a) - q)

and likewise for conditional expressions.

2. The language

Assuming a set Id of identifiers x , the
language Exp of expressions e is given by the
syntax

e ::=x]ee'[lx.ellet x=e in e’
(where parentheses may be used to avoid ambiguity).
only the last clause extends the A-calculus. Indeed,
for type checking purposes every let expression could
be eliminated (by replacing x by e everywhere in

e'), except for the important consideration that in

na

on-line use of ML declarations
let x = e
(e')

are allowed, whose scope is the remainder

of the on-line session. As illustrated in the
introduction, it must be possible to assign type-

schemes to identifiers thus declared.

Note that types are absent from the language

Exp. Assuming a set of type variables o and of

the syntax of types T and

rimitive types 1,
of typeschemes o 1is given by

ajift + 1

[t}

T

[+ T[Vac

A type-scheme Vul...VanT (which we may write

Vul...unr) has generic type variables Qgreeas0 .

n

A monotype U 1is a type containing no type

variables,

3. Type Instantiation

If S 1is a substitution of types for type

variables, often written [Tl/al""'Tn/an] or

[ri/ai], and ¢ 1is a type-scheme, then So is
the type-scheme obtained by replacing each free
occurrence of o, in o by Ty renaming the

generic variables of ¢ if necessary. Then So

is called an instance of o ; the notions of
substitution and instance extend naturally to

larger syntactic constructs containing type-

schemes.,

By contrast, a type scheme ¢ = Val...amr
has a generic instance ¢' = VBl...BnT' if
t =
T [Ti/ailr for some types TyreeerTos and
the Bj are not free in ¢. In this case we

shall write o > ¢'. Note that instantiation acts

on free variables, while generic instantiation

acts on bound variables. It follows that ¢ > ¢!

implies So > So'.

4. Semantics

The semantic domain V for Exp is a complete
partial order satisfying the following equations up
to isomorphism, where Bi is a cpo corresponding

to primitive type li:

vV = B0 + B1 + ... + F + W (disjoint sum)
F=V->V (function space)
w=1{.} (error element)

To each monotype u corresponds a subset of V, as
detailed in [Mil]; if v€V 1is in the subset for
4, we write v:u. Further, we write wv:t if wv:u
for every monotype instance u of 1T, and we

write v:0 if v:t for every 71 which is a generic

instance of o.

Now let Env = Id+V be the domain of environ-
ments n. The semantic function §:Exp+ Env+V
is given in [Mil}l. Using it, we wish to attach
meaning to assertions of the form

AF e:C
where e€Exp and A 1is a set of assumptions of
the form x:0', x€Id. If the assertion is closed,
i.e. if A and ¢ contain no free type variables,
then the‘sentence is said to hold iff, for every
environment n, whenever nl[[x]] :0' for each member
x:0' of A, it follows that &l{e]] n:0. Further,
an assertion holds iff all its closed instances

hold. Thus, to verify the assertion

x:a, £:YB(B~+>B)

= (f x):a

It is enough to verify it for every monotype u in
place of a. This example illustrates that free
type-variables in an assertion are implicitly
quantified over the whole assertion, while

explicit quantification in a type scheme has

restricted scope.

The remainder of this paper proceeds as
follows. First we present an inference system
for inferring valid assertions. Next we present
an algorithm W for computing a type-scheme for
any expression, under assumptions A. We then show
that W is sound, in the sense that any type-
scheme which it yields is derivable in the inference
system. Finally we show that W is complete,

in the sense that derivable type-scheme is an

instance of that computed by W.

5. Type Inference

From now on we shall assume that A contains
at most one assumption about each identifier x.
Ax stands for the result of removing any assump-

tion about x from A.

For assumptions A, expression e and type-
scheme ¢ we write

Al- e:0
if this sentence may be derived from the following

inference rules:

TAUT: A - X:0 (x:0 in A)
- e:
INsT: 22 €0 (o > o")
Altl- e:g’
A e:0
GEN: —_——— (a not free in A)
A+ e:Yao
Ak e:1'+> Avre':7'
COMB : T T e it
Al- (e e'):T
A U{x:1'} + e:T
ABS: L
AF (Ax.e):T'>T
Al-e:gc A U{x:o} + e':T
LET: =

a - (let x=e in e') :7

The following example of a derivation is organised
as a tree, in which each node follows from those

immediately above it by an inference rule,

i:Yo(o-a) + i:Voa(a-»a)

INST i:Voa(a=a) + i:Va(a-a)

i:Va(a=a) + i:(a->a) > (a->a) INST

i:Va(a=~a) + i:a-a

X:a ¥+ X:0a

COMB

ABS
- AX.x:0=Q
GEN

i:Vo(a=a) F ii:a-a
F Ax.x:Va({o=a)
LET |

|

F (let i = Ax.x in ii) : a-a

The following proposition, stating the semantic
soundness of inference, can be proved by induction

on e .

