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Abstract

We show that popular hardness conjectures about problems from the field of fine-grained
complexity theory imply structural results for resource-based complexity classes. Namely, we
show that if either k-Orthogonal Vectors or k-CLIQUE requires nεk time, for some constant
ε > 1/2, to count (note that these conjectures are significantly weaker than the usual ones made
on these problems) on randomized machines for all but finitely many input lengths, then we
have the following derandomizations:

• BPP can be decided in polynomial time using only nα random bits on average over any
efficient input distribution, for any constant α > 0

• BPP can be decided in polynomial time with no randomness on average over the uniform
distribution

This answers an open question of Ball et al. (STOC ’17) in the positive of whether derandom-
ization can be achieved from conjectures from fine-grained complexity theory. More strongly,
these derandomizations improve over all previous ones achieved from worst-case uniform as-
sumptions by succeeding on all but finitely many input lengths, as is wanted for asymptotics.
Previously, derandomizations from worst-case uniform assumptions were only know to succeed
on infinitely many input lengths. It is specifically the structure and moderate hardness of the
k-Orthogonal Vectors and k-CLIQUE problems that makes removing this restriction possible.

Via this uniform derandomization, we connect the problem-centric and resource-centric views
of complexity theory by showing that exact hardness assumptions about specific problems like
k-CLIQUE imply quantitative and qualitative relationships between randomized and determin-
istic time. This can be either viewed as a barrier to proving some of the main conjectures
of fine-grained complexity theory lest we achieve a major breakthrough in unconditional de-
randomization or, optimistically, as route to attain such derandomizations by working on very
concrete and weak conjectures about specific problems
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1 Introduction

Computational complexity can be viewed through two main perspectives: problem-centric or
resource-centric. Problem-centric complexity theory asks what resources are required to solve
specific problems, while resource-centric complexity deals with the relative power of different com-
putational models given different resource budgets such as time, memory, non-determinism, ran-
domness, etc. (see [GI16] for a discussion). Through complete problems, these two perspectives
often coincide, so that a resource-centric view acts as a fine proxy for answering questions about
the complexity of specific problems. The rapidly progressing field of fine-grained complexity theory,
however, brings attention back to the problem-centric viewpoint, raising fine distinctions even be-
tween problems complete for the same complexity class, and making connections between problems
at very different levels of complexity. To what extent are these two approaches linked, i.e., to what
extent can inferences about the fine-grained complexities of specific problems be made from general
assumptions about complexity classes, and vice versa?

Here, we examine such links between the fine-grained complexity of specific problems such
as the k-Orthogonal Vectors and k-CLIQUE problems and general results about derandomization
of algorithms. Derandomization has been a very fruitful study in complexity theory, with many
fascinating connections between lower bounds, showing that problems require large amounts of
resources to solve, and upper bounds, showing that classes of probabilistic algorithms can be
‘derandomized’ by simulating them deterministically in a non-trivial fashion. In particular, the
hardness-to-randomness framework shows that in many cases, the existence of any “hard” problem
can be used to derandomize classes of algorithms. We reconsider this framework from the fine-
grained, problem-centric perspective. We show that replacing a generic hard problem with specific
hardness conjectures from fine-grained complexity leads to quantitatively and qualitatively stronger
derandomization results than one gets from the analogous assumption about a generic problem.
In particular, we show that starting from these assumptions, we can simulate any polynomial-
time probabilistic algorithm (on any samplable distribution on inputs with a very small fraction of
errors) by a polynomial time probabilistc algorithm that uses only nα random coins, for any α > 0.
This type of derandomization previously either assumed the existence of cryptographic One-Way
Functions or exponential non-uniform hardness of Boolean functions.

Thus, the problem-centric conjectures of fine-grained complexity cannot live in isolation from
classical resource-centric consequences about the power of randomness. Viewed another way, our
results can be seen as a barrier to proving some of the key hardness assumptions used by fine-grained
complexity theory. That is, despite recent progress towards proving hardness for k-Orthogonal
Vectors, one of fine-grained complexity’s key problems, in restricted models of computation [KW17],
doing so for general randomized algorithms would immediately prove all problems in BPP are easy
on average (over, say, uniformly chosen inputs).

Previous derandomization results in the uniform setting ([IW01, GW02, TV07]) used two prop-
erties of the hard problem: random self-reducibility and downward self-reducibility. To obtain our
results, we need problems that have stronger, “fine-grained” versions of both (or can be reduced
to problems that do). In particular, we need problems where not only can instances of size n be
reduced to smaller instances of the same problem, but that these instances are much smaller, of
size nε for ε < 1, and that the reduction is “fine-grained”, in that any improvement in the time to
solve the smaller instances yields a similar improvement in the time to solve the larger ones.
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1.1 Our Results

We obtain two main theorems about the power of BPP from uniform worst-case assumptions about
well-studied problems from the field of fine-grained complexity theory. Namely, we consider the
k-Orthogonal Vectors (k-OV) and the k-CLIQUE problems, defined and motivated in Section 2.1,
and show that (even weaker versions of) popular conjectures on their hardness give two flavors of
average-case derandomization that improve over the classical uniform derandomizations.

All previous derandomizations from uniform assumptions on worst-case hardness only succeed
on infinitely many input lengths. Our work is the first to use worst-case uniform assumptions
to derandomize BPP for all but finitely many input lengths, as is wanted for asymptotics. The
only other worst-case uniform assumptions known to imply such results are those so strong as to
imply cryptographic assumptions or circuit lower bounds, fitting closer to the cryptographic or non-
uniform derandomization literature. In contrast, our uniform derandomizations are from extremely
weak worst-case uniform conjectures on simple, natural, combinatorial problems. Informally, we
prove the following.

Informal Theorem 1. If k-OV or k-CLIQUE requires nεk time, for some constant ε > 1/2, to
count on randomized machines in the worst-case for all but finitely many input lengths, then BPP
can be decided in polynomial time using only nα random bits on average over any efficient
input distribution, for any constant α > 0.

Randomness can be removed entirely by simply brute-forcing all random bits and taking the
majority of the outputs to give the following more familiar full derandomization.

Corollary. If k-OV or k-CLIQUE requires nεk time, for some constant ε > 1/2, to count on ran-
domized machines in the worst-case for all but finitely many input lengths, then BPP can be decided
with no randomness in sub-exponential time on average over any efficient input distribution.

This conclusion is strictly stronger than the classic uniform derandomizations of [IW01, TV07].
The weakest uniform assumption previously known to imply such a conclusion was from those
already strong enough to imply the cryptographic assumption of the existence of One-Way Functions
that are hard to invert for polynomial time adversaries [BM84, GKL93, GL89, HILL99, Yao82] or
those implying non-uniform circuit lower bounds [BFNW93].

Our second main theorem, using techniques from [KvMS12], shows how to remove all ran-
domness within polynomial time if the distribution over inputs is uniform. The only stronger
derandomization from uniform assumptions were, again, from those already strong enough to im-
ply circuit lower bounds or the cryptographic assumption of the existence of One-Way Permutations
that require exponential time to invert [BM84, GL89, Yao82].

Informal Theorem 2. If k-OV or k-CLIQUE require nεk time, for some constant ε > 1/2, to count
on randomized machines in the worst-case for all but finitely many input lengths, then BPP can be
decided in polynomial time with no randomness on average over the uniform distribution.

