Decision-Procedure Based Theorem Provers

Tactic-Based Theorem Proving

Inferring Loop Invariants

CS 294-B
Lecture 12

Combining Satisfiability Procedures

- Consider a set of literals F.
 - Containing symbols from two theories T_1 and T_2.
- We split F into two sets of literals:
 - F_1 containing only literals in theory T_1.
 - F_2 containing only literals in theory T_2.
- We name all subexpressions:
 $p(f, E)$ is split into $f_1(E) = n \land p(n)$.
- We have: $\text{unsat}(F_1 \land F_2)$ iff $\text{unsat}(F)$.
 - $\text{unsat}(F) \lor \text{unsat}(F) = \text{unsat}(F)$.
 - But the converse is not true.
- So we cannot compute $\text{unsat}(F)$ with a trivial combination of the sat procedures for T_1 and T_2.

Combining Satisfiability Procedures. Example

- Consider equality and arithmetic:

 \[
 f(f(x) - f(y)) = f(z) \
 x \leq y \
 y + z \leq x \
 0 \leq z
 \]

 \[
 \text{false} \quad f(f(x) - f(y)) = f(z)
 \]

Nelson-Oppen Method (I)

1. Represent all conjuncts in the same DAG:
 \[
 f(f(x) - f(y)) = f(z) \land x \geq x \land x \geq y \land z \geq 0
 \]
Nelson-Oppen Method (2)

2. Run each sat, procedure
 - Require it to report all contradictions (as usual)
 - Also require it to report all equalities between nodes

 ![Diagram]

Prof. Nicole CS 294-8 Lecture 12 7

Nelson-Oppen Method (3)

3. Broadcast all discovered equalities and re-run sat, procedures
 - Until no more equalities are discovered or a contradiction arises

 ![Diagram]

Prof. Nicole CS 294-8 Lecture 12 8

What Theories Can be Combined?

- Only theories without common interpreted symbols
 - But OK if one theory takes the symbol interpreted
- Only certain theories can be combined
 - Consider \(\leq \) and Equality
 - Consider \(1 \leq x \leq 2 \land a = 1 \land b = 2 \land f(x) = f(a) \land f(x) = f(b) \)
 - No equalities and no contradictions are discovered
 - Yet, unsatisfiable
- A theory is non-convex when a set of literals entails a disjunction of equalities without entailing any single equality

Prof. Nicole CS 294-8 Lecture 12 9

Handling Non-Convex Theories

- Many theories are non-convex
 - Consider the theory of memory and pointers
 - It is not-convex:
 \[
 \text{true} \rightarrow A \rightarrow x : \text{set}(\text{up}(M, A, v), x) = \text{set}(M, x)
 \]
 (neither of the disjuncts is entailed individually)
 - For such theories it can be the case that
 - No contradiction is discovered
 - No single equality is discovered
 - But a disjunction of equalities is discovered
 - We need to propagate disjunction of equalities

Prof. Nicole CS 294-8 Lecture 12 10

Propagating Disjunction of Equalities

- To propagate disjunctions we perform a case split:
 - If a disjunction \(E_1 \lor \ldots \lor E_n \) is discovered:

    ```
    Save the current state of the prover
    for i = 1 to n {
        broadcast \( E_i \)
        if no contradiction arises then return "satisfiable"
        restore the saved prover state
    }
    return "unsatisfiable"
    ```

Prof. Nicole CS 294-8 Lecture 12 11

Handling Non-Convex Theories

- Case splitting is expensive
 - Must backtrack (performance –)
 - Must implement all satisfiability procedures in incremental fashion (simplicity –)
 - In some cases the splitting can be prohibitive:
 - Take pointers for example.
 \[
 \text{up}(\text{up}(M, l_1, x), \ldots , l_n, x) =
 \text{up}(\text{up}(M, l_1, x), \ldots , l_n, x) \land
 \text{set}(M, l_1) = x \land \ldots \land \text{set}(M, l_n) = x
 \]
 - entails \(V_{l_1} \land \ldots \land V_{l_n} \)
 (conjunction of length \(n \) entails \(n^2 \) disjuncts)

