A Minimal Span-Based Neural Constituency Parser

Mitchell Stern, Jacob Andreas, Dan Klein
UC Berkeley
 Parsing as Span Classification

She enjoys playing tennis.
Minimality in Parsing

Grammar:
Minimality in Parsing

Grammar:

\[S(\text{decided}) \rightarrow \text{NP(workers)} \text{ VP(decided)} \]

[Collins (1999)]
Minimality in Parsing

Grammar:

\[S(\text{decided}) \rightarrow \text{NP}(\text{workers}) \quad \text{VP}(\text{decided}) \]

\[S \rightarrow \text{NP}^S \quad \text{VP}^S \]

[Collins (1999)]

[Klein and Manning (2003)]
Minimality in Parsing

Grammar:

\[
S(\text{decided}) \rightarrow \text{NP(} \text{workers} \text{)} \quad \text{VP(} \text{decided} \text{)}
\]

\[
S \quad \rightarrow \quad \text{NP}^S \quad \text{VP}^S
\]

\[
S \quad \rightarrow \quad \text{NP} \quad \text{VP}
\]

[Collins (1999)]
[Klein and Manning (2003)]
[Hall et al. (2014)]
Minimality in Parsing

Grammar:

\[S(\text{decided}) \rightarrow NP(\text{workers}) \ VP(\text{decided}) \]
\[S \rightarrow NP^S \ VP^S \] \[\text{[Collins (1999)]}\]
\[S \rightarrow NP \ VP \] \[\text{[Klein and Manning (2003)]}\]
\[S \] \[\text{[Hall et al. (2014)]}\]
\[S \] \[\text{[Vinyals et al. (2015)]}\]
Minimality in Parsing

Scoring:
Minimality in Parsing

Scoring:

\[\text{score}(S \rightarrow \text{NP}^S \text{ VP}^S) \]
Minimality in Parsing

Scoring:

\[
\text{score}(S \rightarrow \text{NP}^S \text{ VP}^S)
\]

\[
\text{score}(i, k, j, S \rightarrow \text{NP VP})
\]

[Klein and Manning (2003)]

[Hall et al. (2014)]
Minimality in Parsing

Scoring:

\[\text{score}(S \rightarrow \text{NP}^S \text{ VP}^S) \]
\[\text{score}(i, k, j, S \rightarrow \text{NP} \text{ VP}) \]
\[\text{score}(i, j, S) \text{ and } \text{score}_{\text{action}}(i, k, j) \]
Minimality in Parsing

Scoring:

\[\text{score}(S \rightarrow \text{NP}^S \text{ VP}^S) \]

\[\text{score}(i, k, j, S \rightarrow \text{NP VP}) \]

\[\text{score}(i, j, S) \text{ and } \text{score}_{\text{action}}(i, k, j) \]

\[\text{score}(i, j, S) \]

[Klein and Manning (2003)]

[Hall et al. (2014)]

[Cross and Huang (2016)]

[This work]
Minimality in Parsing

Decoding:
Minimality in Parsing

Decoding:

Chart-based

Globally optimal, O(n³) time complexity
Minimality in Parsing

Decoding:

Chart-based
 Globally optimal, $O(n^3)$ time complexity

Transition-based
 Greedy, $O(n)$ or $O(n^2)$ time complexity
Tree Scoring Function

\[s_{\text{tree}}(T) = \sum_{(\ell, (i, j)) \in T} s(i, j, \ell) \]
Tree Scoring Function

\[s_{\text{tree}}(T) = \sum_{(\ell,(i,j)) \in T} s(i, j, \ell) \]

She enjoys playing tennis.
Tree Scoring Function

$$s_{\text{tree}}(T) = \sum_{(\ell, (i,j)) \in T} s(i, j, \ell) = s(0, 5, S)$$

She enjoys playing tennis.
Tree Scoring Function

She enjoys playing tennis.

\[
s_{\text{tree}}(T) = \sum_{(\ell, (i, j)) \in T} s(i, j, \ell)
\]

\[
= s(0, 5, \text{S}) + s(0, 1, \text{NP})
\]
Tree Scoring Function

\[s_{\text{tree}}(T) = \sum_{(\ell, (i, j)) \in T} s(i, j, \ell) \]

\[= s(0, 5, S) + s(0, 1, \text{NP}) + s(1, 4, \text{VP}) \]

