Theorem Proving

CS 294-8
Lecture 9

Theorem Proving: Historical Perspective

- Theorem proving (or automated deduction)
 = logical deduction performed by machine
- At the intersection of several areas
 - Mathematics: original motivation and techniques
 - Logic: the framework and the meta-reasoning techniques
- One of the most advanced and technically deep fields of computer science
 - Some results as much as 75 years old
 - Automation efforts are about 40 years old

Applications

- Software/hardware productivity tools
 - Hardware and software verification (or debugging)
 - Security protocol checking
- Automatic program synthesis from specifications
- Discovery of proofs of conjectures
 - A conjecture of Tani was proved by machine (1996)
 - There are effective geometry theorem provers

Program Verification

- Fact: mechanical verification of software would improve software productivity, reliability, efficiency
- Fact: such systems are still in experimental stage
 - After 40 years!
 - Research has revealed formidable obstacles
 - Many believe that program verification is dead

- Myth:
 - "Think of the peace of mind you will have when the verifier finally says "Verified", and you can relax in the mathematical certainty that no more errors exist"

- Answer:
 - Use instead to find bugs (like more powerful type checkers)
 - We should change "verified" to "Sorry, I can't find more bugs"

- Fact:
 - Many logical theories are undecidable or decidable by super-exponential algorithms
 - There are theorems with super-exponential proofs

- Answer:
 - Such limits apply to human proof discovery as well
 - If the smallest correctness argument of program P is huge then how did the programmer find it?
 - Theorems arising in PV are usually shallow but tedious
Program Verification

Opinion:
- Mathematicians do not use formal methods to develop proofs
- Why then should we try to verify programs formally?

Answer:
- In programming, we are often lacking an effective formal framework for describing and checking results
- Compare the statements
 - The area bounded by $y=0$, $x=1$ and $y=x^2$ is $1/3$
 - By sliding two circular lists we obtain another circular list with the union of the elements

Theorem Proving and Software

- Soundness:
 - If the theorem is valid then the program meets specification
 - If the theorem is provable then it is valid

Overview of the Next Few Lectures

- Focus
 - Expose basic techniques useful for software debugging

- From programs to theorems
 - Verification condition generation

- From theorems to proofs
 - Theorem provers
 - Decision procedures

- Applications
 - Combining program analysis and decision procedures
Programs → Theorems. Axiomatic Semantics

- Consists of:
 - A language for making assertions about programs
 - Rules for establishing when assertions hold
- Typical assertions:
 - During the execution, only non-null pointers are dereferenced
 - This program terminates with $x = 0$
- Partial vs. total correctness assertions
 - Safety vs. liveness properties
 - Usually focus on safety (partial correctness)

Assertion or Specification Languages

- Must be easy to use and expressive (conflicting needs)
 - Most often only expressive
- Typically they are extensions of first-order logic
 - Although higher-order or modal logics are also used
- Semantics given in the context of the underlying logic
- We focus here on state-based assertions (for safety)
 - State = values of variables + contents of memory (+ past state)
 - Not allowed: "variable x is live", "lock L will be released"
 - "There is no correlation between the values of x and y"

An Assertion Language

- We'll use a fragment of first-order logic:
 - $ \forall x \exists y \exists z \ldots (P(x, y, z, \ldots))$
 - $P(x, y, z, \ldots)$
 - x, y, z, \ldots are variables
 - P is a predicate
 - $\forall x$ means for all x
 - $\exists y$ means there exists a y
- All boolean expressions from our language are atomic
- Can have an arbitrary collection of function symbols
 - reachable(E_1,E_2) - list cell E_2 is reachable from E_1
 - sort(A, L, H) - array A is sorted between L and H
 - $\text{ptr}(E, T)$ - expression E denotes a pointer to T
 - $E : \text{ptr}(T)$ - same in a different notation
- An assertion can hold or not in a given state
 - Equivalently, an assertion denotes a set of states

Handling Program State

- We cannot have side-effects in assertions
 - While creating the theorem we must remove side-effects!
 - But how do that when lacking precise aliasing information?
- Important technique #1: Postpone alias analysis
 - Model the state of memory as a symbolic mapping from addresses to values:
 - If E denotes an address and M a memory state then:
 - $\text{sel}(M, E)$ denotes the contents of memory cell E
 - $\text{upd}(M, E, V)$ denotes a new memory state obtained from M by writing V at address E

More on Memory

- We allow variables to range over memory states
 - So we can quantify over all possible memory states
- And we use the special pseudo-variable μ in assertions to refer to the current state of memory

- Example:
 - $\forall i \exists j : i \times j = \text{positive}(j, A) = 0$ - an expression in array A are positive
- Defined inductively on the structure of statements

Hoare Triples

- Partial correctness: $\{ A \} s \{ B \}$
 - When you start s in any state that satisfies A
 - s the execution of s terminates
 - It does as in a state that satisfies B
- Total correctness: $\{ A \} s \{ B \}$
 - When you start s in any state that satisfies A
 - The execution of s terminates and
 - It does as in a state that satisfies B
Hoare Rules

\begin{align*}
(A) \quad & \quad (C) \\
\frac{(A) s_1 (C)}{(A) s_2 (B)} \\
\frac{(A) s_1 (B)}{(A) \land \neg E \Rightarrow A) \quad \text{if } E \text{ then } s_1 \text{ else } s_2 (B)}
\end{align*}

\begin{align*}
(A) \quad & \quad (A) \quad (\land) \quad (\implies)
\frac{(E \land \neg E \Rightarrow A) \quad \text{if } E \text{ then } s_1 \text{ else } s_2 (B)}{(E \land \neg E \Rightarrow B)}
\end{align*}

\begin{align*}
(A) \quad & \quad (A) \quad (\land) \quad (\implies)
\frac{(E \land \neg E \Rightarrow A) \quad \text{if } E \text{ then } s_1 \text{ else } s_2 (B)}{(E \land \neg E \Rightarrow B)}
\end{align*}

Example: \{ A \} \ x := x + 2 \{ x := 5 \}. What is A?