Prof. Nicole CS 294-8 Lecture 12 12
Forward vs. Backward Theorem Proving

- The state of a prover can be expressed as:
 \[H_1 \land \ldots \land H_n \Rightarrow G \]
 - Given the hypotheses \(H_1 \) try to derive goal \(G \)

- A forward theorem prover derives new hypotheses, in hope of deriving \(G \):
 - If \(H_1 \land \ldots \land H_k \Rightarrow H \) then
 move to state \(H_1 \land \ldots \land H_k \land H \Rightarrow G \)
 - Success state: \(H_1 \land \ldots \land H_k \Rightarrow G \)

- A forward theorem prover uses heuristics to reach \(G \):
 - Or it can exhaustively derive everything that is derivable!

Forward Theorem Proving

- Nelson-Oppen is a forward theorem prover:
 - The state is \(L_1 \land \ldots \land L_n \Rightarrow \) false
 - If \(L_1 \land \ldots \land L_n \land \neg L \Rightarrow E \) (an equality) then
 - New state is \(L_1 \land \ldots \land L_n \land \neg L \land E \Rightarrow \) false (add the equality)
 - Success state is \(L_1 \land \ldots \land L_n \land \neg L \land \neg L \Rightarrow \) false

- Nelson-Oppen provers exhaustively produce all derivable facts hoping to encounter the goal

 - Case splitting can be explained this way too:
 - If \(L_1 \land \ldots \land L_n \land \neg L \Rightarrow E \lor E' \) (a disjunction of equalities) then
 - Two new states are produced (both must lead to success)
 - \(L_1 \land \ldots \land L_n \land \neg L \land E \Rightarrow \) false
 - \(L_1 \land \ldots \land L_n \land \neg L \land E' \Rightarrow \) false

Backward Theorem Proving

- A backward theorem prover derives new subgoals from the goal:
 - The current state is \(H_1 \land \ldots \land H_k \Rightarrow G \)
 - If \(H_1 \land \ldots \land H_k \land G \land L \Rightarrow \) \(G \) (\(G \) are subgoals)
 - Produce \(n \) new states (all must lead to success)
 \[H_1 \land \ldots \land H_k \Rightarrow G \]

 - Similar to case splitting in Nelson-Oppen:
 - Consider a non-convex theory
 \[H_1 \land \ldots \land H_k \land E \land E' \Rightarrow \] is same as
 \[H_1 \land \ldots \land H_k \land E \land \neg E' \Rightarrow \] (thus we have reduced the goal "false" to subgoals - \(E \land \neg E' \))

Programming Theorem Provers

- Backward theorem provers most often use heuristics
 - If it useful to be able to program the heuristics

 - Such programs are called tactics and tactic-based provers have this capability
 - E.g. the Edinburgh LCF was a tactic based prover whose programming language was called the Meta-Language (ML)

 - A tactic examines the state and either:
 - Announces that it is not applicable in the current state, or
 - Modifies the proving state
Programming Theorem Provers. Tactics.

- Consider an axiom: \(\forall x, \phi(x) \Rightarrow \psi(x) \)
 - Like the clause \(b(x) \wedge \phi(x) \) in Prolog

- This could be turned into a tactic
 - Given tactic for each clause: \(\phi_1, \ldots, \phi_n \)
 - Prolog tactic
 - \(\text{Prolog} \overset{\rho}{\Rightarrow} \text{REPEAT} \left(\phi_1, \text{ORELSE} \phi_2, \ldots, \text{ORELSE} \phi_n \right) \)

- Nelson-Oppen can also be programmed this way
 - The result is not as efficient as a special-purpose implementation

- This is a very powerful mechanism for semi-automatic theorem proving
 - Used in: Isabelle, HOL, and many others

Programming Theorem Provers. Tactics.