She enjoys playing tennis.
Tree Scoring Function

\[s_{\text{tree}}(T) = \sum_{(\ell, (i, j)) \in T} s(i, j, \ell) \]

\[= s(0, 5, S) + s(0, 1, \text{NP}) + s(1, 4, \text{VP}) + s(2, 4, S-\text{VP}) \]

She enjoys playing tennis.
Tree Scoring Function

She enjoys playing tennis.

$$s_{\text{tree}}(T) = \sum_{(\ell,(i,j)) \in T} s(i, j, \ell)$$

$$= s(0, 5, S) + s(0, 1, NP) + s(1, 4, VP) + s(2, 4, S-VP) + s(3, 4, NP)$$
$s_{\text{best}}(i, i + 1) = \max_{\ell} [s(i, i + 1, \ell)]$
Dynamic Program: Base Case

\[s_{\text{best}}(i, i + 1) = \max_{\ell} [s(i, i + 1, \ell)] \]

Pick best label
$$s_{\text{best}}(i, j) = \max_{\ell} [s(i, j, \ell)]$$

$$+ \max_{k} [s_{\text{best}}(i, k) + s_{\text{best}}(k, j)]$$
Dynamic Program: General Case

Pick best label

\[s_{\text{best}}(i, j) = \max_{\ell} [s(i, j, \ell)] + \max_k [s_{\text{best}}(i, k) + s_{\text{best}}(k, j)] \]
Dynamic Program: General Case

\[s_{\text{best}}(i, j) = \max_{\ell} [s(i, j, \ell)] \]

\[+ \max_{k} [s_{\text{best}}(i, k) + s_{\text{best}}(k, j)] \]

Pick best split point
Scoring Function Implementation

[Inspired by Cross and Huang (2016)]
Scoring Function Implementation

She enjoys playing tennis.

[Inspired by Cross and Huang (2016)]
She enjoys playing tennis.

[Inspired by Cross and Huang (2016)]
Scoring Function Implementation

\[(f_j - f_i, b_i - b_j)\]

\[(f_i, b_i) \quad (f_j, b_j)\]

[Inspired by Cross and Huang (2016)]
Scoring Function Implementation

\[s \rightarrow s(i, j, X) \]

\[(f_j - f_i, b_i - b_j) \]

\[(f_i, b_i) \quad (f_j, b_j) \]

Feedforward Network

Span Difference

Bidirectional LSTM

[Inspired by Cross and Huang (2016)]
Training

Want \(s_{\text{tree}}(T^*) > s_{\text{tree}}(T) \) for all \(T \neq T^* \)
Training

Want \(s_{\text{tree}}(T^*) > s_{\text{tree}}(T) \) for all \(T \neq T^* \)

Require larger margin for higher loss:

\[
 s_{\text{tree}}(T^*) \geq \Delta(T, T^*) + s_{\text{tree}}(T)
\]
Training

Want $s_{\text{tree}}(T^*) > s_{\text{tree}}(T)$ for all $T \neq T^*$

Require larger margin for higher loss:

$$s_{\text{tree}}(T^*) \geq \Delta(T, T^*) + s_{\text{tree}}(T)$$

Use hinge penalty function:

$$\max \left(0, \Delta(\hat{T}, T^*) - s_{\text{tree}}(T^*) + s_{\text{tree}}(\hat{T}) \right)$$
Training

Use loss-augmented decoding during training:

\[\hat{T} = \max_T \left[\Delta(T, T^*) + s_{\text{tree}}(T) \right] \]
Use loss-augmented decoding during training:

\[
\hat{T} = \max_T [\Delta(T, T^*) + s_{\text{tree}}(T)]
\]

Loss-augmented decoding for Hamming loss:

Replace \(s(i, j, \ell) \) with \(s(i, j, \ell) + 1(\ell \neq \ell_{ij}^*) \)
Initial Results

<table>
<thead>
<tr>
<th>Parser</th>
<th>F1 Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hall et al. (2014)</td>
<td>89.2</td>
</tr>
<tr>
<td>Vinyals et al. (2015)</td>
<td>88.3</td>
</tr>
<tr>
<td>Cross and Huang (2016)</td>
<td>91.3</td>
</tr>
<tr>
<td>Dyer et al. (2016)</td>
<td>91.7</td>
</tr>
<tr>
<td>Liu and Zhang (2017)</td>
<td>91.7</td>
</tr>
<tr>
<td>Our Chart Parser</td>
<td>91.7</td>
</tr>
</tbody>
</table>
Top-Down Parsing