These results should be viewed through three main points: First, that we conceptually tie
problem-centric conjectures to resource-centric consequences, thus partly reconnecting the two per-
spectives of complexity theory that separate in the fine-grained world. Secondly, we add to the
general derandomization literature by achieving quantitatively and qualitatively stronger deran-
domization from weak uniform assumptions. Lastly, our results can be seen, pessimistically, as
demonstrating a barrier to proving even weak versions of some of fine-grained complexity theory’s
main conjectures lest we achieve a breakthrough in unconditional derandomization or, optimisti-
cally, as providing a path to achieve such general resource-centric results by instead considering
extremely weak conjectures on very concrete, simple, and structured combinatorial problems.
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1.2 Related Work

We now discuss previous connections between problem-centric and resource-centric complexity and
previous derandomization results.

Connections Between Problem-Centric and Resource-Centric Complexity. Most con-
nections from problem-centric to resource-centric complexity show that faster algorithms for OV or
related problems give circuit lower bounds. For instance, improvements in EDIT-DISTANCE algo-
rithms imply circuit lower bounds [AHWW15] and solving OV faster (and thus CNF-SAT [Wil05])
implies circuit lower bounds [JMV15]. These are all non-uniform results, however, whereas in
this paper we are concerned with machines and their resource-bounds as opposed to circuits. On
the uniform side, [GIKW17] recently showed that the exact complexity of k-Orthogonal Vectors
is closely related to the complexity of uniform AC0, although a connection between more power-
ful machine models and fine-grained assumptions was still not known until now. Further, most
of these results follow from OV being easy. Our work shows instead that there are interesting
resource-centric consequences if our fine-grained problems are hard.

Uniform Derandomization Framework. The uniform derandomization framework was in-
troduced in [IW01], a breakthrough paper that showed the first derandomization from a uniform
assumption (EXP 6= BPP) in the low-end setting: a weak assumption gives a slow (subexponential-
time) deterministic simulation of BPP. This is in contrast to our simulation which retains small
amounts of randomness but is fast (this is a strictly stronger result as it recovers the [IW01]
derandomization as a corollary).

We build on [TV07], which simplifies the proof of [IW01] to prove that PSPACE 6= BPP implies
a non-trivial deterministic simulation of BPP. The technique of [TV07] carefully arithmetizes the
PSPACE-complete problem TQBF and uses this as a hard function in the generator of [IW01]. Our
proof substitutes a carefully-arithmetized k-OV problem from [BRSV17]. Numerous other works
study derandomization from uniform assumptions ([Kab01, Lu01, IKW02, GST03, SU09]), but
these all focus on assumptions and consequences about nondeterministic classes.

All worst-case uniform derandomizations, including [TV07] and [IW01], seem to only be able
to achieve simulations of BPP that succeed for infinitely many input lengths because of how their
proofs use downward self-reductions. Our is the first work to achieve simulations on all but finitely
many input lengths, because the k-OV and k-CLIQUE-inspired problems have very parallelizable
downward self reductions so that we can reduce to a single much smaller input length rather than
recurse through a chain of incrementally smaller input lengths in our downward self-reduction.

Heuristics by Extracting Randomness From the Input. A separate line of work began
when [GW02] introduced the idea of using the input itself as a source of randomness to heuristically
simulate randomized algorithms over uniformly-distributed inputs. While their assumptions contain
oracles and are mostly non-uniform and average-case, they construct an algebraic problem inside
P whose worst-case uniform hardness can be used in the framework of [IW01] to get an infinitely-
often simulation of BPP in polynomial time. Our work differs in that we achieve an almost-
everywhere simulation, that our assumptions are based on canonical fine-grained problems, and that
our assumptions aren’t against machines with SAT-oracles. Further, the downward self-reduction
of their problem requires an expansion by minors of the determinant and so they cannot also obtain
an almost-everywhere heuristic using our techniques without placing the determinant in NC1 (as
our modification to [IW01] exploits embarrassingly parallel downward self reductions).
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The work of [KvMS12], generalizing [Sha11], removes the SAT-oracles needed in the assumptions
of [GW02] by showing that the Nisan-Wigderson generator (see [NW94]) remains secure against
non-uniform adversaries even if the seed is revealed to potential distinguishers. In Section 3.2.2
we will show their arguments can be made uniform so we can derandomize from uniform assump-
tions. Seed-revealing Nisan-Wigderson generators are used in [KvMS12] to obtain polynomial-time
heuristics for randomized algorithms, where the uniformly distributed input is used as a seed to
the generator. The derandomizations in [KvMS12] are achieved from non-uniform assumptions
of polynomial average-case hardness. From worst-case uniform assumptions we achieve the same
derandomizations.

2 Preliminaries

Here we give the relevant background from fine-grained complexity theory and motivate our as-
sumptions, present standard tools from derandomization, and give definitions of the peculiarities
that arise specifically in derandomization from uniform assumptions such as average-case tractabil-
ity and infinitely-often qualifiers.

All complexity measures of fine-grained problems will refer to time on a randomized word RAM
with O(log(n))-bit word length, as is standard for the fine-grained literature [Wil15, BRSV17].
Specifically, we will consider two-sided bounded error as in [BRSV17].

2.1 Fine-Grained Hardness

The problem-centric field of fine-grained complexity theory has had impressive success in showing
the fixed polynomial time (“fine-grained”) hardness of many practical problems by assuming the
fine-grained hardness of four “key” well-studied problems, as discussed in [BRSV17]. We obtain
our results under hardness conjectures about two of these four key problems: the k-Orthogonal
Vectors (k-OV) problem and the k-CLIQUE problem. Evidence continues to accumulate that these
problems are actually hard. Thus, not only is the connection between problem-centric and resource-
centric complexity of independent interest, but the strong derandomizations of this paper are now
supported by plausible conjectures about concrete problems.

k-CLIQUE. Denote the matrix multiplication constant by ω. The fastest known algorithm
for deciding if a graph has a k-CLIQUE (given its adjacency matrix) runs in time O(nωk/3), and
was discovered in 1985 [NP85] for k a multiple of three (for other k different ideas are needed
[EG04]). It is conjectured that no algorithm can improve the exponent to a better constant. The
parameterized version of the famous NP-hard MAX-CLIQUE problem [Kar72], k-CLIQUE is one of
the most heavily studied problems in theoretical computer science and is the canonical intractable
(W[1]-complete) problem in parameterized complexity (see [ABW15] for a review of the copious
evidence of k-CLIQUE’s hardness and consequences of its algorithm’s exponent being improved).
Recent work has shown that conjecturing k-CLIQUE to require nωk/3−o(1) time, for k a multiple of
three, leads to interesting hardness results for other important problems such as parsing languages
and RNA folding [ABW15, BGL17, BDT16, BT17], and it is known that refuting this conjecture
deterministically would give a faster exact algorithm for MAX-CUT [Wil05]. Our results hold under
a much weaker version of the conjecture:

Definition 2.1 (Weak k-CLIQUE Conjecture). There exists an absolute constant ε0 > 1/2 such
that, for all k ∈ N a multiple of three, any randomized algorithm that counts the number of
k-CLIQUE’s in an n node graph requires nε0k time.
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Note that this conjecture gives leeway for the exponent of the k-CLIQUE algorithm to be im-
proved so long as it doesn’t get down to k/2; even finding a linear time algorithm for Boolean matrix
multipliaction (ω = 2) would not contradict this conjecture! Further, even if it is possible to decide
the k-CLIQUE problem that quickly, this conjecture still holds unless it is possible to count all of
the k-CLIQUE’s in that time. (With a more careful analysis of our techniques to focus on k-CLIQUE
we can actually use the even weaker conjecture of ε0 > ω/(ω + 3), as argued in Appendix A).

k-Orthogonal Vectors. Although the k-CLIQUE problem is certainly at least as important as
the k-OV problem, for concreteness we will use the k-OV problem to demonstrate our techniques
throughout the paper. Proofs based on hardness of k-CLIQUE follow identically.