Proposition 1 {soundness of inference) If A + e:g

then A k e:0 .

We will also require later the two following

properties of the inference system.

Proposition 2 If S 1is a substitution and A + e:0o

then SA + e:So. Moreover if there is a deriv-

ation of A + e:0 of height n then there is also

a derivation of SA » e:So of height less or equal

to n.
Proof by induction on n. i

Lemma 1 If o>¢' and AxU{x:c'} t-e:oo then

also A U{x:c} + e:c, .
b 0

210

Proof We construct a derivation of AXU{x:c} r—e:oo

from that of AxU{x:o'} +~ e:0, by substituting each

0

use of TAUT for x:0' with x:0 followed by an

INST step to derive x:0'. Note that GEN steps

remain valid since if o occurs free in ¢ then it

also occurs free in o¢'.]

6. The type assignment algorithm W

The type inference system by itself does not
provide an easy method for finding, given A and e,
a type-scheme ¢ such that A + e:o. We now present
an algorithm W for this purpose. In fact, W

goes a step further. Given A and e, if W

succeeds it finds a substitution S and a type T,
which are most general in a sense to be made precise

below, such that

SA + e:T

To define W we require the unification algor-

ithm of Robinson [Rob].

Proposition 3 (Robinson) There is an algorithm U

which, given a pair of types, either returns a sub-

stitution V or fails; further

(i} If U(t,T') returns V , then V unifies Tt

and T', i.e. VT = Vyr'.

(ii)If s wunifies 1 and <t', then U(t,T")

returns some V and there is another substit~

ution R such that § = RV.

Moreover, V involves only variables in Tt and T°'.

We also need to define the closure of a type t
with respect to assumptions A ;

A(T) =Va,... o 1T
1 n

where al"' .,an are the type-variables occurring

free in T but not in A.

Algorithm W
W(A,e) = (S,1) where
(1) If e is x and there is an assumption

X: Val...anr' in A then S = Id and

T = [B./a,]T' where the B.'s are new.
i’ Ti i
(ii) If e is ele2 then
let W(A,ez) = (51,T2)
and W(SIA'eZ) = (S2,12)
and U(Szrl,rz-¢3) =V where g is new;

then § = Vszs1 and Tt = V8

(iii) If e is)\x.e1 then let B be a new type

variable
and W(AXU{x:B}, el) = (51,11) ;

then s =g and T = 518"T

1 1°

(iv) If e is let x = e1 in e, then

let W(A,el) = (Sl,rz)

and W(SleU{x:SIA(Tl)},ez) = (SZ,T)i

2
then S = stl and t = Ty -
NOTE: When any of the conditions above is not met

W fails.

The following proposition proves that w meets

our requirements.

Proposition 4 (Soundness of W) If W(A,e)
z=obosition 4

succeeds with (S,T) then there is a derivation of

SA F e:7.
Proof By induction on e using proposition 2. [

It follows that there is also a derivation of
SA + e:§X(T). We refer to SA(t) as a type~scheme

computed by W for e wunder SA.

7. Completeness of W

Given A and e, we will call oP a principal

type-scheme of e under assumptions A iff

i) A =~ e:c
¢ P

211

(ii) Any other ¢ for which A ~ e:0 is a generic

instance of ¢

Our main result, restricted to the simple case
in which A contains no free type-variables, may

be stated as follows:

If A+~ e:0, for some g , then W computes

a principal type scheme for e under A.

This is a direct corollary of the following general
theorem, which is a stronger result suited to induc-

tive proof:

Theorem (Completeness of W). Given A and e,
let A' be an instance of a and 0 a type-scheme

such that

A' + e:g
Then (i) W(A,e) succeeds
(ii) If wW(A,e) = (S,7) then, for some sub-
stitution R,

A' = RSA and R SA(1) > g [

In fact, from the theorem one also derives as
corollaries that it is decidable whether e has any
type at all under assumptions A, and that, if so,

it has a principal type scheme under Aa.

The detailed proofs of results in this paper,
and related results, will appear in the first

author's forthcoming Ph.D. Thesis.

References

[LNCSn stands for Vol n, Lecture Notes in Computer

Science, Springer-Verlag].

[Cop]

[DD]

{GMW]

[Hin]

[Mil]

[Rob]

M. Coppo, An extended polymorphic type system
for applicative languages, (1980), LNCS 88,

pp 194-204.

A. Demers and J. Donahue, Report on the prog-
ramming language Russell, (1979), Report No.
TR 79-371, Computer Science Department,

Cornell University.

M. Gordon, R. Milner and C. Wadsworth, (1979),

Edinburgh LCF, LNCS 78.

R. Hindley, The principal type-scheme of an
object in Combinatory Logic, (1969), Trans

AMS 146, pp 29-60.

R. Milner, A theory of type polymorphism in

programming (1978), JCSS 17,3, pp 348-375.

J.A. Robinson, A machine-oriented logic based
on the resolution principle, JACM 12,1 (1965),

23-41.