- Tactics can be composed using tactics

Examples:

- \(\text{REPEAT} \): tactic \(\Rightarrow \) tactic
 - \(\text{REPEAT} t_1 \Rightarrow \text{REPEAT} t_2 \Rightarrow \text{REPEAT} t_3 \)
 - \(\text{ORELSE} \): tactic \(\Rightarrow \) tactic
 - \(\text{ORELSE} t_1 \Rightarrow \text{ORELSE} t_2 \Rightarrow \text{ORELSE} t_3 \)

Techniques for Inferring Loop Invariants

Inferring Loop Invariants

- Traditional program verification has several elements:
 - Function specifications and loop invariants
 - Verification condition generation
 - Theorem proving

- Requiring specifications from the programmer is often acceptable
- Requiring loop invariants is not acceptable
 - Same for specifications of local functions

Inferring Loop Invariants

- A set of cutpoints is a set of program points:
 - There is at least one cutpoint on each circular path in CFG
 - There is a cutpoint at the start of the program
 - There is a cutpoint before the return

- Consider that our function uses \(x \):
 - We associate with each cutpoint an assertion \(I(x) \)

- If \(x \) is a path from cutpoint \(k \) to \(j \) then:
 - \(r'(x) : \mathbb{Z}^n \rightarrow \mathbb{Z}^n \) expresses the effect of path \(x \) on the values of \(x \) at \(j \) as a function of these at \(k \)
 - \(P(x) \) is a path predicate that is true exactly of these values of \(x \) at \(k \) that will enable the path \(x \)
Cutpoints Example.

- \(P_0 = \text{true} \)
 - \(r_0 = \{ A \rightarrow A, K = 0, L = \text{len}(A), S = 0, \mu = \mu \} \)

- \(P_2 = \{ A \rightarrow A, K = K + 1, \mu = \mu \} \)
- \(r_2 = S - S + \text{sel}(A, K), \mu = \mu \)

- Easily obtained through sym eval.

Equational Definition of Invariants

- A set of assertions is a set of invariants if:
 - The assertion for the start cutpoint is the precondition
 - The assertion for the end cutpoint is the postcondition
 - For each path from to we have:
 \(\forall x, \forall y, \forall \delta, \forall \mu \) \(I_x(A) \land P_y(A) \Rightarrow I_y(A) \)

- Now we have to solve a system of constraints with the unknowns \(I_0, I_1, I_2 \)
 - \(I_0 \) and \(I_2 \) are known
 - We will consider the simpler case of a single loop
 - Otherwise we might want to try solving the inner/last loop first

Invariants Example.

1. \(I_0 = I_0(A) \)
 - The invariant \(I_0 \) is established initially

2. \(I_0 \land K = L \Rightarrow I_1(A) \)
 - The invariant \(I_0 \) is preserved in the loop

3. \(I_0 \land K = L \Rightarrow I_1(A) \)
 - The invariant \(I_0 \) is strong enough (i.e. useful)

The Lattice of Invariants

- Weak predicates satisfy the condition 1
 - Are satisfied initially

- Strong predicates satisfy condition 3
 - Are useful

- A few predicates satisfy condition 2
 - Are invariant
 - Form a lattice

Finding the Invariant

- Which of the potential invariants should we try to find?
 - We prefer to work backwards
 - Essentially proving only what is needed to satisfy \(I_0 \)
 - Forward is also possible but sometimes wasteful since we have to prove everything that holds at any point

Finding the Invariant

- Thus we do not know the "precondition" of the loop
 - The weakest invariant that is strong enough has most chances of holding initially
 - This is the one that we'll try to find
 - And then check that it is weak enough
Induction Iteration Method

- Equation 3 gives a predicate weaker than any invariant:
 \[I_1 \land K \geq L \Rightarrow I_1(r_1(x)) \]
 \[W_2 \land K \geq L \Rightarrow I_2(r_2(x)) \]
- Equation 2 suggests an iterative computation of the invariant \(I_k \):
 \[I_k \Leftarrow (K \geq L) \Rightarrow I_k(r_k(x)) \]