Definition 2.2 (k-Orthogonal Vectors Problem, k-OVn,d). For an integer k ≥ 2, the k-OVn,d
problem on vectors of dimension d is to determine, given k sets (U1, . . . , Uk) of n vectors from
{0, 1}d each, whether there exist ui ∈ Ui for each i such that over Z,∑

`∈[d]

u1` · · ·uk` = 0

If left unspecified, d is to be taken to be d(n) =
⌈
log2 n

⌉
.

Definition 2.3 (k-Orthogonal Vectors Conjecture, k-OVC). For any d = ω(log n), for all k ≥ 2,
any randomized algorithm for the k-OVn,d problem requires nk−o(1) time.

For k = 2 the Orthogonal Vectors conjecture for deterministic algorithms has been extensively
studied and is supported by the Strong Exponential Time Hypothesis (SETH) [Wil05], which states
that there is no ε > 0 such that t-SAT can be solved in time Õ(2n(1−ε)) for all values of t. The
natural generalization to k-OV is studied in [BRSV17, GIKW17] and its deterministic hardness is
also supported by SETH. While SETH has been controversial , the deterministic k-OV conjecture
seems to be a much weaker assumption and is independently believable and supported: it has
been shown that it holds unless all first-order graph properties become easy to decide [GIKW17]
and the 2-OV conjecture has recently been proven unconditionally when the model of computation
is restricted to branching programs [KW17]. This conjecture has also been used to support the
hardness of many practical and well-studied fine-grained problems [AWW14, BI15, BK15]. As
with k-CLIQUE, our main results will hold using a much weaker version of the randomized k-OV
conjecture introduced below.

Definition 2.4 (Weak k-Orthogonal Vectors Conjecture). For any d = ω(log n), there exists an
absolute constant ε0 > 1/2 such that, for all k ≥ 2, any randomized algorithm counting the number
of k-OVn,d solutions requires nε0k time.

Remark 2.5. For all of these conjectures we will also consider the strengthened versions that
assume that all algorithms running in time less than what is required will fail on all but finitely
many input lengths, as opposed to only on infinitely many input lengths. For most natural
problems, an ‘almost-everywhere’ assumption like this seems natural. That is, we don’t expect that
the problem becomes easy for, say, even input sizes and hard on odd input sizes or other degenerate
cases like this, but instead believe that the hardness comes from the structure of the problem and
will simply grow (as opposed to oscillate) asymptotically.

For the purposes of derandomization, for a given k, we will use a family of polynomials intro-

duced in [BRSV17],
{
fkn,d,p : Fkndp → Fp

}
n,d,p∈N

, such that the variables are grouped into sets of
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size nd in the form of a matrix Ui ∈ F n×d
p where the n rows ui ∈ Ui are each collections of d

variables:

fkn,d,p(U1, . . . , Uk) =
∑

u1∈U1,...,uk∈Uk

∏
`∈[d]

(1− u1` · · ·uk`)

The worst-case hardness of evaluating these polynomials was related to the worst-case hardness of
k-OVn in [BRSV17].

Lemma 2.6. Let p be the smallest prime number larger than nk and d =
⌈
log2(n)

⌉
. If fkn,d,p can

be computed in O(nk/2+c) time for some c > 0, then k-OVn can be counted in time Õ(nk/2+c)

Derandomization from uniform assumptions typically requires two other properties of the as-
sumed hard problem: random self-reducibility and downward self-reducibility. We recall from
[BRSV17] that fkn,d,p satisfies both of these properties. We give a polynomial for k-CLIQUE and
show that it also has the necessary properties in Appendix A.

Random Self-Reducible. fkn,d,p is random self-reducible by the following classical lemma [Lip89,

FF91] (see [BRSV17] for a proof). Note that degree log2 n adds negligibly to the random self-
reduction time.

Lemma 2.7 (Random Self-Reducibility of Polynomials). If f : FNP → FP is a degree 9 < D < P/12

polynomial, then there exists a randomized algorithm that takes a circuit Ĉ 3/4-approximating f
and produces a circuit C exactly computing f , such that the algorithm succeeds with high probability
and runs in time poly(N,D, logP, |Ĉ|).

Downward Self-Reducible. We will show that fkn,d,p is downward self-reducible in the sense

that, if we we have a way to produce an oracle for fk√
n,d,p

, we can quickly compute fkn,d,p with it.

Compare this to downward self-reducibility going from input size n to n − 1 in previous uniform
derandomizations. We exploit our more dramatic shrinkage and parallelism to later give an almost-
everywhere derandomization, instead of an infinitely-often one.

Lemma 2.8. If there exists an algorithm A that, on input 1n, outputs a circuit C computing
fk√

n,d,p
, then there exists an algorithm that computes fkn,d,p in time O(nk/2|C|+ TIME(A)).

Proof. Using A, we print a circuit C computing fk√
n,d,p

in time TIME(A). To solve an instance of

fkn,d,p, we break up its input as follows.

Intuitively, we break each Ui into
√
n chunks of

√
n rows each which partitions the sum of fkn,d,p

into
√
n
k

sub-summands. More formally, for j ∈
[√
n
]

let U ji ∈ F
√
n×d be the submatrix of Ui

consisting of just the ((j − 1)
√
n+ 1)th, ((j − 1)

√
n+ 2)th, . . . , ((j − 1)

√
n+
√
n)th rows.

Now we can feed U j11 , U
j2
2 , . . . , U

jk
k as input to C for all j1, j2, . . . , jk ∈

[√
n
]

and sum the results

that C gives. This will give the correct answer by inspection and makes
√
n
k

calls to C.

2.2 Derandomization

We now define pseudorandom generators (PRGs) in terms of their distinguishers.
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Definition 2.9 (Distinguishers). A test T : {0, 1}m` → {0, 1} is an ε-distinguisher against G :

{0, 1}m → {0, 1}m` , denoted T ∈ DIS(G, ε), if:∣∣∣∣ Pr
r∼U

m`

[T (r)]− Pr
z∼Um

[T (G(z))]

∣∣∣∣ > ε

We also will consider the seemingly weaker object of distinguishers that succeed if they are also
given the seed to the PRG. These were studied in [TV07] to relate uniform derandomization to
average-case hardness and in [KvMS12] to derandomize over the uniform distribution by using the
random input itself as the seed to the PRG.

