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1 Optimality theorems for JL

Yesterday we saw for MJL that we could achieve target dimension m =
O(ε−2 logN), and for DJL we could achieve m = O(ε−2 log(1/δ)). The fol-
lowing theorems tell us that not much improvement is possible for MJL, and
for DJL we have the optimal bound.

Theorem 1 ([Alo03]). For any N > 1 and ε < 1/2, there exist N + 1 points
in RN such that achieving the MJL guarantee with distortion 1 + ε requires

m & min{n, ε−2(logN)/ log(1/ε)}.

The log(1/ε) loss in the lower bound can be removed if the map must be
linear.

Theorem 2 ([LN14]). For any N > 1 and ε < 1/2, there exist NO(1) points
in RN such that achieving the MJL guarantee with distortion 1 + ε using a
linear map requires

m & min{n, ε−2 logN}.

For DJL, the upper bound is optimal.

Theorem 3 ([JW13, KMN11]). For any ε, δ < 1/2, any DJL distribution
must have

m & min{n, ε−2 log(1/δ)}.
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2 Example application: deterministic `1 point

query and heavy hitters

Yesterday’s notes gives an example application of JL to k-means clustering.
Today we give another application.

In the `1 point query problem a vector x ∈ Rn is updated in the turnstile
streaming model. A query is an index i ∈ [n], and the response to the query
should be a value x̃ such that |xi − x̃i| ≤ ε‖x‖1. We show an argument of
[NNW14] that the JL lemma implies the existence of a fixed deterministic
Π ∈ Rm×n with m . ε−2 log n such that such a x̃ can be recovered from Πx.

Definition 1. We say that a matrix Π with columns Π1, . . . ,Πn is ε-incoherent
if (1) ‖Πi‖2 = 1 for all i, and (2) for all i 6= j, | 〈Πi,Πj〉 | ≤ ε.

Theorem 4. If Π ∈ Rm×n is ε-incoherent, then there is a polynomial time
recovery algorithm AΠ such that given any y = Πx, if we define x̃ = AΠ(y)
then ‖x̃− x‖∞ ≤ ε‖x‖1.

Proof. The recovery algorithm will be AΠ(y) = ΠTy = ΠTΠx. Thus

x̃i = eTi ΠTΠx =
n∑
j=1

〈Πi,Πj〉xi = xi +
∑
i 6=j

〈Πi,Πj〉xi = xi ± ε‖x‖1.

Now we show the existence of such Π with small m.

Lemma 1. ∀ ε ∈ (0, 1/2), there is ε-incoherent Π with m . ε−2 log n.

Proof. Consider the set of vectors {0, e1, . . . , en}. By the JL lemma, there
exists Π′ with O(ε−2 log n) rows, and having columns Π′i such that (1) |Π′i‖2 =
‖Π′ei‖2 = 1± ε/3, and (2) ‖Π′i−Π′j‖2 = ‖Π′ei−Π′ej‖2 = (1± ε/3)

√
2 for all

i 6= j. Let Π be the matrix whose ith column is Π′i/‖Π′i‖2. Then ‖Πi‖2 = 1
for all i, as desired. Furthermore

2(1± ε)2 = ‖Πi − Πj‖2
2 = ‖Πi‖2

2 + ