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Abstract

A k-LIN instance is a system of m equations over n
variables of the form si1 + · · ·+ sik = 0 or 1 modulo
2 (each involving k variables). We consider two
distributions on instances in which the variables are
chosen independently and uniformly but the right-
hand sides are different. In a noisy planted instance,
the right-hand side is obtained by evaluating the
system on a random planted solution and adding
independent noise with some constant bias to each
equation; whereas in a random instance, the right-
hand side is uniformly random. Alekhnovich (FOCS
2003) conjectured that the two are hard to distinguish
when k = 3 and m = O(n).

We give a sample-efficient reduction from solving
noisy planted k-LIN instances (a sparse-equation
version of the Learning Parity with Noise problem) to
distinguishing them from random instances. Suppose
that m-equation, n-variable instances of the two
types are efficiently distinguishable with advantage
ε. Then, we show that O(m · (m/ε)2/k)-equation, n-
variable noisy planted k-LIN instances are efficiently
solvable with probability exp−Õ((m/ε)6/k). Our
solver has worse success probability but better sample
complexity than Applebaum’s (SICOMP 2013). We
extend our techniques to show that this can generalize
to (possibly non-linear) k-CSPs.

The solver is based on a new approximate lo-
cal list-decoding algorithm for the k-XOR code at
large distances. The k-XOR encoding of a func-
tion F : Σ → {−1, 1} is its k-th tensor power
F k(x1, . . . , xk) = F (x1) · · ·F (xk). Given oracle ac-
cess to a function G that µ-correlates with F k, our
algorithm, say for constant k, outputs the descrip-
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tion of a message that Ω(µ1/k)-correlates with F with

probability exp(−Õ(µ−4/k)). Previous decoders, for
such k, have a worse dependence on µ (Levin, Com-
binatorica 1987) or do not apply to subconstant µ1/k.
We also prove a new XOR lemma for this parameter
regime.

The decoder and its analysis rely on a new
structure-versus-randomness dichotomy for general
Boolean-valued functions over product sets, which
may be of independent interest.

1 Introduction

One of the most basic examples of learning in the
presence of noise is of solving a noisy system of
linear equations: Given m samples (ai, 〈ai, s〉 + ei)
for random ai ∈ Fn and errors ei according to some
error distribution, try to learn s ∈ Fn – i.e. given
A ∈ Fm×n and As+ e, solve for s ∈ Fn.

Despite its simplicity to state and the ease of
solving noiseless systems of linear equations, noisy
linear equations are notoriously hard and form the
basis for a large body of study intersecting at learning
theory, number theoretic lattices, error-correcting
codes, and cryptography. That is, for different
choices of F, number of equations m, and error
distributions, this problem becomes Learning With
Errors (LWE) [Reg09], Learning Parity with Noise
(LPN) [Pie12], and Learning With Rounding (LWR)
[BPR12], all of which have been objects of study
and have cryptographic primitives based on their
hardness.

Learning Parity with Noise, in particular, uses F2

and errors, ei, being 1 with some constant probability.
Here we consider the sparse variant of LPN where,
for some k, each row ai has only k 1’s in it. Whereas
LPN has no restriction on the number of 1’s in its
rows and can have as many as n of them, we think
of its sparse variant with k much less than n and will
think of it throughout the paper even as a constant.

Besides being a natural learning problem, one
motivation for considering a sparse-equation version
of Learning Parity with Noise is that the assumed
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hardness of many of these noisy linear equation
problems are used as the basis for cryptography,
yet often have unwieldy key sizes and inefficient
protocols. More specifically, if we think of the matrix
A as a public key in some scheme, then we need to
store the entire matrix and perform expensive matrix
operations. One approach to circumventing this is to
use an F that has considerable algebraic structure
so that rows can be “re-used” in a structured way
meaning less rows need to be stored and so that
A can be evaluated quickly [LPR10]. While this
accomplishes the goal, it bases hardness on lattice
problems where the lattice has considerably more
algebraic structure that could possibly be exploited
algorithmically, calling into question the hardness of
the lattice problems. Another approach to achieving
matrices A that are easier to store and evaluate is
sparsity. With the sparse rows of sparse LPN, we
only need to remember where the few 1’s are and
each row can be evaluated on input s very quickly.

Inspired by this gain in efficiency and key size,
if someone were then to try to base cryptography on
sparse LPN, a first step to take that is done with
other noisy linear equation problems [GL89, AGS03,
App17,Reg09,MM11,BLRL+18,BGM+16] would be
to give a search-to-decision reduction for the problem:
The seemingly easier decision version for noisy linear
equations is to, given (A, b), distinguish whether b
was given in the form of a system of equations b =
As+ e or was just a completely random vector.

Thus search-to-decision reductions for these
problems show that the one-wayness of solving noisy
linear equations (i.e. finding s is hard) yields its pseu-
dorandomness (i.e. As + e is indistinguishable from
random), so that these problems are good pseudo-
random generators “out of the box” (without hav-
ing to go through generic expensive constructions
like [HILL99]).

A main parameter of study in these reductions
is the blow-up in sample complexity, m, needed (see
[MM11] for a thorough discussion of this). Our main
result is to reduce the sample complexity needed
in a search-to-decision reduction for sparse Learning
Parity with Noise.

Sparse random linear equations We are
given a system of k-LIN equations of the form si1 +
· · · + sik = 0 or 1, where the variables in each equa-
tion and the left-hand sides of the different equations
are independent and identically distributed, and the
addition is modulo 2. Such a system has the form
As = b where A is a random m × n matrix with

sparse and independent rows. We are interested in
the following two problems:

• Solving a planted instance: Given A and
As + e, where s ∼ {0, 1}n is a random planted
solution and e is a vector of random i.i.d. {0, 1}-
entries where each entry is 1 with constant
probability η, find s.

• Distinguishing planted from random in-
stances: Distinguish the distribution (A,As+e)
from (A, r), where r ∼ {0, 1}m is independent of
A.

The distinguishing variant was introduced by
Alekhnovich [Ale11]. He conjectured that when
k = 3 and m = O(n) distinguishing with advantage
substantially better than 1/n is intractable. This is a
generalization of Feige’s conjecture [Fei02] from which
several hardness of approximation results are derived.

A distinguishing advantage of Ω(
(
m
2

)
/
(
n
k

)
) can

be attained by a simple collision-finder: The distin-
guisher looks for two appearances of the same equa-
tion, accepts if the right-hand sides are equal, and
rejects otherwise.

Distinguishing algorithms have received consid-
erable attention in the regime where their advan-
tage is very close to one. A refutation algo-
rithm must accept all planted instances in which
the error rate is less than some threshold, say 2η,
and reject almost all random instances (a refuta-
tion algorithm can be thought of strengthening of
a distinguishing algorithm to be so that the er-
ror is only one-sided ). Polynomial-time refuta-
tion algorithms are known for random k-XOR in-
stances provided the number of clauses m exceeds
ωk(nk/2) [AOW15,BM16] and are conjectured not to
exist when m = o(nk/2) [ABW10,BM16]. In the lat-
ter regime, refutation in time exp Õ(nδ) is possible if
m = ω̃k(nk/2−δ(k/2−1)) [RRS17].

On the negative side, Kothari et al. [KMOW17]
show that the refutation algorithms of [AOW15,
BM16, RRS17] are optimal among a wide class of
semidefinite programs. Further, Feldman, Perkins,
and Vempala [FPV15] describe a statistical model
in which efficient search is possible when m =
ω(nk/2 log2 n), but distinguishing isn’t when m =
o((n/ log n)k/2).

For the solving variant, Applebaum [App16] de-
scribes an efficient solver in the regime m = ωk(nk/2)
by a reduction to a 2CSP instance, the application of
a suitable approximation algorithm [GW95, CW04],
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and some additional post-processing work.1

In this paper we are interested in the relationship
between the solving and distinguishing variants. In
one direction, a solver that works on an α-fraction of
instances can be used to distinguish with advantage
at least α − 2−H(2η)m+n, indicating that solving
should be harder than distinguishing, as expected.
In the other direction, Applebaum [App13] gives an
efficient search-to-decision reduction from solving a
constant fraction of instances of size m to that of
distinguishing instances of size (ε2m/ log n)1/3, where
ε is the advantage of the distinguisher. That is,
roughly cubicly many more equations are needed to
solve than to distinguish. Our work will reduce this
gap.

The starting point of Applebaum’s analysis, as
is done successfully for the search-to-decision reduc-
tions for LPN [GL89, AGS03, App17], LWE [MM11,
BLRL+18], and LWR [BGM+16], is an application of
Yao’s distinguishing-to-prediction reduction [Yao82].
In this context the reduction turns a distinguisher for
planted instances with m equations and advantage ε
into a predictor that guesses the value of any given k-
LIN equation (or, respectively, any given linear func-
tional over F corresponding to whether we instead
started with (dense) LPN, LWE, or LWR) evaluated
on the planted solution with advantage ε/m, given
m− 1 planted equations as “training data”.

Applebaum’s work was concerned with general
k-Constraint Satisfaction Problems however and did
not focus on k-LIN itself, and so the rest of his tech-
niques diverged from typical search-to-decision tech-
niques for noisy linear equations. Namely, all of LPN
[GL89,AGS03,App17], LWE [MM11,BLRL+18], and
LWR [BGM+16] treat the predictor for linear equa-
tions evaluated on s as noisy access to a codeword of
an encoding of s. For example, LPN considers ar-
bitrary parities with s which, looking at the string
of all possible parities of s, is exactly the Hadamard
encoding of s, to which the predictor is noisy access
to that codeword. Thus all of these problems then
become decoding problems of recovering s from the
appropriate error-correcting code.

We wish to follow this successfully applied per-
spective to achieve search-to-decision for the sparse
LPN problem. While the natural code for LPN was
the Hadamard code, sparse LPN is looking at the
subset of the Hadamard code corresponding to pari-

1This approach applies more generally to equations with

adversarial noise.

ties of exactly k positions. This is exactly the k-XOR
code.