Definition 2.10 (Seed-Aware Distinguishers). A test T : {0, 1}m × {0, 1}m` → {0, 1} is an ε-seed-
aware distinguisher against G, denoted T ∈ DIS(G, ε), if:∣∣∣∣ Pr

x∼Um,r∼Um`
[T (x, r)]− Pr

x∼Um
[T (x,G(x))]

∣∣∣∣ > ε

Standard hardness-to-randomness arguments typically derandomize using generators that are
based on some ‘hard’ function by contrapositive: if derandomization fails, then a distinguisher
for the generator can be produced. Further, from a distinguisher, we can create a small circuit
for the supposedly hard function that the generator was based on. For our purposes, we require
an algorithmic version of this argument for derandomization from uniform hardness assumptions.
More specifically, we will use the following lemma which was originally proved for distinguishers
[TV07, IW01] but Lemma 2.9 of [KvMS12] proves that it also holds for seed-aware distinguishers
(while the proof of [KvMS12] is non-uniform, it is easy to see that it can be made constructive, in the
same way that [IW01] gave a constructive version of [NW94]). Thus, DIS(G, ε) in the lemma below
can be thought to refer to either regular or seed-aware distinguishers (which justifies overloading
this notation).

Lemma 2.11 (Algorithmic Distinguishers to Predictors ([TV07, IW01])). For every random self-
reducible f , there exists a function G with stretch m bits to m` bits and a constant c such that

• G(z) can be computed in time (|z|`)c, given oracle access to f on inputs of length at most |z|

• There exists a polynomial-time randomized algorithm A that, with high probability, given as
input circuit D ∈ DIS(G, ε) for ε at least inverse polynomial and an oracle for f , prints a
circuit computing f exactly.

2.3 Uniform Derandomization

Previous techniques for derandomizations from worst-case uniform assumptions seemed to have
inherent caveats: the derandomization only succeeds on average and, even then, only for infinitely
many input lengths. Our results will remove the infinitely-often caveat and so, in this section, we
pay careful attention to infinitely-often simulation. First, we give the definitions of average-case
tractability that arise in uniform derandomization.

Average-Case Tractability. We give standard definitions of average-case tractability (for an
extensive survey of these notions, see [BT06a]).

Definition 2.12 (t(n)-Samplable Ensemble). An ensemble µ = {µn} is t(n)-samplable if there is
a randomized algorithm A that, on input a number n, outputs a string in {0, 1}∗ and:
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• A runs in time at most t(n) on input n, regardless of its internal coin tosses

• for every n and for every x ∈ {0, 1}∗, Pr[A(n) = x] = µn(x)

With this notion of samplable ensemble we can now consider heuristic algorithms that perform
well on some language L : {0, 1}∗ → {0, 1} over some µ. The pair (L, µ) is a distributional problem.

Definition 2.13 (Heuristics for Distributional Problems). For t : N → N, δ : N → R+, we say
(L, µ) ∈ Heurδ(n)DTIME[t(n)] if there is a time t(n) deterministic algorithm A such that, for all
but finitely many n:

Pr
x∼µn

[A(x) 6= L(x)] ≤ δ(n)

For a class of languages C we say (C, µ) ⊆ Heurδ(n)DTIME[t(n)] if (L, µ) ∈ Heurδ(n)DTIME[t(n)] for
all L ∈ C.

As in [BT06a], HeurδP is defined as the union over all polynomials p of HeurδDTIME(p(n))
and HeurP is the intersection over all inverse polynomial δ(n) of HeurδP. HeurSUBEXP is defined
similarly where SUBEXP = ∩ε>0DTIME

[
2n

ε]
.

In other words, HeurP is the class of distributional problems that can be solved in deterministic
polynomial time for any inverse polynomial error. Thus, while saying (L, µ) ∈ HeurP is not a worst-
case guarantee on L being easy, HeurP still captures a very strong real-world notion of tractability:
L can be easily decided up to any inverse polynomial probability of error over input distribution µ.
It is then interesting to see over which input distributions a language can be made tractable over.

Finally, to discuss the randomness-reduced simulations we construct, we define BPTIME with a
limited number of random coins in the natural way.

Definition 2.14 (Randomized Heuristics with Bounded Coins). For t : N→ N, δ : N→ R+, and
coin bound r : N→ N we say (L, µ) ∈ Heurδ(n)BPTIME[r(n)][t(n)] if there is randomized algorithm
A running in time t(n) and flipping r(n) coins such that, for all but finitely many n:

Pr
x∼µn

[
Pr

r∼Ur(n)
[A(x, r) 6= L(x)] > 1/3

]
≤ δ(n)

For example, HeurBPP[r(n)] denotes the class of distributional problems that, for every inverse
polynomial error, have a polynomial time randomized algorithm using only r(n) random coins.

Infinitely-Often Simulation. As opposed to an algorithm that decides a language (possibly on
average) “for all but finitely many n” as in Definition 2.13, an infinitely-often (io-) qualifier can be
added to any complexity class to specify that an algorithm need only succeed on infinitely many
input lengths within the time and error bounds. Thus, to derandomize BPP into io-HeurP over the
uniform distribution is to say that every language in BPP can be simulated on average in polynomial
time by an algorithm that is only guaranteed to succeed for infinitely many input lengths. There
is no guarantee on what those input lengths are or how large the gaps could be between them. This
is obviously a very undesirable notion of ‘tractability’.

Non-uniform hardness to randomness trade-offs can derandomize almost-everywhere (the de-
sired notion of tractability for asymptotics) by assuming almost-everywhere hardness: that no
algorithm works for all sufficiently large input lengths. That is, the ‘infinitely-often’ qualifier on
the consequent can be flipped across the implication to be an ‘almost-everywhere’ qualifier on
the assumption and vice-versa. Thus, the unrealistic ‘infinitely-often’ notion of tractability can
be dropped by slightly strengthening the assumption to the (as argued in Remark 2.5) realistic
‘almost-everywhere’ hardness. For non-uniform derandomizations this is possible.
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Starting with [IW01] and the techniques it introduced, all uniform derandomizations have
been infinitely-often derandomizations without being able to flip the io- qualifier to an ‘almost-
everywhere’ assumption. Our work is the first that is able to do this in the uniform derandomization
framework, thus removing the ‘infinitely-often’ qualifier from our derandomizations.

3 Fine-Grained Derandomization

We will prove our main derandomization results (Theorems 3.4 and 3.9) here. Under either the
(weak) k-OV or k-CLIQUE conjectures, we derandomize BPP on average, where ‘on average’ will
have two different flavors. Although all techniques apply to k-CLIQUE, for concreteness we will use
k-OV throughout this section.

We show in Section 3.1 that if we base pseudorandom generators on fkn,d,p, then an algorithm
printing distinguishers for this PRG can be used to count k-OV solutions quickly. We will then
show in Section 3.2 how to attain these distinguisher-printing algorithms if derandomization doesn’t
work on average (for both flavors of on average). Thus, a failed derandomization using these PRGs
refutes the k-OV conjecture (similarly for k-CLIQUE).