General rule:

\[(\forall x \in X) x := E (\forall x \in X) \]

Surprising how simple the rule is!

The key is to compute "backwards" the precondition from the postcondition.

Before Hoare:

\[(A) \quad \text{if } E \text{ then } s_1 \text{ else } s_2 (B) \]

Hoare Rules: Assignment

But now try:

\[\{ A \} \ x := y \land \ y = 5 \{ x \land x = 5 \} \]

\[A \text{ ought to be } \"y = 5 \text{ or } x = y\" \]

The Hoare rule would give us:

\[(* \land y = 5) \land (5 \land x = 5) \]

\[= 5 \land y = 5 \land x = 5 \]

\[(\text{we lost one case}) \]

How come the rule does not work?

Memory Aliasing

Consider again: \(\{ A \} \ x := 5 \{ x \land x \land y = 10 \} \)

We obtain:

\[A = (* \land x = 10) \land (\text{upd}(x, 5)) \]

\[= (\text{seq}(x, x) \land x \land y) = 10 \land (\text{upd}(x, 5)) \]

\[= \text{seq}(\text{upd}(x, 5), x, x) \land x \land y = 10 \]

\[= \text{if } x = y \text{ then } 5 + 5 = 10 \text{ else } 5 \land x \land y = 10 \]

\[= x \land y \land x = y \]

\[= 5 \land x \land y \land x = y \]

To (*) is theorem generation.

From (*) to (**) is theorem proving.

Alternative Handling for Memory

Reasoning about aliasing can be expensive (NP-hard).

Sometimes completeness is sacrificed with the following (approximate) rule:

\[\text{seq}(\text{upd}(x, 5), x, x) \land x \land y = 10 \]

\[= \text{if } x = y \text{ then } 5 + 5 = 10 \text{ else } 5 \land x \land y = 10 \]

\[= x \land y \land x = y \]

\[= 5 \land x \land y \land x = y \]

\[= (**) \]

The meaning of "obvious" varies:

\[\{ A \} \ x := x + 2 \{ x := 5 \}. \]

\[\{ A \} \ x \land (\text{global}) \land (\text{local}) \land (\text{fresh}) \]

\[\{ A \} \ x \land (\text{global}) \land (\text{local}) \land (\text{fresh}) \]

\[\{ A \} \ x \land (\text{global}) \land (\text{local}) \land (\text{fresh}) \]

\[\{ A \} \ x \land (\text{global}) \land (\text{local}) \land (\text{fresh}) \]
Weakest Preconditions

- Dijkstra's idea: To verify that \(\{ A \} \implies \{ B \} \)
 a) Find out all predicates \(A' \) such that \(\{ A' \} \implies \{ B \} \)
 b) Verify for one \(A' = \text{Pre}(s, B) \) that \(A \implies A' \)
- Predicates form a lattice:
 \[
 \begin{array}{cc}
 \text{false} & \implies & \text{true} \\
 \text{strong} & \implies & \text{weak} \\
 A & \implies & \text{weakest precondition: } WP(s, B) \\
 \end{array}
 \]
- Thus: compute \(WP(s, B) \) and prove \(A \implies WP(s, B) \)

Theorem Proving and Program Analysis (again)

- Predicates form a lattice:
 \(WP(s, B) = \text{lub}_P(\text{Pre}(s, B)) \)
- This is not obvious at all:
 - \(\text{lub}(P, P_2) = P_2 \)
 - \(\text{lub}(P \lor P_2, P) \)
 - But can we always write this with a finite number of \(\lor \)'
- Even checking implication can be quite hard
- Compare with program analysis in which lattices are:
 - Finite height and quite simple
 - Program verification is program analysis on the lattice of first order formulas

Weakest Preconditions (Cont.)

- What about loops?
 - Define a family of \(WP \)
 - \(WP(\text{while } E \implies S, B) = \text{weakest precondition on which the loop } \)
 - If it terminates in \(k \) or fewer iterations, it terminates in \(B \)
 - \(WP, E \implies WP(S, WP) \land -E \implies B \)
 - \(WP(\text{while } E \implies S, B) = \land_{k \geq 0} WP_k = \text{lub}(WP_k | k \geq 0) \)
 - Kind of hard to compute
 - Can we find something easier yet sufficient?

Not Quite Weakest Preconditions

- Recall what we are trying to do:
 \[
 \begin{array}{cc}
 \text{false} & \implies & \text{true} \\
 \text{strong} & \implies & \text{weak} \\
 A & \implies & \text{weakest precondition: } WQ(s, B) \\
 \end{array}
 \]
- We shall construct a verification condition: \(VQ(s, B) \)
 - The loops are annotated with loop invariants
 - \(VQ \) is guaranteed stronger than \(WP \)
 - But hopefully still weaker than \(A \): \(A \implies VQ(s, B) \implies WP(s, B) \)

Invariants Are Not Easy

- Consider the following code from QuickSort
 \[
 \begin{aligned}
 &\text{partition}(int *a, int L, int H, int *pivot) \{
 &\text{int } L = L; H = H; \\
 &\text{while } (L < H) \{
 &\text{while } (L < pivot) \{ L++; \\
 &\text{while } (H > pivot) \{ H--; \\
 &\text{if } (L > H) \{ \text{swap } (L) \text{ and } (H) \} \\
 &\text{return } L \\
 &\}
 &\}
 &\}
 &\}
 \end{aligned}
 \]
- Consider verifying only memory safety
- What is the loop invariant for the outer loop?