XOR Codes XOR lemmas [Yao82] are state-
ments that are typically used to relate the average-
case hardness of a Boolean function F : Σ→ {−1, 1}
to that of its k-XOR encoding F k : Σk → {−1, 1}
given by

F k(x1, . . . , xk) = F (x1) · · ·F (xk).

That is, if some algorithm A of low complexity
computes F on a (1+µ1/k)/2-fraction of inputs under
the uniform distribution over Σ (equivalently, we say
that A µ1/k-correlates with F ), then the algorithm
A′(x1, . . . , xk) = A(x1) · · ·A(xk) computes F k on a
(1+µ)/2-fraction of inputs. Thus, the ability of A to
correlate with the function drops exponentially in k
from µ1/k to µ when used näıvely as with A′. XOR
lemmas formalize the intuition that this is essentially
the best possible average-case algorithm for F k.

Although XOR lemmas are typically used for
hardness amplification in computational complexity,
we will break from this use and interpretation. More
specifically, if we think of the truth table F ∈
{−1, 1}|Σ| as a string where we call N = |F |, then
we will be thinking of extremely small correlations2

µ = 1/NΩ(k) which would simply not make sense in
the non-uniform hardness amplification framework:
achieving (1 + µ)/2 fraction of agreement with F k in
this regime amounts to being correct on just a few
more bits than half of F k’s truth table, which we can
never guarantee hard in the non-uniform model since
you could just hardcode those very few bits into the
circuit to match the small advantage required. Thus
it is not useful to think of the XOR code in terms
of hardness amplification or of the usual techniques
used for it for that use-case. We instead look at XOR
code in terms of coding theory.

In coding-theoretic language, XOR lemmas are
approximate local list-decoding algorithms for the k-
XOR code [STV01]. The function F represents a
binary message of length |Σ| and F k is its encoding.
List-decoding is the task of finding all the codewords
F k that have relative agreement at least (1 + µ)/2
with a given corrupted codeword G : Σk → {−1, 1}.

2We care about such small advantage since, in the sparse

LPN case, we think of F as our secret s of size N that we want

to recover from M > N noisy parities of it. Thus, as mentioned
earlier, a sparse LPN distinguisher with advantage ε can be

converted to a predictor with advantage ε/M < ε/N . This

small advantage necessitates our extreme parameterization of
the XOR code for our use-case.

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited988

D
ow

nl
oa

de
d 

10
/1

5/
19

 to
 2

4.
61

.3
2.

28
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



For smaller µ (that we consider here) the number
of such codewords can be exponentially large in
|Σ| which severely restricts the utility of exact list-
decoding.3 It is common to study the following
relaxation.

Definition 1.1. Let µ, α ∈ [0, 1] be parameters. A
binary code is (1+α)/2-approximately list-decodable
for error rate (1 − µ)/2 with list size `(µ, α) if for
every corrupted codeword G there exists a list of
codewords C1, . . . , C` such that for any codeword C
that agrees with G on at least a (1 + µ)/2-fraction of
positions, C also agrees on a (1 + α)/2-fraction with
Ci for some i.

That is, for any codeword that is corrupted on
at most a (1 − µ)/2-fraction of positions, we want
a list that might not contain the original codeword
itself but at least contains a codeword close to the
original one (i.e. agrees on a (1+α)/2-fraction). This
relaxation may allow for smaller (and non-trivial) list
size.

Remark 1.1. We talk in terms of recovering a list of
approximate codewords instead of trying to approxi-
mately recover the message since, in the case of the
k-XOR code, two codewords F k, F ′k are at distance
(1 − α)/2 if and only if the corresponding messages
F, F ′ are at distance (1 − α1/k)/2. Thus, we will
freely interchange between talking about decoding to
codewords versus messages.4

When α > µ the list size is still exponential in
Σ (as we’ll show in Proposition 4.2), so the regime of
interest is α ≤ µ. While modern XOR lemmas have
a suite of impressive and desirable properties, such
being simple, derandomized, uniform, and having
extremely small list sizes such as O(1/µ2) [IJKW10],
almost all XOR lemmas [Imp95a, GNW11, IJK09,
IJKW10] have the constraint that the approximation
error (1 − α1/k)/2 is at least Ω((log 1/µ)/k). Thus,
all of them can only talk about smaller µ when k
is large and do not address the regime in which k
is smaller than log 1/µ – e.g. if k is constant, like
we’re concerned with, then so must be α and µ, and
so smaller correlations/noisier codewords can’t be

3More precisely, the list can be of size 2h((1−µ1/k)/2)|Σ|,
where h is the binary entropy function.

4This holds since, for {−1, 1}-valued functions, the k-

XOR code F is simply the tensor product F⊗k and since

〈F⊗k, F ′⊗k〉 = 〈F, F ′〉k (we’ll see correlation defined in terms
of inner product/expectation later).

discussed. While this makes sense for being applied
to hardness amplification where k can be increased as
desired, our use needs much smaller µ to be discussed
in the regime µ = o(2−k) and even µ = o(1/|Σ|), even
while k is constant.

To address such extreme parameters we stray
from modern XOR lemmas and look to the first
written proof of the XOR lemma [Lev87] which, as a
notable exception to all other XOR lemmas, achieves
near optimal approximation α1/k = µ1/k − ε for
arbitrary ε > 0 with no constraints. Unfortunately
its list size grows at least exponentially in 1/µ2 but
it is a main lemma of our work to improve this to
exponential in 1/µ4/k.

1.1 Our results Our first result, which we will use
to prove our search-to-decision reduction of sparse
LPN, is a new approximate local list-decoding algo-
rithm for the k-XOR code at very large distances.
We define correlation between two functions A and
B using the notation E[A ·B] for the product of A(x)
and B(x) averaged over their inputs, i.e., E[A ·B] =
Ex[A(x) · B(x)]. Further, we will talk in terms of α-
correlating for codewords and α1/k-correlating with
messages interchangeably as per Remark 1.1.

Definition 1.2. A (µ, α1/k) approximate list-
decoder with success probability p for the k-XOR
code is an algorithm that, given a corrupted codeword
G such that E[G · F k] ≥ µ for some message F ,
outputs a message F̂ such that E[F · F̂ ] ≥ α1/k with
probability p. The implicit list size is O(1/p).

The approximate list-decoder is local if G is
provided as an oracle, and its output F̂ is a circuit
(which on input x calculates F̂ (x)), and uniform if
its dependence on the parameters µ, |Σ|, k, and α is
uniform (that is, it uses no non-uniform advice).

We now state a simple version of the theorem we
attain for achieving an approximate local list-decoder
for the k-XOR code where we think of k as constant
and µ = 1/nO(1), where n = |F | is the message size.
A more generally parameterized and more carefully
quantified full Theorem 2.1 in Section 2.

Informal Theorem 1.1. There is a uniform local
(µ,Ω(µ1/k))-approximate list decoder for the k-XOR

code that succeeds with probability at least 2−Õ(1/µ4/k)

and runs in time Õ(µ−4).

In contrast, for constant k, most other XOR lem-
mas [Imp95a, GNW11, IJK09, IJKW10] cannot ad-
dress our small µ = 1/nO(1) (nor does it make sense
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for them to in the use-case of hardness amplifica-
tion). Further, the algorithm implicit in Levin’s XOR
lemma [Lev87], which we derandomize, succeeds with
probability inverse exponential in µ−2 whereas ours
is inverse exponential in µ−4/k. For concreteness,
Levin can technically address µ = 1/nO(k) but only

to attain a more than trivial list size 21/µ2

= 2n
O(k)

,
whereas for µ = 1/nk/5 we can achieve a non-trivial

list size 21/µ4/k

= 2n
4/5

.
We apply Informal Theorem 1.1 to derive the

following informal statement of our search-to-decision
reduction for sparse noisy linear equations where we
think of k and advantage ε as a constant. A more
carefully quantified version of the full Theorem 3.1
can be found in Section 3.

Informal Theorem 1.2. Suppose that m-equation,
n-variable planted η-noisy kLIN instances are distin-
guishable from random ones in time t with advan-
tage ε, where η < 1/2. Then, planted instances with
O(m1+2/k) equations and n variables can be solved
in time polynomial in t, m, and n, and 1/ε, with

probability at least 2−Õ(m6/k) over the choice of the
instance and the randomness of the solver.

In contrast, the solver in Applebaum’s reduction
requires more than m3 equations but succeeds with
constant probability. It is possible to obtain other
tradeoffs between the sample complexity and the
success probability of the solver.

In Section 3.1 we show how this search-to-
decision reduction can be generalized to (possi-
bly non-linear) k-Constraint Satisfaction Problems
(CSPs) other than the k-LIN one.

By combining Theorem 1.2 with the refutation
algorithm of Raghavendra, Rao, and Schramm, it
follows that for constant k and constant noise rate,
for every constant 2/3 < δ < 1, m-equation, n-
variable planted noisy k-LIN instances can be solved

with probability 2−Õ(m6/k) in time 2Õ(nδ) as long as
m = Ω̃(n(1−δ)k/2+1+2δ/k).5

Other consequences As a corollary of (the
more thoroughly quantified) Theorem 2.1 we obtain
an upper bound on the list size for k-XOR codes at
high error rates.

Corollary 1.1. For α = (µ1/k − ε)k, `(µ, α) =

O(|Σ|/ε)O(k2/µ2/kε2).

5It has been pointed out by an anonymous reviewer that

for sums-of-squares refutation algorithms the solution can

also be recovered by the method of Barak, Kelner, and
Steurer [BKS14].

The value of α in Corollary 1.1 is close to optimal.
In Section 4 we will show that when α > µ the list
size becomes exponential in |Σ| (see Proposition 4.2).
We do not know, however, if the list size has to
be exponentially large in µΘ(1/k) when α ≤ µ.
Further, Proposition 4.3 will prove the lower bound
` = Ω(α2/kµ−2) for all α, assuming µ ≥ |Σ|−1/2. Also
in Section 4, Proposition 4.1 gives a much tighter non-
constructive upper bound when α < µ2.

We also obtain the following consequence for non-
uniform hardness amplification in the low-correlation
regime. The following corollary (proved in Sec-
tion 2.4) improves the amount of advice in Levin’s
proof [Lev87] from linear in µ−2 to linear in µ−O(1/k).