More specifically, in Section 3.2.1 we will show that the amount of randomness needed can be
shrunk in polynomial time to only nα random bits for any constant α > 0 and still succeed in
deciding the language on average over any efficient distribution on inputs (which implies a fully
deterministic sub-exponential derandomization over all efficient distributions). The second flavor
of derandomization will be shown in Section 3.2.2, that we can fully derandomize in polynomial
time on average over the uniform distribution. Namely, we will show that if either flavor of these
derandomizations fail, we will have an algorithm that prints distinguishers for infinitely many input
lengths.

3.1 Counting k-OV from Distinguishers

In this section we show that any algorithm producing a distinguisher for Gf
k
m,d,p (the generator

guaranteed to exist from Lemma 3.1, using the hard function fkm,d,p) can be used to quickly count
k-OV solutions.

First, Lemma 3.1 follows immediately by combining the distinguisher to predictor algorithm of
Lemma 2.11 with the fact that fkm,d,p is random self-reducible as in Lemma 2.7.

Lemma 3.1. There is a randomized algorithm Af
k
m,d,p that takes any circuit D that is a distin-

guisher for Gf
k
m,d,p and produces a circuit C exactly computing fkm,d,p, such that A succeeds with

high probability and runs in time poly(m, d, log p, |D|)

As usual, having an oracle to fkm,d,p, the assumed hard function, is not desirable and our
algorithms dependence on it will need to be removed. We stray from the techniques of [IW01] and
worst-case uniform derandomization in general, however, as we use the fact that our problems are
from the fine-grained world, and thus polynomial-time computable, to simply answer our oracle
queries by brute force. This difference is in part how we can remove the ‘infinitely-often’ qualifier
that plagues all previous worst-case uniform derandomizations.

As fkm,d,p is computable in time O(mkpoly(d, log p)), we get the following theorem without an
oracle by running the algorithm guaranteed in Lemma 3.1 with each oracle call answered by the
näıve brute force computation of fkm,d,p.
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Lemma 3.2. There is a randomized algorithm B that takes any circuit D that is a distinguisher for

Gf
k
m,d,p and produces a circuit C of size poly(m, d, log p, |D|) exactly computing fkm,d,p. B succeeds

with high probability and runs in time O(mkpoly(m, d, log p, |D|)).

Now we show that, if we have an algorithm producing a distinguisher, then we have an algorithm
counting k-OV. (In Sections 3.2.1 and 3.2.2 we will show how to attain such uniform distinguisher-
printing algorithms if either of our types of derandomization fail.)

Theorem 3.3. Let p be the smallest prime number larger than nk and d =
⌈
log2(n)

⌉
. If there is

an algorithm A that, on input 1n, outputs a distinguisher D of poly(n) size for G
fk√

n,d,p, then there
exists a randomized algorithm counting k-OVn that runs in time O(nk/2+c + TIME(A)), where c
only depends on |D|.

Proof. Using A, we print a distinguisher circuit D for G
fk√

n,d,p . Then, by Lemma 3.2, we know
there exists a randomized algorithm running in time O(nk/2poly(

√
n, d, log p, |D|)) = O(nk/2+c1)

that yields a circuit exactly computing fk√
n,d,p

of size only poly(
√
n, d, log p, |D|) = O(nc2), where

c1 and c2 only depend on |D|. Thus, by Lemma 2.8, there exists an algorithm computing fkn,d,p in

time O(nk/2+c2 + (nk/2+c1 + TIME(A))) = O(nk/2+c + TIME(A)) for c = max{c1, c2}. Finally, this
gives us an algorithm running in time Õ(nk/2+c + TIME(A)) to count k-OVn by Lemma 2.6.

3.2 Printing Distinguishers from Failed Derandomization

We now show that, if either of two (shown in 3.2.1 and 3.2.2 respectively) types of derandomization
fail, we can uniformly print the distinguishers needed in Section 3.1 and thus count k-OV solutions.

3.2.1 Randomness-Reduced Heuristics Over Any Efficient Distribution

Our first main result in derandomizing BPP is to reduce the amount of randomness required to
arbitrarily small quantities, over any efficient distribution of inputs. This simulation trades time
for reduced randomness under fine-grained hardness assumptions.

Theorem 3.4. If the weak k-OV conjecture holds almost everywhere, then, for all polynomially
samplable ensembles µ and for all constants α > 0,

(BPP, µ) ⊆ HeurBPP[nα]

Thus, for any efficient distribution over inputs that nature might be drawing from and for any
inverse polynomial error rate we specify, we can simulate BPP using only nα random bits for any
constant α > 0 we want. By brute-forcing over all random bits and taking majority answer over this
randomness-reduced computation we can always trivially create a fully deterministic simulation to
achieve the following more traditional-looking derandomization result.

Corollary 3.5. If the weak k-OV conjecture holds almost everywhere, then, for all polynomially
samplable ensembles µ,

(BPP, µ) ⊆ HeurSUBEXP

Remark 3.6. While we are able to remove the infinitely-often qualifier from our derandomization,
note that for each efficient distribution of inputs and each inverse polynomial error rate we are
guaranteed to have a derandomizing algorithm, whereas [IW01] is able to achieve a single deran-
domizing algorithm that works for each efficient distribution. Nonetheless, our result is a strictly
stronger derandomization as it implies, for instance, EXP 6= BPP (shown in Section B) which is
the assumption used to achieve the derandomization of [IW01].
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In contrast to typical full derandomizations which brute-force all seeds to a pseudorandom
generator and take majority answer, we now show that choosing a single random seed and using
the generator’s output as our randomness yields randomness-reduced simulations so long as the
generator is efficient enough. Typically, the generator is not fast enough for this application;
‘quick’ complexity-theoretic PRGs are usually given exponential time in their seed length as they
construct pseudorandom strings via queries to problems that have exponential hardness.

Definition 3.7 (Randomness-Reduced Simulations). Let A : {0, 1}N × {0, 1}N` → {0, 1} be a

randomized algorithm that uses N ` random bits and let G : {0, 1}Nα → {0, 1}N`
be a function.

Then for constant α > 0, define the randomness-reduced simulation to be a randomized algorithm
B : {0, 1}N × {0, 1}Nα → {0, 1} using only Nα random bits as B(x, r) = A(x,G(r)).

We now show that if B does not work as a randomness-reduced heuristic, we can uniformly
print a distinguisher for the function G.

Lemma 3.8 (Failed Randomness-Reduction to Distinguishers). Let A, B, and G be as in Definition
3.7 such that for language L : {0, 1}N → {0, 1},

Pr
r∼U

N`

[A(x, r) 6= L(x)] ≤ 1/10

That is, that A as a good randomized algorithm deciding L for all x ∈ {0, 1}N . Yet, also assume
that, for µ samplable in time Na1 and δ(n) = 1/Na2, it holds that

Pr
x∼µN

[
Pr

r∼UNα
[B(x, r) 6= L(x)] > 1/3

]
≥ δ(N)

That is, B as a (randomness-reduced) randomized algorithm does not decide L on average over µ.
Then 1N 7→ DIS(G, 1/5) is in randomized time N c TIME(G) for c depending on a1 and a2.