Induction Iteration Method

- Define a family of predicates:
 \[W_0 = K \geq L \Rightarrow \exists_0(r_0(x)) \]
 \[W_j = W_{j-1} \land K \geq L \Rightarrow \exists_j(r_j(x)) \]
- Properties of \(W_j \):
 - \(W_j \Rightarrow W_{j+1} \Rightarrow \ldots \Rightarrow W_0 \) (they form a strengthening chain)
 - \(I_k \Rightarrow W_j \) (they are weaker than any invariant)
 - If \(W_0 \Rightarrow W_j \) then
 - \(W_j \) is an invariant (satisfies both equations 2 and 3)
 - \(W_j \Rightarrow K \geq L \Rightarrow W_j(r_j(x)) \)
 - \(W_j \) is the weakest invariant

(recall domain theory, predicates form a domain, and we use the fixed point theorem to obtain least solutions to recursive equations)

Induction Iteration.

- The sequence of \(W_j \) approaches the weakest invariant from above:
- The predicate \(W_j \) can quickly become very large
 - Checking \(W_j \Rightarrow W_j \) becomes harder and harder
- This is not guaranteed to terminate

Induction Iteration, Strengthening.

- We can try to strengthen the inductive invariant
- Instead of:
 \[W_j = W_{j-1} \land K \geq L \Rightarrow W_j(r_j(x)) \]
 we compute:
 \[W_j = \text{strengthen}(W_{j-1} \land K \geq L \Rightarrow W_j(r_j(x))) \]
 where \(\text{strengthen}(P) \Rightarrow P \)
- We still have \(W_j \Rightarrow W_0 \), and we stop when \(W_{j+1} \Rightarrow W_j \)
 - The result is still an invariant that satisfies 2 and 3
Strengthening Heuristics

- One goal of strengthening is simplification:
 - Drop disjunctions: $P_1 \lor P_2 \rightarrow P_1$
 - Drop implications: $P_1 \Rightarrow P_2 \rightarrow P_1$

- A good idea is to try to eliminate variables changed in the loop body:
 - If W_i does not depend on variables changed by r, (e.g. K, S)
 - $W_{i+1} = W_i \land K \land L \Rightarrow W_i \land (K \land S)$
 - $W_i \land K \land L \Rightarrow W_i$
 - Now $W_i \Rightarrow W_{i+1}$, and we are done!

One Strengthening Heuristic for Integers

- Rewrite W_i in conjunctive normal form
 - $W_i = K \geq 0 \land K \leq \text{len}(A) \land (K \land L \Rightarrow K \geq 0 \land K \leq \text{len}(A))$
 - $W_i = K \geq 0 \land K \leq \text{len}(A)$
- Take each disjunction containing arithmetic literals:
 - Negate it and obtain a conjunction of arithmetic literals
 - $K \land L \land K \land L \geq \text{len}(A)$
 - Weaken the result by eliminating a variable (preferably a loop-carried variable)
 - E.g., add the literal: $L \land \text{len}(A)$
 - Negate the result and get another disjunction:
 - $L \leq \text{len}(A)$
 - $W_i = K \geq 0 \land K \leq \text{len}(A) \land L \leq \text{len}(A)$ (check that $W_i \Rightarrow W_{i+1}$)

Theorem Proving, Conclusions.

- Theorem proving strengths
 - Very expressive
- Theorem proving weaknesses
 - Too ambitious
- A great toolbox for software analysis
 - Symbolic evaluation
 - Decision procedures
- Related to program analysis
 - Abstract interpretation on the lattice of predicates

Induction Iteration. Strengthening

- We are still in the "strong-enough" area
- We are making bigger steps
- And we might over-shoot then weakest invariant
- We might also fail to find any invariant
- But we do so quickly

Induction Iteration

- We showed a way to compute invariants algorithmically
 - Similar to fixed-point computation in domains
 - Similar to abstract interpretation on the lattice of predicates
- Then we discussed heuristics that improve the termination properties
 - Similar to widening in abstract interpretation

Prof. Nicolas CS 204-8 Lecture 12