Corollary 1.2. There is a log-time uniform oracle
circuit L with O(k log(1/ε)(n+µ−2/kε−2)) bits of ad-
vice and size Õ(kkµ−2ε−2k) such that, if G predicts
F k with advantage µ, then for some setting of the
advice LG predicts F : {0, 1}n → {−1, 1} with advan-
tage at least µ1/k − ε.

1.2 Techniques for list-decoding the XOR
code Our proof of Theorem 1.1 is a derandomization
of Levin’s proof [Lev87] (see also [GNW11]). We
begin with a short outline of his proof and point out
its limitations with respect to list size. This motivates
the two main innovations introduced in our work: A
new notion of regularity for functions over product
sets, and an analysis of a natural sampler for regular
functions.

Remark 1.2. It is worth noting that the “derandom-
ization” of XOR lemmas has a long history [Imp95b,
IW97, IJKW10], however we mean something quali-
tatively different when we talk about derandomizing
our XOR lemma. Namely, all other derandomiza-
tions do so in the forward direction of the encod-
ing process; that is, they derandomize the encoding
process so that, rather than looking at all possible k-
tuples of indices of F to XOR, they generate the k-
tuples pseudorandomly so that less of them are con-
sidered and the resulting codeword is smaller. This is
typically done for better hardness amplification guar-
antees since a smaller codeword means that it is the
truth table over a smaller input size and so the hard-
ness guarantees suffer less of a parameter loss in the
transformation of input sizes from message to code-
word. In contrast, our derandomization is of the
backwards direction of the encoding process; that is,
we derandomize the decoding process so that, instead
of taking random samples for which we need advice,
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we generate the samples we need advice for pseudo-
randomly in order to decrease the list size we result
with. This can say something in terms of hardness
amplification as well since we require less advice and
so lose less in the circuit size degradation of a hard-
ness amplification, but this is uninteresting in light of
the extremely small list sizes (and thus uniformity) of
works like [IJKW10]. We instead care about decoding
Levin’s proof so that we can consider extremely small
µ (which would not be useful for hardness amplifica-
tion anyway) while still shaving some advice/list-size
off.

In the ensuing discussion we ignore the locality
of the list-decoder, so the concepts are introduced in
less general form than in Section 2.

Levin’s XOR lemma Here is an outline of
Levin’s proof for k = 2. The correlation assumption
E[G · F 2] ≥ µ can be written in the form

Ex
[
F (x) · Ey[F (y)G(x, y)]

]
≥ µ.

One case is that the inner expectation is at least
√
µ

in absolute value for some x. Then the column func-
tion Gx(y) = G(x, y) or its negation predicts F with
advantage

√
µ and we’re already done. Otherwise, all

inner expectations are bounded by
√
µ in magnitude.

Then the function µ−1/2F̃ , where

F̃ (x) = Ey[F (y)G(x, y)]

is [−1, 1]-bounded and predicts F with advantage
√
µ.

With constant probability, the function µ−1/2F̃ can
be pointwise estimated to within ε or, equivalently,
F̃ can be estimated to precision εµ1/2 from Θ̃(1/ε2µ)
samples F (y)G(x, y) for random y via a Hoeffding
or Chebyshev bound (although a Chebyshev bound
will be more appropriate to think of by the time we
begin derandomizing this algorithm). Then F can
be predicted with advantage

√
µ− ε given Õ(1/ε2µ)

pairs (y, F (y)) as advice.
More generally, given a correlation assumption

of the form E[A(x)B(y)G(x, y)] ≥ αβ, either some
column of G predicts B up to sign with advantage
β, or else the empirical average β−1 E[G(x, y)B(y)]
taken over Θ̃(1/ε2β2) samples usually predicts A
with advantage α − ε. Since ε must be less than
α, the number of required samples grows at least
quadratically in the inverse of the advantage 1/αβ.

Levin’s k-XOR lemma is proved by applying this
proposition inductively. By setting A = F i, α = µi/k

and B = F k−i, β = µ(k−i)/k, proving a k-XOR

lemma is reduced to proving an i-XOR lemma and
a (k− i)-XOR lemma. Even though different choices
of the parameter i lead to different proofs, the re-
sulting decoder always requires at least Ω̃(1/α2β2) =
Θ̃(1/µ2) values of F as advice. The decoding we
achieve in this paper only needs Θ̃(1/µ4/k) values.
For k = 2 we match Levin’s algorithm and do sub-
stantially better as k increases.

Our derandomized XOR lemma We illus-
trate our improvement on the list size for the 3-XOR
code, for which Informal Theorem 2.1 gives a list of
size exponential in Õ(1/µ4/3), which improves upon
Levin’s exponent of Θ̃(1/µ2).

Assume E[F (x)F (y)F (z)G(x, y, z)] ≥ µ. In case
E[F (y)F (z)G(x, y, z)] is at least µ2/3 in magnitude
for some x, we apply Levin’s 2-XOR lemma to
the function Gx(y, z) = G(x, y, z) to obtain a list
size exponential in Õ(1/(µ2/3)2) and we’re done.
Otherwise, we may assume that the function

F̃ (x) = Ey,z[Hx(y, z)],

(where Hx(y, z) = F (y)F (z)Gx(y, z)) is bounded in
magnitude by µ2/3 for all x. Levin’s proof proceeds
by estimating µ−2/3F̃ pointwise with precision, say,
ε = µ1/3/2, or equivalently estimating F̃ pointwise
with precision µ/2. This requires Θ̃(1/µ2) samples,
and thus advice, of the form F (y)F (z) coming from
a set S of independent random pairs (y, z).

The source of our improvement in list size is an
emulation of the random set S by a (small number
of) random product set(s) SY × SZ of comparable
size, such that |SY | = |SZ |. Since the advice we
want is essentially the values of the 2-XOR code
F 2(y, z) on tuples (y, z) from say S or SY × SZ ,
then knowing F (y) and F (z) is enough to reconstruct
F 2(y, z) = F (y)F (z) by definition of the XOR code;
thus, receiving just F (y) for all y ∈ Sy and F (z) for
all z ∈ Sz is enough to reconstruct all of F (y)F (z)
for all (y, z) ∈ Sy×Sz. This significantly reduces our
advices since |S| = |SY × SZ | will mean that |SY | =
|SZ | = |S|1/2 and so we reduce the amount of advice
bits quadratically.6 Since the list size is exponential
in the advice length, this effectively reduces it from
from exp(|S|) bits to exp(|SY | + |SZ |) = exp(|S|1/2)
bits.

Unfortunately though, random product sets may
be poor samplers in general. For example, if Hx(y, z)

6For the k-XOR code, these product spaces will become

become sub-cubes of the k-dimensional boolean cube, and so

only requiring advice along its borders gives us our kth root in
savings in advice we achieve.
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happens to be a dictator in y (i.e. independent of
z), then a random sample of size s2 would produce
a precision of a Θ(1/s)-biased estimate. Yet a
random product sample, which would only depend
on Sy in this case, of the same size would yield a
Θ(1/

√
s)-biased estimate since |Sy| = (s2)1/2 = s;

to achieve the same Θ(1/s)-bias a random sampler
achieves, we would need |S(y)| = s2 as well, wiping
away any potential savings. On the other hand,
this unfortunate example of a dictator H is so bad
since|Ez[Hx(y0, z)]| equals one for any dictator value
y0, so Gx(y0, z) or its negation is an exact decoding
of F (z) and so we have a decoding anyways.

We show that this phenomenon is true in general:
Either a random product sampler is a good pseudo-
random generator for our decoding algorithm or it
fails because H was so structured that it could have
been decoded easily anyways. Said in a slightly more
formal way, our approximate list-decoder for the k-
XOR code is based on a structure versus random-
ness dichotomy : Either the function Hx is “regular”,
in which case the product sampler accurately emu-
lates a truly random sampler, or else one of the rows
or columns of Hx is “structured”, in which case the
problem reduces to approximately list-decoding the
(k − 1)-XOR code.

Sampling regular functions Let H(y, z) be
a function with |E[H]| = µ2/3. We call H regular
if all rows and columns of H are pseudorandom in
the sense that |Ey[H(y, z)]| ≤ µ1/3 for all z and
|Ez[H(y, z)]| ≤ µ1/3 for all y. If one of the functions
Hx is not regular, then one of the columns or rows
of Gx already predicts F with advantage µ1/3 up to
sign.

Our main technical result is Lemma 2.1, which
shows that if H is regular, then a product sampler of
complexity |SY | = |SZ | = Õ(µ−4/3) estimates E[H]
to within µ/2 with constant probability. If all Hx are
regular then F can be predicted with Õ(µ−4/3) bits
of advice, giving the desired list size.

The product sampler is an unbiased estimator
of E[H]. Lemma 2.1 is proved by upper bounding
its variance for regular functions by o(µ2). This
amounts to comparing the bias of the product and
random samplers on a typical pair of samples (y, z)
and (y′, z′). The only difference is that the pairs
(y, y′) and (z, z′) have a higher collision probability
in the product sampler. Conditioned on neither of
these pairs colliding, (y, z) and (y′, z′) are identically
distributed for both samplers.

For the variance analysis, the product sampler

is therefore modeled by the following process: With
probability 1− o(µ4/3) emulate the random sampler,
with probability o(µ4/3) fix y = y′ to a random value
and emulate the random sampler for the function
Hy(z) = H(y, z), with probability o(µ4/3) do the
same with the roles of the two coordinates reversed,
and with probability o(µ8/3) fix both y = y′ and
z = z′ to random values and output the constant
Hyz = H(y, z). By the regularity assumption, each
of these cases contributes o(µ2) to the variance, giving
the desired conclusion.

1.3 Techniques for hardness versus random-
ness of noisy linear equations The proof of The-
orem 1.2 is based on the paradigm of Goldreich and
Levin [GL89] for converting hardness into pseudo-
randomness in cryptographic settings. Yao’s reduc-
tion [Yao82] is first applied to convert the distin-
guisher into a predictor. The truth-table of the pre-
dictor is then viewed as a corrupted codeword with
respect to a suitable encoding of the planted solu-
tion. A decoding algorithm is then used to recover
the solution.