Proof. Assume the antecedents of Lemma 3.8. This means that, with probability at least δ(N),
choosing x from µ will result in an x such that

Pr
r∼UNα

[B(x, r) 6= L(x)] > 1/3

If we find an x′ ∈ {0, 1}N that induces this “bad” performance of B on L, the test T (r) = A(x′, r)
will be in DIS(G, 1/5). That is, since x′ makes B perform poorly while A still performs well on all
x’s and since B(x′, z) = A(x′, G(z)), the distinguishing gap of T is∣∣∣∣ Pr

r∼U
N`

[T (r)]− Pr
z∼UNα

[T (G(z))]

∣∣∣∣ =

∣∣∣∣ Pr
r∼U

N`

[A(x′, r)]− Pr
z∼UNα

[B(x′, G(z))]

∣∣∣∣ > |1/10− 1/3| > 1/5

To find such an x′, we simply sample-and-test as in [IW01]: sample Õ(1/δ(N)) possible xi ∈
{0, 1}N ’s from µ and, for each of them, define the test Ti(r) = A(xi, r). For each Ti, in polynomial

time we can estimate the fraction of r ∈ {0, 1}N`
that Ti accepts on and, by making calls to G,

we can estimate the fraction of G(z) for z ∈ {0, 1}Nα
that Ti accepts on in polynomial time times

TIME(G). Thus we can estimate the distinguishing gap for each Ti.
With high probability one of these Ti is a 1/5-distinguisher for G and our estimation of its

distinguishing gap reveals it. Print this circuit.
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Randomness-Reduced Simulations from k-OV. To finish defining a randomness-reduced sim-
ulation, we need to use a specific pseudorandom generator G that, for input length N , stretches

Nα coins to N `. Thus, consider the family of simulations Bk using the standard generators G
fk√

n,d,p

of Lemma 2.11 that map
√
n
s

bits to
√
n
b

bits, for some fixed s and any b we choose, using fk√
n,d,p

as our hard function, for d = log2 n and p the smallest prime number larger than nk. Set b = s`/α

and
√
n = Nα/s. Note that TIME(G

fk√
n,d,p) = poly(N) nk/2 = poly(N) by näıvely evaluating fk√

n,d,p

at each oracle call, giving an efficient randomness-reduced simulation. Further, since N = poly(n),

TIME(G
fk√

n,d,p) also equals nk/2+c for some constant c not depending on k (this will be useful in
quickly counting k-OVn using downward self-reducibility in the following proof). Thus, given an

N `-coin machine A, we have the Nα-coin machine Bk(x, r) = A
(
x,G

fk√
n,d,p(r)

)
.

We now prove our main Theorem 3.4 using this simulation and the above lemma.

Proof of Theorem 3.4. We proceed by contradiction. Assume that the weak k-OVn conjecture holds
for all but finitely many input lengths, where ε0 = 1/2 + γ for some constant γ > 0, but that there
exists L ∈ BPP, a polynomially samplable distribution µ, constant α, and an inverse polynomial
function δ(N) such that any polynomial-time randomness-reduced algorithm with coin bound Nα

fails in deciding L on average over µ within δ(N) error for infinitely many input lengths N .
Since L ∈ BPP there is a randomized algorithm A deciding L with probability of error at most

1/10 over its randomness yet, since any polynomial-time randomness-reduced algorithm fails to
decide L on average, Bk, the randomness-reduced simulation of A described above, fails on average
infinitely often, for any constant k. Thus, the antecedents of Lemma 3.8 are satisfied and we can

uniformly print D ∈ DIS(G
fk√

n,d,p , 1/5) in time nc1 TIME
(
G
fk√

n,d,p

)
= nc1 nc2nk/2.

This uniform printing of D allows us to apply Theorem 3.3 to count k-OVn in time O(nk/2+c3 +

nk/2+c1+c2) = O(nk/2+c) = O(n( 1
2
+ c
k )k) for any k, where c = max{c1 + c2, c3}. Setting k such that

c
k < γ yields our contradictions: on the infinitely many input lengths where Bk fails to derandomize
L, the algorithm counts k-OV faster than nε0k time.

3.2.2 Fast Heuristics for BPP Over the Uniform Distribution

Here we present our second flavor of derandomization: a fully deterministic heuristic for BPP when
inputs are sampled according to the uniform distribution.

Theorem 3.9. If the weak k-OV conjecture holds almost everywhere, then

(BPP,U) ⊆ HeurP

This strictly improves previous uniform derandomizations over the uniform distribution. Specif-
ically, [GW02] can be seen to achieve our derandomization identically from a worst-case uniform
assumption if combined with techniques from [KvMS12] except only on infinitely many input lengths.

We proceed by showing that if a PRG fails to give a good heuristic for BPP over the uniform
distribution, a seed-aware distinguisher for the PRG can be produced uniformly and efficiently,
which can then be used to count k-OV solutions quickly using Theorem 3.3.

Definition 3.10 (Input-As-Seed Heuristics). Let A : {0, 1}N ×{0, 1}N` → {0, 1} be a polynomial-

time randomized algorithm using N ` random bits. Let G : {0, 1}N → {0, 1}N`
be a deterministic

function. Define the heuristic B : {0, 1}N → {0, 1} that uses its input as G’s seed as B(x) =
A(x,G(x)).
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Now recall the Main Lemma of [KvMS12] giving the consequences of failed heuristics in the
non-uniform setting:

Lemma 3.11 (Main Lemma of [KvMS12]). Let A : {0, 1}N ×{0, 1}N` → {0, 1} and L : {0, 1}N →
{0, 1} be functions such that

Pr
x∼UN ,r∼UN`

[A(x, r) 6= L(x)] ≤ ρ

Let B be the seed-as-input heuristic for A using function G. Then, if B does not succeed on a
(3ρ + ε) fraction of the inputs of a given length, there exists an r′ ∈ {0, 1}N`

such that the test
Tr′(x, r) = A(x, r)⊕A(x, r′) is in DIS(G, ε).

The proof of the above lemma uses non-uniformity to obtain a good r′ for distinguishing, but
we can instead uniformly obtain good strings r′ via a sample-and-test procedure. There is some
loss in the accuracy of the resulting simulation, but this can be made an arbitrarily small inverse
polynomial via standard error reduction.

Intuitively, if B is a bad heuristic for L, then we could use B(x) = A(x,G(x)) as a seed-
aware distinguisher for G by comparing B(x) to L(x). Unfortunately we cannot afford to print
distinguishers with L-oracles. But since we are guaranteed that A is a good heuristic for L, we
can obtain a deterministic circuit close to L from A, by fixing a string of good random bits r′. If
we compare B(x) and the fixed-coin algorithm A(x, r′), they will also tend to disagree, giving the
necessary distinguishing gap. We can find and fix a good r′ uniformly by showing that they are
dense and then sampling and testing for goodness. Formally:

Lemma 3.12 (Failed Heuristics to Distinguishers). Let A, L, G, and B be as in Lemma 3.11
above. Then, if B does not succeed on a (5ρ+ ε) fraction of the inputs of a given length, the map
1N 7→ DIS(G, ε) is uniform and in randomized polynomial time, for infinitely many N .