She enjoys playing tennis.
Top-Down Parsing

She enjoys playing tennis.
Top-Down Parsing

She enjoys playing tennis

S

<table>
<thead>
<tr>
<th>NP</th>
<th>VP</th>
</tr>
</thead>
<tbody>
<tr>
<td>She</td>
<td>enjoys</td>
</tr>
</tbody>
</table>

VP

<table>
<thead>
<tr>
<th>NP</th>
<th>VP</th>
</tr>
</thead>
<tbody>
<tr>
<td>playing</td>
<td>NP</td>
</tr>
<tr>
<td>tennis</td>
<td>She</td>
</tr>
</tbody>
</table>
She enjoys playing tennis.
She enjoys playing tennis.

Top-Down Parsing
Top-Down Parsing

She enjoys playing tennis.
She enjoys playing tennis.
Top-Down Parsing

She enjoys playing tennis.
She enjoys playing tennis.
Top-Down Parsing

She enjoys playing tennis.
\hat{\ell} = \operatorname{arg\,\max}_{\ell} \, s_{\text{label}}(i, j, \ell)
\[\hat{\ell} = \arg\max_{\ell} [s_{\text{label}}(i, j, \ell)] \]

\[\hat{k} = \arg\max_{k} [s_{\text{span}}(i, k) + s_{\text{span}}(k, j)] \]
Top-Down Training

Margin constraint for each decision:

score(gold) ≥ 1 + score(other)
Margin constraint for each decision:

\[\text{score(gold)} \geq 1 + \text{score(other)} \]

Train with exploration using a dynamic oracle

[Goldberg and Nivre (2012), Cross and Huang (2016)]
Initial Results

<table>
<thead>
<tr>
<th>Parser</th>
<th>F1 Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hall et al. (2014)</td>
<td>89.2</td>
</tr>
<tr>
<td>Vinyals et al. (2015)</td>
<td>88.3</td>
</tr>
<tr>
<td>Cross and Huang (2016)</td>
<td>91.3</td>
</tr>
<tr>
<td>Dyer et al. (2016)</td>
<td>91.7</td>
</tr>
<tr>
<td>Liu and Zhang (2016)</td>
<td>91.7</td>
</tr>
<tr>
<td>Our Chart Parser</td>
<td>91.7</td>
</tr>
<tr>
<td>Our Top-Down Parser</td>
<td>91.6</td>
</tr>
</tbody>
</table>
Extensions

Label scoring for unary chains:
• Split unary chains into top-middle-bottom
Extensions

Label scoring for unary chains:
• Split unary chains into top-middle-bottom

Structured label loss for unary chains:
• Hamming distance on labels (vs. 0-1 loss)
Extensions

Label scoring for unary chains:
• Split unary chains into top-middle-bottom

Structured label loss for unary chains:
• Hamming distance on labels (vs. 0-1 loss)

Split-based (vs. span-based) scoring:
• Left-right, concatenate, deep biaffine

[Cross and Huang (2016)] [Dozat and Manning (2016)]
Final Results

<table>
<thead>
<tr>
<th>Parser</th>
<th>F1 Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hall et al. (2014)</td>
<td>89.2</td>
</tr>
<tr>
<td>Vinyals et al. (2015)</td>
<td>88.3</td>
</tr>
<tr>
<td>Cross and Huang (2016)</td>
<td>91.3</td>
</tr>
<tr>
<td>Dyer et al. (2016)</td>
<td>91.7</td>
</tr>
<tr>
<td>Liu and Zhang (2016)</td>
<td>91.7</td>
</tr>
<tr>
<td>Our Best Chart Parser</td>
<td>91.8</td>
</tr>
<tr>
<td>Our Best Top-Down Parser</td>
<td>91.8</td>
</tr>
</tbody>
</table>
Conclusion
Conclusion

A minimal span-based parser can achieve state-of-the-art results.
Conclusion

A minimal span-based parser can achieve state-of-the-art results.

Little is lost going from global to greedy decoding.
Conclusion

A minimal span-based parser can achieve state-of-the-art results.

Little is lost going from global to greedy decoding.

Various extensions yield only minimal gains beyond the core system.
Thanks!