In the setting of noisy random k-LIN instances,
the predictor is a function that, given m−1 equations
from the planted distribution as “training data”,
produces a guess for the value of the m-th equation.
Given good training data, the truth-table of the
predictor is therefore a corrupted codeword of the k-
XOR code. A distinguisher with advantage ε yields
a predictor with advantage µ = ε/(1 − 2η)m in
expectation over the choice of the training data. This
step of the reduction is also carried out (in greater
generality) in the work of Applebaum [App13]. He
then amplifies the advantage of the predictor by using
independent samples of the training data up to the
point where the solution can be uniquely extracted.

To avoid the increase in sample complexity, we
instead apply our list-decoding algorithm for the
k-XOR code to the predictor. With noticeable
probability, the list-decoder outputs an approximate
solution ŝ that µ1/k/2-correlates with the planted
solution s. In other words, the output of the list-
decoder predicts the value of si for a random index
i with advantage µ1/k/2. Our main insight is that,
owing to the symmetries of the k-LIN instance, the
same advantage can be attained for an arbitrary
i, which allows the advantage to be amplified by
repetition (this is thoroughly explored in the full
version of the paper). Once it is sufficiently large,
the solution can be extracted using a technique of
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Bogdanov and Qiao [BQ12].
In our search-to-decision reduction, the list size of

the k-XOR decoder governs the advantage, while the
approximation quality α affects the sample complex-
ity. As our value of α is close to optimal by Propo-
sition 4.2 the sample complexity blowup appears to
be inherent in our method. On the other hand, bet-
ter bounds on list size would yield a corresponding
improvement in the advantage of the reduction.

2 Approximately List-Decoding the XOR
Code

In this section we prove state a more general and
more thoroughly quantified version of Informal The-
orem 1.1. Namely, we will prove the follow theorem.

Theorem 2.1. There is a uniform local (µ, µ1/k−ε)-
approximate list decoder for the k-XOR code that

succeeds with probability at least Ω(ε)O(k2/µ2/kε2) and
runs in time Õ(kkµ−2ε−2k log|Σ|).

Section 2.1 introduces the notion of regularity
for product functions and analyzes the variance of
product samplers. Section 2.2 describes and ana-
lyzes the list-decoding algorithm for a function G
under the assumption that most of the functions
G(x1, . . . , xk−1, a)F (x1) · · ·F (xk−1) are regular. Sec-
tion 2.3 describes the list-decoder for general code-
words G and proves Theorem 2.1.

2.1 Regularity and product samplers Suppose
R : Σk → {−1, 1} is a random function each of
whose entries are i.i.d. with some unknown bias and
we are interested in estimating R’s expectation up
to precision µ. Chebyshev’s inequality guarantees
that about 1/µ2 samples are sufficient to produce an
accurate estimate with constant probability. When
R is random, it is irrelevant how the samples are
chosen as long as they are all distinct. In particular
they can be chosen from a product sample of the form
S1 × · · · × Sk where |S1| = · · · = |Sk| = 1/µ2/k.

For general functions, however, product samplers
produce substantially poorer estimates than random
samplers of the same size. For example, if H : Σk →
{−1, 1} is a dictator (that is, fully determined by
one of its inputs) then the precision of the product
sampler drops to O(µ1/k).

Regularity is a pseudorandomness property of
bounded functions over product sets that guarantees
the product sampler has about the same accuracy
as for a random function. In this context, the
crucial property of the random function turns out

to be its “closure” under input restriction: If some
subset I of the indices of the k inputs is restricted,
the product sampler on the remaining inputs has
standard deviation µ2(k−|I|)/k. This motivates the
following definition of regularity.

Definition 2.1. A function H : Σk → {−1, 1} is
(µ, λ)-regular if for all nonempty I ⊆ [k],

E[H(x1, . . . , xk)H(x′1, . . . , x
′
k) | xI = x′I ] ≤ µ2λ−|I|.

H is strongly (µ, λ)-regular if the inequality also holds
for I = ∅.

(The notation xI = x′I is shorthand for “xi = x′i
for all i ∈ I.”)

The regularity requirement is worst-case in the
sense that it must hold for all subsets of coordinates,
but average-case in the sense that once the coordi-
nates of the input variables to be restricted are fixed,
the deviation need only be small on average over the
choice of the restricted values (note that this average-
case notion is slightly weaker than the informal notion
of regularity we gave in Section 1.2 which required
that this be worst-case as well).

The parameter setting that is consistent with
the above discussion is λ = µ2/k. For our intended
application it is convenient to allow for a small
deviation from this value and so the definition is
stated in this more general form.

The main result of this section is the following
lemma which bounds the variance of the estimator
when using the product sampler with respect to
regular functions. This is the main utility of the
notion of regular as bounding the variance of the
estimate gotten when using the product sampler will
allow us to use the Chebyshev bound as before to
bound the number of samples required to estimate
up to precision µ.

Lemma 2.1. If H is (µ, λ)-regular, the sets
S1, . . . , Sk ⊆ Σ of size s each are mutually in-
dependent of each other, and the elements within
each set Si are pairwise independent, then

VarS1,...,Sk E[H(x1, . . . , xk) | xi ∈ Si for all i]

≤
((

1 +
1

sλ

)k
− 1

)
· µ2.

An interesting setting of parameters is λ = µ2/k

and s = O(k · µ−2/k). The variance of the product
sampler is then bounded by µ2 just like for a random
function at a (small) multiplicative cost of O(k) in
the sizes of the sets S1, . . . , Sk.
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Proof. Let S = (S1, . . . , Sk), x = (x1, . . . , xk) and
x′ = (x′1, . . . , x

′
k). In this notation, the variance of

interest equals

VarS Ex[H(x) | x ∈ S]

= ES

[
E[H(x) | x ∈ S]2

]
− E[H]2

= ES,x,x′ [H(x)H(x′) | x,x′ ∈ S]− E[H]2.(2.1)

The triples (S1, x1, x
′
1), . . . , (Sk, xk, x

′
k) in the first

term are independent. Moreover, the induced
marginal distribution on every pair (xi, x

′
i) is

(xi, x
′
i) ∼


identical uniformly random element

in Σ, with probability 1/s,

uniformly random pair of distinct ele-

-ments in Σ, with probability 1− 1/s.

This distribution has the following alternative de-
scription: Flip a coin Ci with probability of heads
p = (1/s− 1/|Σ|)/(1− 1/|Σ|) ≤ 1/s and sample

(xi, x
′
i) ∼


identical uniformly random element

in Σ, if Ci is heads,

independent uniformly random pair in

Σ× Σ, if Ci is tails.

Letting I ⊆ [k] denote the set of those i for which Ci
came out heads we can write

ES,x,x′ [H(x)H(x′) | x,x′ ∈ S]

= EI,x,x′ [H(x)H(x′) | xI = x′I ]

=
∑
I⊆[k]

p|I|(1− p)k−|I| Ex,x′ [H(x)H(x′) | xI = x′I ]

≤ E[H]2 +
∑
I⊂[k]

(1

s

)|I|
· µ2λ−|I|.

Plugging into (2.1) it follows that

VarS Ex,x′ [H(x) | x ∈ S] ≤
∑
I⊂[k]

(1

s

)|I|
· µ2λ−|I|

≤ µ2
∑
I⊂[k]

( 1

λs

)|I|
= µ2

((
1 +

1

λs

)k
− 1

)
.

The success probability of the sampler can be
increased by taking the median run of several inde-
pendent repetitions.

Repeated product sampler SH :

1 Choose independent sets Sij , 1 ≤ i ≤ k,
1 ≤ j ≤ t of size s each.

2 Output the median value of
E[H(x) | xi ∈ Sij for all i] among all t
such values.

The following claim states the effectiveness of
the product sampler. The additional parameter θ
controls the tradeoff between the accuracy of the
estimate and the product sample size and can be
initially thought of as a small constant.

Claim 2.1. Assuming H is (µ, λ)-regular, s ≥ k/θλ,
and t ≥ 8 log 1/η, with probability at least 1 − η,
|SH − E[H]| ≤ 2

√
θ/(1− θ) · µ.

Proof. By Chebyshev’s inequality, for any j, the
probability that the estimator

Ej = E[H(x) | xi ∈ Si for all i]

deviates by more than two standard deviations from
its mean E[H] is at most 1/4. By Lemma 2.1 and
the choice of parameters, the standard deviation is
at most

√
(1 + θ/k)k − 1 · µ ≤

√
θ/(1− θ) · µ.

Since the estimators Ej are independent and
each one falls within two standard deviations of E[H]
with probability at least 3/4, by a large deviation
bound the probability that more than half of them
fall outside this range is less than 2−t/8 ≤ η.

2.2 Approximately list-decoding product-
sampleable functions In this section we describe
and analyze the list-decoder assuming the correla-
tion function H = G · F k is “product-sampleable”,
meaning that most restrictions to the last coordi-
nate yield a regular function. The argument follows
Levin’s proof of the XOR lemma, except that we ap-
ply the product sampler from Section 2.1 in lieu of
Levin’s random sampler.

Definition 2.2. A function H : Σk → {−1, 1} is
(µ, ε)-product-sampleable if for all but an ε-fraction
of inputs a ∈ Σ, the functions Ha(x1, . . . , xk−1) =
H(x1, . . . , xk−1, a) are all strongly (µ(k−1)/k, 1

2µ
2/k)-

regular.

Lemma 2.2. Assume k ≥ 2. There is a uniform
local (µ, µ1/k − ε) list decoder that succeeds with
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probability at least (ε/80)O((k−1)2/µ2/kε2) and runs in
time k2 log|Σ|·poly(µ−1/k, ε−1) on input G, assuming
H = G · F k is (µ, εµ(k−1)/k/80)-product-sampleable
and |E[H]| ≥ µ.

Approximate list-decoder LPSG(k, µ, |Σ|, ε):

1 Set s = d514(k − 1)/µ2/kε2e and
t = d8 log(80/ε)e.

2 Choose independent sets Sij ⊆ Σ,
1 ≤ i ≤ k − 1, 1 ≤ j ≤ t of size s each.

3 Guess the values F (x) at random for all
x ∈ Sij .

4 For every a in Σ:
5 Let Ga : Σk−1 → {−1, 1} be the function

G(x1, . . . , xk−1, a)F (x1) · · ·F (xk−1).