Proof. By the assumption that A succeeds on a ρ fraction of input-coin pairs, we know that many
fixings of the coins of A produce an algorithm close to L. We can obtain in polynomial time and
with high probability a string r′ ∈ {0, 1}N`

such that

Pr
x∼UN

[A(x, r′) 6= L(x)] ≤ 2ρ

by repeatedly sampling and testing such fixings of A’s coins. This is the first of several “constructive
averaging arguments” used in this proof. As above, define the tests,

Tr′(x, r) = A(x, r)⊕A(x, r′)

which output ‘1’ when, for input x, A on fixed coins r′ disagrees with A run on input coins r. To
output a distinguisher, we simply find an appropriate string r′ and then print the circuit Tr′ . This
only takes polynomial time. To show that with high probability Tr′ ∈ DIS(G, ε), consider two cases.

1. T (x,G(x)): We have by definition of B = A(x,G(x)) and the assumption that B is not a
good heuristic that A(x,G(x)) will tend to disagree with L. So A(x,G(x)) will also tend
to disagree with A(x, r′). Thus, the test will be biased towards printing 1 when run with
generator output.

2. T (x,UN`): The algorithm A(x,UN`) will tend to agree with A(x, r′) by our constructive
averaging above. So the test will tend to output 0 when run with true random bits.
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These cases correspond to the first and second terms of the distinguishing gap equation (Defi-
nition 2.10), which we substitute the test into below:∣∣∣∣ Pr

x∼UN

[
A(x,G(x)) 6= A(x, r′)

]
− Pr
x∼UN ,R∼UN`

[
A(x, r) 6= A(x, r′)

]∣∣∣∣
An upper bound on term 2 is straightforward by union bound and Fréchet inequality: it is at
most 3ρ. For term 1, observe that we have these bounds on the relative Hamming distance from
A(x,G(x)) to L, and from A(x, r′) to L:

d(A(x,G(x)), L) ≥ 5ρ+ ε by assumption on B

d(A(x, r′), L) ≤ 2ρ by constructive averaging

So, by triangle inequality, we obtain a lower bound of 3ρ+ ε on the first term of the distinguisher
equation. Therefore, if our constructive averaging succeeds in finding a good r′, we have Tr′ ∈
DIS(G, ε). The time to print Tr′ is just the polynomial time to find a good r′ by repeatedly sampling
and running A to test, plus the time to print A as a circuit. Thus the size of the distinguisher
printed is only Õ(TIME(A)) — it does not depend on the runtime of the constructive averaging
argument.

Fully Deterministic Heuristics from k-OV. Here we specify a family of heuristics Bk, by

specifying the generator G, that stretches a seed of length N to N `, as the generators G
fk√

n,d,p of
Lemma 2.11. These map

√
n
s

bits to
√
n
b

bits, for some fixed s and any b we choose, using fk√
n,d,p

,

for d = log2 n and p the smallest prime number larger than nk. Set b = s` and
√
n = N1/s. All

comments about the runtime of the randomness-reduced heuristic in Section 3.2.1 also apply to
this fully deterministic heuristic. Thus, given an N `-coin machine A, we have the deterministic

machine Bk(x) = A
(
x,G

fk√
n,d,p(x)

)
.

We now prove our main Theorem 3.9 using this simulation and the above lemma.

Proof of Theorem 3.9. We proceed by contradiction. Assume that the weak k-OVn conjecture
holds for all but finitely many input lengths, where ε0 = 1/2 + γ for some constant γ > 0, but
that there exists L ∈ BPP and an inverse polynomial function δ(N) such that any polynomial-time
deterministic algorithm fails in deciding L on average over µ within δ(N) error for infinitely many
input lengths N .

Namely, since L ∈ BPP there is a randomized algorithm A deciding L with probability of failing
over its coins at most ρ(N) for any inverse polynomial (by standard error reduction), yet it must be
the case that our Bk simulation of A described above fails on average infinitely often as well, for any
constant k. Thus, choose inverse polynomial ε(N) and ρ(N) such that 5ρ+ε ≤ δ(N) and this failure

satisfies the preconditions of Lemma 3.12 and thus we can uniformly print D ∈ DIS(G
fk√

n,d,p , ε) in
time nk/2+c1 .

Again this allows us to apply Theorem 3.3, which counts k-OV in time O(nk/2+c2 + nk/2+c1) =

O(n( 1
2
+ c
k )k) for any k, where c = max{c1, c2}. Setting k such that c

k < γ yields our contradiction:
on the infinitely many input lengths where B fails to derandomize L, the algorithm counts k-OVn
faster than nε0k time.
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4 Open Questions

• We derandomize under hardness conjectures about two of four ‘key’ problems in fine-grained
complexity: k-OV and k-CLIQUE. What about k-SUM and APSP? APSP doesn’t seem to
have a natural hierarchy and so doesn’t fit our framework (although it does reduce to ZERO-
TRIANGLE which generalizes to ZERO-k-CLIQUE and should easily work in our framework
using polynomials similar to those in [BRSV17]). k-SUM however is actually computable
in O(ndk/2e) time and so our downward self-reducibility techniques are not fast enough to
break this conjecture in the contrapositive. The clearest path we see to getting derandom-
ization without reintroducing the io- qualifier is to find a polynomial for k-SUM that is also
computable in Õ(ndk/2e) time (unlike the one found in [BRSV17]).

• Our derandomizations hold under (randomized) SETH, since SETH implies the k-OV con-
jecture. Can a better derandomization be obtained directly from SETH, the stronger as-
sumption? A stumbling block here is the random self-reduction, an ingredient in all known
uniform derandomization techniques: If t-SAT has a straightforward and efficient random-
self-reduction, PH collapses [FF93, BT06b]. So derandomizing from SETH directly could
require new ideas, or a strange random self-reduction. An inefficient random self-reduction
for t-SAT shouldn’t collapse PH except to say that t-SAT has a mildly exponential MA proof
which is already known to be true [Wil16], although most random self-reductions we know
are through arithmetization which seems to always have ‘low’ degree to the point that such
a polynomial would still collapse PH.

• Is a strong “derandomization to hardness” converse possible for these heuristic simulations
of BPP? In appendix B, we show a weak converse: our simulation is impossible without
separting DTIME[nω(1)] from BPP. But this is a very different statement from the k-OV
or k-CLIQUE conjectures. In [KvMS12], they show that herusitic simulations of BPP with
inverse-subexponential error rates imply circuit lower bounds, by generalizing techniques of
[KI04]. Do the efficient inverse-polynomial error heuristics we obtain imply any circuit lower
bounds?
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A A Polynomial For k-CLIQUE

We now introduce a polynomial for k-CLIQUE that will, under the weak k-CLIQUE conjecture,
achieve the same results as k-OV does. We will also discuss how our results hold under an even
weaker version of the k-CLIQUE conjecture. This polynomial is independently found in [GR18].
We first define the k-partite k-CLIQUE problem.

Definition A.1 (k-partite k-CLIQUE problem). For an integer k ≥ 3, the k-CLIQUEn problem is
to, given k graphs on n nodes such that all the edges are only between the graphs, decide if there
is a k-CLIQUE among them. The input is given as

(
k
2

)
biadjacency matrices between the k graphs.

The k-partite k-CLIQUE problem is equivalent to the common k-CLIQUE problem on one graph
(i.e. they reduce to each other in O(n2) time). We now introduce a polynomial that can count
k-CLIQUE’s.

For a given k, consider the family of polynomials
{
gkn,p : (Fn×np )(

k
2) → Fp

}
n,p∈N

. Overloading

notation, let
(
k
2

)
= {(i, j) : 1 ≤ i < j ≤ k}. Then,

gkn,p(A
(1,2), A(1,3), . . . , A(k−1,k)) =

∑
v1,...,vk∈[n]

∏
(i,j)∈(k2)

A(i,j)
vi,vj

Note that boolean input corresponds to biadjacency matrices that comprise a k-partite k-CLIQUE
instance and that the polynomial counts the number of k-CLIQUE’s so long as p is prime larger than
nk. Now, instead of following the technique of [BRSV17] to find such a prime in time Õ(nk/2+c)
for any c > 0, we can use the randomness in our contrapositive derandomization arguments to
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choose many random primes so that an evaluation of the polynomial over each prime will be able
reconstruct the count via the Chinese Remainder Theorem. Since choosing random primes is much
faster than finding the single large prime, this along with following remark will allow us to make a
weaker k-CLIQUE conjecture.

Remark A.2. gkn,p is guaranteed to be nωk/3−o(1) hard under k-CLIQUE’s hardness for k a multiple

of three but a näıve evaluation takes Õ(nk) time. However, interpreting each matrix of field elements
as the biadjacency matrix of a weighted graph, the polynomial can be evaluated by the methods of
[NP85] as shown in [Lin18]. This faster evaluation solves an open problem of [BRSV17] of finding
a polynomial whose computability is tight to its hardness for k-CLIQUE. Importantly, this will speed
up the oracle calls in our downward self-reduction in our derandomization arugments, allowing for
a weaker k-CLIQUE conjecture.

We now show that gkn,p is random self-reducible and downward self-reducible as needed in our

results. Random self-reducibility is automatic as with fkn,d,p from Lemma 2.7 (note that our degree

is the constant
(
k
2

)
and so adds negligibly to the random self-reduction time), and we will show gkn,p

reduces to gk
nδ,p

similarly to fkn,d,p (we choose δ different than 1/2 since we can now evaluate the

polynomial quick enough to make weaker conjectures). Namely, we will show the following lemma.

Lemma A.3. If there exists an algorithm A that, on input 1n, outputs a circuit C computing gk
nδ,p

,

then there exists an algorithm that computes gkn,p in time O(n(1−δ)k|C|+TIME(A)), for any δ > 0.

Proof. Using A, we print a circuit C computing gk
nδ,p

in time TIME(A). To solve an instance A(i,j),

(i, j) ∈
(
k
2

)
, of gkn,p, we break up its input as follows.

Let P =
{
{(j − 1)nδ + 1, (j − 1)nδ + 2, . . . , (j − 1)nδ + nδ} : j ∈ n1−δ

}
be a partitioning of [n]

into n1−δ sets of size nδ each. Then we can see gkn,p breaks into sub-summands as follows.

gkn,p(A
(1,2), A(1,3), . . . , A(k−1,k)) =

∑
P1,...,Pk∈P

 ∑
v1∈P1,...,vk∈Pk

∏
(i,j)∈(k2)

A(i,j)
vi,vj

 (1)

We claim the inner sum can be computed by gk
nδ,p

if given the right inputs. Namely, lets say

we have P1, . . . , Pk ∈ P . Now we can make new matrices B(i,j) ∈ Fnδ×nδp , (i, j) ∈
(
k
2

)
as new input

for gk
nδ,p

for C to solve for us:

To create B(i,j) we consider Pi and Pj and fill B(i,j)’s entries in as A(i,j) restricted to the
submatrix on row indices Pi and column indices Pj . By inspection, these B(i,j) passed as input to
gk
nδ,p

will yield the inner summand for P1, . . . , Pk.
Thus, feeding these inputs to C for all P1, . . . , Pk and summing the results that C gives will

give the evaluation of gkn,p on A(i,j), (i, j) ∈
(
k
2

)
. This takes n(1−δ)k calls to C.

Remark A.4. Since constructing circuit C (from broken derandomization) for the above lemma
takes time Õ(nδωk/3+c2) time by using the fast/tight evaluation of gk

nδ,p
from Remark A.2, then

evaluating gkn,p using the lemma will take Õ(n(1−δ)k+c1 + nδωk/3+c2) time in total, for constants

c1 and c2. Setting δ = 3/(ω + 3) is optimal and yields an Õ(n
ω
ω+3

k+c) algorithm for k-CLIQUE
for some constant c. Thus the k-CLIQUE conjecture can be made with ε0 > ω/(ω + 3) instead of
ε > 1/2.
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B Heuristics Imply Separations

We now show that, if a deterministic simulation of BPP succeeds infinitely-often and on average,
then BPP doesn’t contain any deterministic time class larger than P. Compare this to Corollary 7
of [IW01].

Theorem B.1. If (BPP,U) ⊆ io-Heur1/3P then, for all t(n) = nω(1) time-constructible:

DTIME[t(n)] * BPP

Intuitively, if we were able to get good enough derandomization to say that BPP ⊆ P, then
we would know that DTIME[nω(1)] * BPP by the time-hierarchy theorem. Thus, proving a time-
hierarchy theorem that is robust to the io- and Heur qualifiers suffices to concluding DTIME[nω(1)] *
BPP from a (BPP,U) ⊆ io-HeurP derandomization. We expand ideas from [IW01] to prove the
following sufficient lemma for simplicity.

Lemma B.2 (Robust Time Hierarchy Theorem). For all time-constructible t(n):

io-Heur1/3DTIME[t(n)] ⊂ DTIME[t(n)3]

Proof. We give a deterministic machine M that runs in time t(n)3 but whose language it decides
is not also in io-Heur1/3DTIME[t(n)]:

Let `(n) = log t(n). On input x = u||v, where u is the first n− `(n) bits and v is the last `(n)
bits, M simulates all Turing machines of description length .5`(n) on every n-bit input that begins
with u for t(n) steps. This creates 2.5`(n) =

√
t(n) strings of length t(n) which are the truth tables

of each .5`(n)-size Turing machines that runs in t(n) steps on all of the 2`(n) = t(n) inputs that
begin with u.

It is easy to see with Chebyshev that a random string of length t(n) agrees with any fixed
t(n)-length string on at least 2/3 of its values only with probability 1/O(t(n)). Since there are
only

√
t(n) < O(t(n)) strings that are our truth tables though, by union bound there must exist

a t(n)-length string that disagrees with all of our truth tables on at least 1/3 of each of their
values. Of course this string might have high complexity to generate but, since our analysis here
only involved a Chebyshev bound, a pairwise independent hash family will fool this analysis and
have the same conclusion.

Namely, considering a random string from the pairwise independent hash family H = {〈r, ·〉 :
r ∈ {0, 1}`(n)} is sufficient for the analysis and so we have that there must exist a specific 〈ru, ·〉
that disagrees with all of the truth tables on at least 1/3 of their values. Thus, since H is relatively
small and its functions are easy to compute, M can find that ru by brute force and outputs its final
binary value as 〈ru, v〉.

Thus, this whole process of M on x = u||v of simulating
√
t(n) Turing Machines on t(n) inputs

for t(n) time and checking all t(n) r’s for the one that fools all of the truth tables adequately
enough takes at most t(n)3 time for large enough n. However, by construction, all time t(n) Turing
machines fail in deciding this language on at least 1/3 of its inputs for all sufficiently large n.
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