6 Let F̃ (a) be the median value of
E[Ga(x) | xi ∈ Sij for all i].

7 Choose a uniformly random B from the
range [−1, 1] within dlog(4/ε)e bits
of precision.

8 Let F̃B(a) = 1 if µ−(k−1)/kF̃ (a) ≥ B and
−1 if not.

9 Output ±F̃B where the sign is chosen
at random.

Steps 2 to 6 implement the product sampler.
The output of this sampler produces real-valued
estimates µ−(k−1)/kF̃ (a) of the message bits F (a).
The accuracy of the product sampler guarantees
that when Ga is regular, these estimates significantly
correlate with F on average. In order to extract a
{−1, 1}-valued codeword from F̂ , steps 7 and 8 in
effect round the values with respect to a random
threshold B. The rounding preserves the correlation
in expectation. The expectation can be turned into
a noticeable probability at a small price in accuracy.

In the proof of Lemma 2.2 we use the rounding
function [[·]] : R→ [−1, 1] given by

[[t]] =


1, if t > 1,

t, if −1 ≤ t ≤ 1,

−1, if t < −1.

Fact 2.1. [[·]] is a contraction, i.e., |[[s]]−[[t]]| ≤ |s−t|
for all s and t.

Proof. [Proof of Lemma 2.2] Let R be the set
of all a for which the function Ha is strongly

(µ(k−1)/k, 1
2µ

2/k)-regular. By assumption, R has

measure at most εµ(k−1)/k/80. For every a ∈ N ,
the function

Ga(x1, . . . , xk−1) = Ha(x1, . . . , xk−1)F (a)

= G(x1, . . . , xk−1, a)F (x1) · · ·F (xk−1).

is also strongly (µ(k−1)/k, 1
2µ

2/k)-regular, as Ga and
Ha may differ only in sign.

By Claim 2.1 with parameters θ = ε2/257 and
η = 80/ε, for all but at most ε/80 of those a that are
in R,

(2.2)
∣∣F̃ (a)− E[Ga(x)]

∣∣ ≤ µ(k−1)/k · ε
8

with probability at least 1 − ε/80 over the random
choices in step 2. Let A ⊆ R be the set of those
a’s for which inequality (2.2) holds. Then A has
expected measure at least 1− ε/80− εµ(k−1)/k/80 ≥
1 − ε/40. By Markov’s inequality, A has measure at
least 1− ε/20 with probability at least 1/2 (2.3).

If a is in A, then by (2.2),∣∣µ−(k−1)/kF̃ (a)− µ−(k−1)/k E[Ga(x)]
∣∣ ≤ ε

8
.

By the strong regularity of Ga,
|µ−(k−1)/k E[Ga(x)]| ≤ 1. Since [[·]] is a contraction,∣∣[[µ−(k−1)/kF̃ (a)]]− µ−(k−1)/k E[Ga(x)]

∣∣ ≤ ε

8
.

If a is in R (but not in A), then strong regularity still
holds and∣∣[[µ−(k−1)/kF̃ (a)]]− µ−(k−1)/k E[Ga(x)]

∣∣ ≤ 2,

as both terms take values between −1 and 1. Finally,
if a is not in R then∣∣[[µ−(k−1)/kF̃ (a)]]− µ−(k−1)/k E[Ga(x)]

∣∣
≤ 1 + µ−(k−1)/k

≤ 2µ−(k−1)/k.

Therefore∣∣Ea[F (a) · ([[µ−(k−1)/kF̃ (a)]]− µ−(k−1)/k E[Ga(x)])
]∣∣

≤ ε

8
· Pr[a ∈ A] + 2 · Pr[a ∈ R \A]

+ 2µ−(k−1)/k · Pr[a 6∈ R]

≤ ε

8
+ 2 · ε

20
+ 2µ−(k−1)/k · εµ

(k−1)/k

80

≤ ε

4
.(2.4)
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By the assumption |E[H]| ≥ µ,

∣∣Ea[F (a) · µ−(k−1)/k E[Ga(x)]
]∣∣(2.5)

= µ−(k−1)/k
∣∣Ex,a[G(x, a) · F (x1) · · ·F (xk−1)F (a)

]∣∣
≥ µ1/k.

From (2.4), (2.5) and the triangle inequality it follows
that

(2.6)
∣∣Ea[F (a) · [[µ−(k−1)/kF̃ (a)]]

]∣∣ ≥ µ1/k − ε

4
.

If B was a uniform [−1, 1] random variable,
EB [F̃B(a)] would equal [[µ−(k−1)/kF̃ (a)]]. As B is
precision-bounded, we have the weaker guarantee

(2.7)
∣∣EB [F̃B(a)]− [[µ−(k−1)/kF̃ (a)]]

∣∣ ≤ ε

4

for every a ∈ Σ. From (2.6) and (2.7) it follows that∣∣EB,a[F (a) · F̃B(a)]
∣∣ ≥ µ1/k − ε

2
.

By Markov’s inequality, the inequality∣∣Ea[F (a) · F̃B(a)]
∣∣ ≥ µ1/k − ε.

must hold for at least a ε/2 (2.8) fraction of B’s.
If such a B is chosen, the correlation between the
output and F is at least µ1/k − ε with probability
1/2 (2.9)over the choice of sign in step 9.

To summarize, conditioned on events (2.3), (2.8),
and (2.9) occurring and the guesses in step 3 of the
algorithm being correct, the output of the algorithm
has the desired correlation with F . As step 3

involves guessing at most (k − 1)st boolean values,
the algorithm succeeds with probability at least

ε

8
· 2−(k−1)st ≥

( ε
80

)O((k−1)2/µ2/kε2)

by our choice of parameters.

2.3 Proof of Theorem 2.1 The approximate list-
decoder L guesses whether the function H = G ·F k is
product-sampleable. If its guess is positive it runs the
list-decoding algorithm LPS for product-sampleable
functions from Section 2.2. Definitions 2.2 and 2.1
ensure that if H is not product-sampleable then a
noticeable fraction of its restrictions have large bias.
In this case, L guesses the suitable restriction and
runs recursively on it.

The following specification is obtained by un-
winding the recursion with uniform guessing prob-
abilities. This choice turns out to be convenient for
the analysis. We use the notation aI to describe a
partial assignment restricted to the subset of indices
I ⊆ [k], and ai as a shorthand for a{i}.

Algorithm LG(k, µ, |Σ|, ε):

1 Choose a random subset R ⊆ [k] and a random
partial assignment aR ∼ ΣR.

2 Let G′ : ΣR → {−1, 1} to be the function G
restricted to xR = aR.

3 If |R| = 0, fail.
4 If |R| = 1, output G′ or −G′ with equal

probability.

5 Otherwise, output LPSG
′
(|R|, µ|R|/k, |Σ|, ε).

To prove Theorem 2.1, we will show by strong
induction on k that L is a (µ, µ1/k − ε)-approximate
list decoder with success probability at least

p(k, µ) = 2−k−1 · (ε/80)C(k−1)2/µ2/kε2

where C is a sufficiently large constant. Assume that
|E[H]| ≥ µ for H = G · F k.

Base case k = 1: R is non-empty with probability
1/2. In this case the larger one of E[F · G] and
E[F · (−G)] is at least µ ≥ µ− ε, so the output of L
has correlation at least µ− ε with F with probability
1/4, which is larger than p(1, µ).

Inductive step: Assume k ≥ 2 and the claim holds
up to k − 1. We consider two cases.

If H is (µ, εµ(k−1)/k/80)-product-sampleable,
then in step 1 the empty set is chosen with prob-
ability 2−k, in which case step 5 is triggered with
G′ = G. By Lemma 2.2, the output of LPSG

(µ1/k − ε)-correlates with F with probability at least

(ε/80)C(k−1)2/µ2/kε2 , so the overall success probabil-
ity exceeds p(k, µ) as desired.

The following claim summarizes the irregularity
of functions that are not product-sampleable.

Claim 2.2. If H is not (µ, εµ(k−1)/k/80)-product-
sampleable then with probability at least εµ(k−1)/k/80
over the choice of ak there exists a proper subset
I ⊂ [k] with k ∈ I for which with probability at

least µ2|I|/k over the choice of aI\{k}, |E[H(x) | xI =

aI ]| ≥ µ|I|/k.

Copyright © 2019 by SIAM
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Proof. By Definition 2.2, for more than a
εµ(k−1)/k/80 fraction of ak there exists a sub-
set I ⊆ [k], k ∈ I that violates strong regularity in
the following sense:

E[H(x)H(x′) | xI = x′I , xk = x′k = ak](2.10)

> (µ(k−1)/k)2 · ( 1
2µ

2/k)−|I\{k}|

= 2|I|−1 · µ2|I|/k.

The subset I must be proper because when |I| = k,
the right-hand side exceeds one. Fix such an ak
and let aI be a random extension of ak. By the
independence of xI and x′

I
,

EaI
[
E[H(x) | xI = aI ]

2
]

(2.11)

= E[H(x)H(x′) | xI = x′I , xk = x′k = ak].

When I = {k}, the claim follows from (2.10) and
(2.11) after taking square roots. Otherwise, by

Markov’s inequality E[H(x) | xI = aI ]
2 ≥ µ2|I|/k

with probability at least (2|I|−1 − 1)µ2|I|/k over the
choice of aI . Because 2|I|−1−1 is at least 1, the claim
follows again after taking square roots.

Let U be the event “|E[H(x) | xI = aI ]| ≥ µ|I|/k

and I ⊆ R.” By Claim 2.2 and the uniform choice of
R, U has probability at least
(2.12)

Pr[U ] ≥ 2−|I| · εµ
(k−1)/k

80
· µ2|I|/k ≥ (ε/80)µ3(k−1)/k

2|I|
.

Claim 2.3. Conditioned on U , the output LG(k, µ)
has correlation at least µ1/k−ε with F with probability

at least p(|I|, µ|I|/k).

Proof. Conditioned on U , the view of L(k, µ) when
querying the oracle G is identical to the view of

L(|I|, µ|I|/k) when querying the oracle Ĝ(xI) =
G(xI , aI). Also conditioned on U , the function

Ĥ(xI) = H(xI , aI) is at least µ|I|/k-biased. The func-

tion Ĥ equals

Ĥ(xI) = σ · Ĝ(xI) ·
∏

i∈I
F (xi)

where σ =
∏
i∈I F (ai) is a possible change of sign.

By inductive assumption, LĜ(|I|, µ|I|/k) then has

correlation at least (µ|I|/k)1/|I|− ε = µ1/k− ε with F
with the desired probability.

From (2.12) and Claim 2.3 it follows that
LG(k, µ) succeeds with probability at least

Pr[U ] · p(|I|, µ|I|/k)

≥ (ε/80)µ3(k−1)/k

2|I|
· 2−|I|−1 · (ε/80)C(|I|−1)2/µ2/|I|ε2

≥ 2−k−1 · (ε/80)3k−2 · (ε/80)C(k−2)2/µ2/kε2

≥ 2−k−1 · (ε/80)C(k−1)2/µ2/kε2

= p(k, µ)

assuming ε ≤ µ1/k in the second inequality and C ≥ 4
in the third one. This completes the inductive step
and the proof of Theorem 2.1.

2.4 Proof of Corollary 1.2 Let Σ = {0, 1}n.
The proof of Theorem 2.1 shows that the circuit LG

computes a function that predicts F with advantage
µ1/k − ε with positive probability. In particular,
the prediction succeeds for some fixed choice of the
randomness. The amount of advice is therefore upper
bounded by the randomness complexity of LG.

The randomness complexity of the list-decoder
LPS is governed by the (k − 1)t choices of the sets
Sij chosen in step 2 and the (k − 1)st values of
F guessed in step 3. If the elements of each set
Sij are chosen in a pairwise independent manner,
step 2 can be performed using at most 2ktn bits of
randomness. Plugging in the parameters for s and
t we conclude that LPS has randomness complexity
O(k log(1/ε)(n+ µ−2/kε−2)).

In step 5 of the list-decoder L the randomness
complexity of the call to LPS is maximized when
R is the empty set. In step 1, L requires k(n + 1)
additional bits of randomness, so the randomness
complexity of L is also O(k log(1/ε)(n + µ−2/kε−2))
as desired.

3 From Distinguishing to Solving Random
Noisy Linear Equations

In this section, we show how to use an approximate
list-decoder of the k-XOR code to reduce solving
random planted k-LIN instances to distinguishing
them from completely random instances. Namely, we
will prove the following more thoroughly quantified
version of Informal Theorem 1.2.

Theorem 3.1. Suppose that m-equation, n-variable
planted η-noisy kLIN instances are distinguishable
from random ones in time t with advantage ε, where
η < 1/2. Then, planted instances with O(m ·
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(m/ε)2/k + 22kn log n/k) equations and n variables
can be solved in time polynomial in t, m, n, and

1/ε, with probability at least (ε/m)O(k(m/ε)6/k) over
the choice of the instance and the randomness of the
solver.

Definition 3.1. (k-LIN) Let k,m, n ∈ N, and η ∈
[0, 1/2). An m-equation n-variable k-LIN instance
is a pair (A, b), where A ∈ {0, 1}m×n is such that
each row ai of A has at most k non-zero entries,
and b ∈ {0, 1}m. A random planted η-noisy k-LIN
instance is such a pair (A,As+ e) where:

• Each row of A ∈ {0, 1}m×n is sampled indepen-
dently from the row distribution Rn,k, which is
the modulo 2 sum of k independent random indi-
cator vectors in {0, 1}n (i.e. vectors of the form
(0, . . . , 0, 1, 0, . . . , 0)).

• s ∈ {0, 1}n, called the planted solution, is chosen
uniformly at random.

• e ∈ {0, 1}m, called the noise vector, is chosen
such that each bit in it is 1 independently with
probability η.

In the rest of this section, unless specified other-
wise, the number of equations in a k-LIN instance is
to be taken to be m, the number of variables to be
n, and the noise to be η.

Remark 3.1. Another natural distribution on the
rows of A is the uniform distribution on strings on
Hamming weight k. Our results and analysis can be
modified to apply to this distribution as well.

Definition 3.2. (Solving/Distinguishing k-LIN)
We define the following two operations for random
k-LIN instances:

• An algorithm S is said to solve planted η-noisy
k-LIN instances with success probability p if,
given a random planted η-noisy k-LIN instance
(A,As+ e), it outputs s with probability p (over
the randomness of A, e and S itself).

• An algorithm D is said to distinguish planted η-
noisy k-LIN instances from random with advan-
tage ε if it distinguishes, with advantage ε, be-
tween a random planted η-noisy k-LIN instance
(A,As + e) and (A, r), where A is chosen as in
k-LIN, but r ∼ {0, 1}m is chosen at uniform in-
dependently of A. That is,

EA,s,e[D(A,As+ e)]− EA,r[D(A, r)] ≥ ε

We will be reducing the task of solving a k-LIN
instance with m′-equations to that of distinguishing
instances with m equations from random (with ad-
vantage ε) for some m′ > m. Our objective here
is to keep m′ as small as possible in relation to m.
It is already known (from [App13]) how to perform
such a reduction with m′ = Θ̃(m3/ε2) that results in
constant success probability for the solver. Using the
approximate list-decoder constructed in Section 2, we
are able to bring m′ down significantly at the cost of
lower success probability.

Theorem 3.2. (Refined Theorem 3.1) Suppose
that m-equation n-variable planted η-noisy kLIN
instances are distinguishable from random in time
t with advantage ε. Then planted η-noisy kLIN
instances with m′ equations and n variables can
be solved in time polynomial in t, m, n, 1/ε, and
1/(1− 2η) with probability at least p where:

m′ = O
(
(1− 2η)2/k ·m · (m/ε)2/k

+ 22k n log n/k(1− 2η)2)

and

p = (ε/(1− 2η)m)O(k((1−2η)m/ε)6/k).

The rest of this section is dedicated to the proof
of this theorem. Our approach for getting a solver
for k-LIN from a distinguisher is broadly divided into
the following three parts, each of which we describe
briefly below:

1. Using the distinguisher to get a predictor.

2. Using the predictor to get an approximate-
solver.

3. Using the approximate-solver to get an actual
solver.

The first step is to show (as stated in Lemma 3.1)
that a distinguisher for k-LIN can be used to con-
struct a predictor that, given a noisy k-LIN instance
(A,As + e), has a small advantage in predicting the
answers to random equations – that is, the value of
〈a, s〉 for random a from the row distribution Rn,k.
This operation is defined as below.

Definition 3.3. An algorithm P is called a predic-
tor for η-noisy k-LIN with advantage δ if, when given
a random planted η-noisy k-LIN instance (A,As+ e)
and a random “row” a from the row distribution
Rn,k, predicts 〈a, s〉 with advantage δ. That is,

EA,s,e,a[P(a;A,As+ e) · (−1)〈a,s〉] ≥ δ
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We say that such a predictor P predicts s with
advantage δ from the training data (A,As+ e).

The predictor is constructed from the distin-
guisher using standard hybrid arguments. The fol-
lowing lemma is proven in the full version of the pa-
per.

Lemma 3.1. Suppose there is an algorithm that dis-
tinguishes m-equation n-variable planted η-noisy k-
LIN instances from random with advantage ε and
runs in time t. Then, there is a predictor for m-
equation n-variable η-noisy k-LIN that also runs in
time t and has advantage ε/(1− 2η)m.

Once we have such a predictor, we then use it
to solve k-LIN “approximately”. That is, given a
planted instance (A,As + e), we recover an s̃ that
correlates well with s. We use the following shorthand
for the measure of correlation between two binary
strings. Given s, s̃ ∈ {0, 1}n,

s · s̃ = Ei[(−1)s[i](−1)s̃[i]]

where the expectation is over i drawn at random from
[n]. Note that this quantity is contained in [−1, 1],
and s · s̃ = γ is the same as saying that s and s̃
agree on a (1 + γ)/2 fraction of coordinates. We also
overload this notation to handle the case where s (or
s̃) is a {−1, 1}-string, in which case (−1)s[i] in the
expression above is to be replaced with s[i].

The operation of approximately solving k-LIN
instances is now defined as below.

Definition 3.4. (Approximately Solving k-LIN)
An algorithm S̃ is said to γ-approximately solve
planted η-noisy k-LIN instances with success prob-
ability p if, given a random planted η-noisy k-LIN
instance (A,As + e), with probability p it outputs
some s̃ such that s · s̃ ≥ γ.

To construct an approximate solver for k-LIN
from a predictor, we use the approximate list-decoder
for the k-XOR code. Given a k-LIN instance (A,As+
e) as training data, we view the “truth-table” of the
predictor P(·;A,As + e) as a corrupt codeword of
the k-XOR code. Intuitively, the correctness of the
predictor should say that this codeword is not too
far from the k-XOR encoding of s. We are unable
to decode or list-decode this codeword, however, as
the noise in the codeword is too high. Instead, we
use the approximate list-decoder and obtain, as one
of the elements in the list, an s̃ that is noticeably

correlated with s. We then amplify this correlation by
exploiting certain symmetries of k-LIN. See the full
version of the paper for a more thorough exposition
of the intuition behind this approach and the proof
of the following lemma that states our results in this
respect.

Lemma 3.2. Let µ, α, γ ∈ [0, 1], and k ∈ N be a
constant. For some m,n ∈ N, suppose:

1. There is a predictor for m-equation n-variable
η-noisy k-LIN that runs in time t1 and has
advantage δ.

2. There is a (µ, α1/k) approximate list-decoder for
the k-XOR code with messages of length n that
runs in time t2 and has success probability p.

Let r = 8 log(8/(1 − γ))/α2/k. Then, there is an
algorithm that γ-approximately solves (mr)-equation
n-variable planted η-noisy k-LIN instances that runs
in time Õ(r(t1+t2+mn)), and has success probability
3
4 [p (δ − µ)]

r
.

The final step in our reduction is to convert the
approximate solution produced by the approximate
solver above into an actual solution. To do this, we
employ a technique of Bogdanov and Qiao [BQ12].
In brief, given an approximate solution s̃, to recover
the first bit s[1] of the actual solution, we first find
a number of equations where the first bit is involved.
In each of these equations, we pretend that s̃ is
correct about the values of the remaining bits and
solve for s[1], and finally set s[1] to be the majority
answer. This is repeated for each bit of s and, if
enough equations are used, all the bits are recovered
correctly. The end result in our case is stated in the
following lemma.

Lemma 3.3. Assuming m ≥ 40 n log n/k(1 −
2η)2γ2(k−1), there is a O(mn2)-time algorithm that,
given a m-equation, n-variable planted noisy k-LIN
instance (A,As + e) and a γ-approximate solution ŝ
that is independent of A and e, outputs s with prob-
ability 1− o(1).

We finish our proof by putting the above lemmas
together with the approximate list-decoder for the k-
XOR code from Section 2.

Proof. [Proof of Theorem 3.2] The hypothesis of
the theorem promises a k-LIN distinguisher that
runs in time t and has advantage ε. Lemma 3.1
now immediately implies the existence of a k-LIN
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predictor P that runs in time t and has advantage
δ = (ε/(1− 2η)m).

Set µ = δ/2 and α to be such that α1/k = µ1/k/2
(= µ1/k − µ1/k/2). Theorem 2.1 implies a (µ, α1/k)
approximate list-decoder for the k-XOR code that
runs in time Õ(µ−4 log n), and has success probability

Ω(µ)O(k/µ4/k).
Set γ = 1/2. Along with the above predictor and

list-decoder, Lemma 3.2 now implies an algorithm
that γ-approximately solves m′-equation n-variable
planted η-noisy k-LIN instances, where m′ is equal
to:

10 · 32 m

α2/k
= 1280 · m

µ2/k

≤ 2560 · m

δ2/k

= 2560 · (1− 2η)2/k ·m ·
(m
ε

)2/k

This approximate solver runs in time on the order of:

1

α2/k
· (t+ µ−4 log n+mn))

= poly(t, (1− 2η),m, n, 1/ε)

It has success probability at least:

3

4

[
(µ)O(k/µ4/k) · (δ − µ)

]32/α2/k

≥ µO(k/µ4/kα2/k)

≥
(

ε

(1− 2η)m

)O(k((1−2η)m/ε)6/k)

With the above probability, we have a γ-approximate
solution. In order to recover the actual solution, we
apply Lemma 3.3 with this approximate solution and
a fresh set of m′′ equations with the same planted
solution, where m′′ = 40 · 22(k−1) n log n/k(1 −
2η)2. This gives us the actual solution, incurs an
additional running time of O(mn2) and the final
success probability becomes the above multiplied by
(1− o(1)). This completes the proof of the theorem.

See the full version for the proof of Lemmas 3.1
to 3.3.

3.1 Generalizing to Other Predicates Next,
we sketch how to extend our results to apply to pred-
icates other than k-XOR. Let φ be any k-ary predi-
cate. The problems we will be talking about are de-
fined by repeated applications of φ on ordered subsets

of the bits of a string s ∈ {0, 1}n. Correspondingly,
we use the following notation in this subsection. We
will denote by a an ordered tuple in [n]k, and by sa
the string (s[a[1]], . . . , s[a[k]]) ∈ {0, 1}k; φ(sa) then
denotes the application of φ to the bits of s pointed to
by a. We denote by A = {ai}i∈[m] an ordered collec-
tion ofm such tuples, and call each ai a “row” of A (in
analogy to the matrix A from the case of k-XOR). Fi-
nally, φ(sA) denotes the vector (φ(sa1), . . . , φ(sam)).

We call such a pair (A, φ(sA)) an m-equation
n-variable φ-CSP instance. The problems we are
interested in are the following, where each row ai of
A is sampled uniformly at random from [n]k, and s
is sampled uniformly from {0, 1}n.

Solving a planted instance: Given A and φ(sA),
find s.

Distinguishing planted from random in-
stances: Distinguish the distribution (A, φ(sA))
from (A, r), where r ∼ {0, 1}m is independent of
A.

The formal definitions of the above follow as
the natural generalization of Definition 3.2. Let kφ
be the size of the smallest parity that has non-zero
correlation with φ. We show the following theorem.

Theorem 3.3. Let φ be any k-ary predicate, and
m < o(nk/2). Suppose that m-equation, n-variable
planted φ-CSP instances are distinguishable from ran-
dom ones in time t with advantage ε. Then, planted
instances with O(m·(m/ε)2/kφ+22kφn log n/kφ) equa-
tions and n variables can be solved in time polyno-
mial in t, m, nk, and 1/ε, with probability at least

(ε/m)O(k(m/ε)6/kφ ) over the choice of the instance and
the randomness of the solver.

This theorem is proved following the same outline
as the proof of Theorem 3.2. The φ-CSP analogue of
Lemma 3.1 (which would obtain a predictor for φ(sA)
from a distinguisher) follows from the same hybrid
argument used there, and that of Lemma 3.3 (which
transforms an approximate solver to an actual solver)
follows from the work of Bogdanov and Qiao [BQ12].
All that remains is to prove the following analogue of
Lemma 3.2.

Lemma 3.4. Let µ, α, γ ∈ [0, 1], and φ be a k-ary
predicate for some constant k. For some m,n ∈ N,
suppose:

1. There is a predictor for m-equation n-variable
φ-CSP that runs in time t1 and has advantage
δ.
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2. There is a (µ, α1/kφ) approximate list-decoder for
the kφ-XOR code with messages of length n that
runs in time t2 and has success probability p.

Let r = 32 log(8/(1 − 2γ))/α2/kφ , and suppose
γ > 10

√
log(1/p)/n. Then, there is an algo-

rithm that γ-approximately solves (mr)-equation n-
variable planted φ-CSP instances that runs in time
Õ(r(t1 + t2 + mn)), and has success probability at

least 1
4

[
p
4

(
δ · 2−k − µ

)]r+1
.

The proof of this lemma is the only place where
the fact that we are dealing with φ-CSP rather than
k-LIN matters, and we prove it in the full version by
showing an alternative reduction that does not make
use of symmetries that are specific to k-LIN.

4 Bounds on list size

In this section we state and prove upper and lower
bounds on the list size `(µ, α). The upper bound in
Corollary 1.1 follows from Theorem 2.1 and a count-
ing argument. Proposition 4.1 gives a substantially
tighter non-constructive upper bound in the regime
α < µ2. The lower bound of Proposition 4.2 in the
regime α > µ is proved by a volume argument. The
lower bound in Proposition 4.3, which applies to the
whole range of parameters, is obtained by analyzing
a specific corrupted codeword.

4.1 Proof of Corollary 1.1 We show that the
existence of an approximate list-decoder for a code of
message length |Σ| that succeeds with probability at
least p implies ` ≤ ln 2 · |Σ|/p. Plugging in the value
of p from Theorem 2.1 then gives Corollary 1.1.

Let list be the collection of outputs generated by
ln 2 · |Σ|/p independent runs of the approximate list-
decoder LG. If a codeword µ-correlates with G, the
probability that it doesn’t α-correlate with anything
in list is at most (1− p)ln 2·|Σ|/p < 2−|Σ|. Since there
are at most 2|Σ| codewords that µ-correlate with G,
by a union bound there is a positive probability that
list covers all of them.

4.2 Non-constructive upper bound in the
regime α < µ2 The following lemma, which is essen-
tially the proof of the Johnson bound, gives a much
tighter upper bound on list size than Corollary 1.1 in
the regime α < µ2.

Proposition 4.1. For every 0 < α < µ2 and every
binary code, `(µ, α) ≤ (1− α)/(µ2 − α).

For example, `(µ, µ2/2) ≤ 4/µ2. In the case of
the k-XOR code, Proposition 4.1 shows the existence
of a list F1, . . . , F` of messages such that E[G·F k] ≥ µ
implies |E[F · Fi]| ≥ α1/k for some i ∈ [`] (since
E[F k · F ki ] = E[F · Fi]k).

Proof. Let ` be the maximal value for which there
exists a list C1, . . . , C` such that E[G ·Ci] ≥ µ for all
1 ≤ i ≤ ` and E[Ci · Cj ] ≤ α for all i 6= j. Then for
every t ≥ 0,

0 ≤ E
[
(C1 + · · ·+ C` − tG)2

]
≤
∑̀
i=1

E[C2
i ] +

∑
i6=j

E[Ci · Cj ]

− 2t
∑̀
i=1

E[Ci ·G] + t2 E[G2]

≤ `+ `(`− 1)δ − 2`µt+ t2

This is only possible if the discriminant 4`2µ2−4(`+
(`2 − `)α) (of the quadratic in t) is nonnegative,
implying that δ ≥ µ2 or ` ≤ (1− α)/(µ2 − α).

If E[G · C] ≥ µ then E[C · Cki ] must be greater
than α for some i, for otherwise the maximality of `
would be contradicted.

4.3 Lower bound in the regime α > µ

Proposition 4.2. For the k-XOR code, when µ <
α < 1,

`(µ, α) ≥ 4

e
√

1− µ2/k · |Σ|
· exp

(
1
2 (α2/k − µ2/k)|Σ|

)
.

Let h denote the binary entropy function and
0 ≤ δ ≤ 1. We will use the following bounds on
the volume of Hamming balls:

(
N

≤ (1− δ)N/2

)
≤ 2Nh(

1−δ
2 )(4.13) (

N

(1− δ)N/2

)
≥ 4

e
√

1− δ2N
2Nh(

1−δ
2 )(4.14)

The following Taylor expansion is valid for all
−1 ≤ δ ≤ 1:

(4.15) h

(
1− δ

2

)
= 1− 1

2 ln 2
·
∞∑
i=1

δ2i

i(2i− 1)
.

Proof. Let N = |Σ| and G be the constant function 1.
The codewords C that agree on a (1−µ)/2-fraction to
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G are exactly those that encode messages of relative
Hamming weight at most (1−µ1/k)/2, so the number
of such codewords is at least

|C| ≥
(

N

(1− µ1/k)N/2

)
≥ 4

e
√

1− µ2/k ·N
· 2h
(

1−µ1/k
2

)
·N ,

by (4.14). On the other hand, the codewords that
agree on a (1 − α)/2-fraction to any given codeword
Ci = F ki are those that encode messages within
Hamming distance at most (1 − α1/k)/2 from Fi
(as noted in Remark 1.1), so there are at most

2h((1−α1/k)/2)·N of them by (4.13). Therefore covering
C requires a list of size

4

e
√

1− µ2/k ·N
· 2h
(

1−µ1/k
2

)
·N−h

(
1−α1/k

2

)
·N .

Using the Taylor expansion (4.15), we can lower
bound h((1 − µ1/k)/2) − h((1 − α1/k)/2) by the
difference of the leading terms in the summation,
which equals (α2/k − µ2/k)/2 ln 2, completing the
proof.

4.4 A general lower bound

Proposition 4.3. For the k-XOR code, when µ ≥
|Σ|−1/2, `(µ, α) ≥ Ω(α2/kµ−2), assuming |Σ| is a
power of two.

Proof. We first assume that µ is equal to |Σ|−1/2.
Let Σ be a F2-vector space and H ⊆ {−1, 1}Σ
be the Hadamard code. Its codewords are the
functions H(x) = (−1)〈a,x〉. The codewords of
the k-wise tensor product Hk of H are given by
Hk(x1, . . . , xk) = H(x1) · · ·H(xk) = H(x1+· · ·+xk).
Thus the codeHk is isomorphic toH as a linear space.

Let G be the corrupted codeword
G(x1, . . . , xk) = B(x1 + · · · + xk), where B is
the bent function

B(z) = (−1)z1z2+···+zt−1zt , t = log|Σ|.

For every codeword H of H, E[GHk] = E[BH]. The
correlation of B with every linear function is identical
up to sign, so by Parseval’s identity E[BH] always
equals |Σ|−1/2 or −|Σ|−1/2. After a possible change
of sign in G we may assume that E[GHk] ≥ |Σ|−1/2

for at least half the codewords in Hk. Since all these
codewords also belong to the k-XOR code, there must
exist a list Xk

1 , . . . , X
k
` of k-XOR codewords such

that half the codewords in H α1/k-correlate to some
Xi. Viewed as vectors in RΣ, the elements of H are
orthonormal. By Pythagoras’ theorem any Xi can
α1/k-correlate with at most α−2/k of them. It follows
that ` = Ω(|Σ| · α2/k).

When µ > |Σ|−1/2 we apply the argument to a
dimension-dlog 1/µ2e quotient of the Hadamard code.

5 Open Questions

The main coding-theoretic question left open is the
dependence of the list size on the correlation µ at
large distances for the k-XOR code. The upper
bound in Corollary 1.1 is exponential in µΘ(1/k),
while the lower bound in Proposition 4.3 is propor-
tional to 1/µ2. A tensoring argument shows that
`2k(µk, αk) > `2(µ, α), where `k is the list size for the
k-XOR code. If, say, `2(µ, µ/2) were lower bounded
by an exponential in 1/µ, an exponential lower bound
certifying the optimality of Corollary 1.1 would fol-
low. On the other hand, any improvement in the
success probability in the decoder (and therefore the
list size) would improve the success probability of our
k-LIN reduction.

While our reduction is sample-efficient, it still in-
curs a loss of O(m2/k). Is it possible to reduce this
loss by reusing training data in different uses of the
predictor? One intriguing possibility is suggested by
our product sampler for regular functions. When pre-
dicting the answer to a fixed equation a, the predic-
tor P takes as input m samples (a1, b1), . . . , (am, bm),
and the bias of the predictor over all these samples is
towards 〈a, s〉. So amplifying the probability of suc-
cessful prediction is the same as estimating the bias
of P. And if P were a regular function, we would
be able to use our product sampler to reuse samples
during amplification. While there is no reason to ex-
pect an arbitrary predictor to be regular, it might be
possible to convert it into a regular one.

Finally, the success probability of the solver pro-
duced by our reduction becomes trivial for small val-
ues of k (that is, if k ≤ 6 and m = Ω(n)). Is it pos-
sible to perform meaningful solving-to-distinguishing
reductions for k-LIN for such small values of k?
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than the statistical distance. Journal of Cryptology,
31(2):610–640, Apr 2018.

[BM16] Boaz Barak and Ankur Moitra. Noisy ten-
sor completion via the sum-of-squares hierarchy.
In Vitaly Feldman, Alexander Rakhlin, and Ohad
Shamir, editors, Proceedings of the 29th Confer-
ence on Learning Theory, COLT 2016, New York,
USA, June 23-26, 2016, volume 49 of JMLR Work-
shop and Conference Proceedings, pages 417–445.
JMLR.org, 2016.

[BPR12] Abhishek Banerjee, Chris Peikert, and Alon
Rosen. Pseudorandom functions and lattices. In
David Pointcheval and Thomas Johansson, editors,
Advances in Cryptology - EUROCRYPT 2012 -
31st Annual International Conference on the The-
ory and Applications of Cryptographic Techniques,
Cambridge, UK, April 15-19, 2012. Proceedings, vol-
ume 7237 of Lecture Notes in Computer Science,
pages 719–737. Springer, 2012.

[BQ12] Andrej Bogdanov and Youming Qiao. On the
security of Goldreich’s one-way function. Computa-
tional Complexity, 21(1):83–127, 2012.

[CW04] Moses Charikar and Anthony Wirth. Maximiz-
ing quadratic programs: Extending grothendieck’s
inequality. In 45th Symposium on Foundations
of Computer Science (FOCS 2004), 17-19 October
2004, Rome, Italy, Proceedings, pages 54–60, 2004.

[Fei02] Uriel Feige. Relations between average case com-
plexity and approximation complexity. In Proceed-
ings of the Thiry-fourth Annual ACM Symposium
on Theory of Computing, STOC ’02, pages 534–543,
New York, NY, USA, 2002. ACM.

[FPV15] Vitaly Feldman, Will Perkins, and Santosh
Vempala. On the complexity of random satisfiabil-
ity problems with planted solutions. In Rocco A.
Servedio and Ronitt Rubinfeld, editors, Proceedings
of the Forty-Seventh Annual ACM on Symposium on
Theory of Computing, STOC 2015, Portland, OR,
USA, June 14-17, 2015, pages 77–86. ACM, 2015.

[GL89] Oded Goldreich and Leonid A. Levin. A hard-
core predicate for all one-way functions. In David S.
Johnson, editor, Proceedings of the 21st Annual
ACM Symposium on Theory of Computing, May 14-
17, 1989, Seattle, Washigton, USA, pages 25–32.
ACM, 1989.

[GNW11] Oded Goldreich, Noam Nisan, and Avi
Wigderson. On Yao’s XOR-Lemma, pages 273–
301. Springer Berlin Heidelberg, Berlin, Heidelberg,
2011.

[GW95] Michel X. Goemans and David P. Williamson.
Improved approximation algorithms for maximum
cut and satisfiability problems using semidefinite
programming. J. ACM, 42(6):1115–1145, November
1995.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A.
Levin, and Michael Luby. A pseudorandom genera-

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited1003

D
ow

nl
oa

de
d 

10
/1

5/
19

 to
 2

4.
61

.3
2.

28
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



tor from any one-way function. SIAM J. Comput.,
28(4):1364–1396, 1999.

[IJK09] Russell Impagliazzo, Ragesh Jaiswal, and Valen-
tine Kabanets. Approximate list-decoding of direct
product codes and uniform hardness amplification.
SIAM J. Comput., 39(2):564–605, 2009.

[IJKW10] Russell Impagliazzo, Ragesh Jaiswal, Valen-
tine Kabanets, and Avi Wigderson. Uniform direct
product theorems: Simplified, optimized, and de-
randomized. SIAM J. Comput., 39(4):1637–1665,
2010.

[Imp95a] Russell Impagliazzo. Hard-core distributions
for somewhat hard problems. In In 36th Annual
Symposium on Foundations of Computer Science,
pages 538–545. IEEE, 1995.

[Imp95b] Russell Impagliazzo. Hard-core distributions
for somewhat hard problems. In 36th Annual Sym-
posium on Foundations of Computer Science, Mil-
waukee, Wisconsin, 23-25 October 1995, pages 538–
545. IEEE Computer Society, 1995.

[IW97] Russell Impagliazzo and Avi Wigderson. P =
BPP if E requires exponential circuits: Deran-
domizing the XOR lemma. In Frank Thomson
Leighton and Peter W. Shor, editors, Proceedings of
the Twenty-Ninth Annual ACM Symposium on the
Theory of Computing, El Paso, Texas, USA, May
4-6, 1997, pages 220–229. ACM, 1997.

[KMOW17] Pravesh K. Kothari, Ryuhei Mori, Ryan
O’Donnell, and David Witmer. Sum of squares
lower bounds for refuting any CSP. In Proceedings
of the 49th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2017, Montreal, QC,
Canada, June 19-23, 2017, pages 132–145, 2017.

[Lev87] Leonid A. Levin. One way functions and pseudo-
random generators. Combinatorica, 7(4):357–363,
Dec 1987.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded
Regev. On ideal lattices and learning with errors
over rings. In Henri Gilbert, editor, Advances in
Cryptology - EUROCRYPT 2010, 29th Annual In-
ternational Conference on the Theory and Applica-
tions of Cryptographic Techniques, Monaco / French
Riviera, May 30 - June 3, 2010. Proceedings, volume
6110 of Lecture Notes in Computer Science, pages
1–23. Springer, 2010.

[MM11] Daniele Micciancio and Petros Mol. Pseudoran-
dom knapsacks and the sample complexity of LWE
search-to-decision reductions. In Phillip Rogaway,
editor, Advances in Cryptology - CRYPTO 2011 -
31st Annual Cryptology Conference, Santa Barbara,
CA, USA, August 14-18, 2011. Proceedings, volume
6841 of Lecture Notes in Computer Science, pages
465–484. Springer, 2011.

[Pie12] Krzysztof Pietrzak. Cryptography from learning
parity with noise. In Mária Bieliková, Gerhard
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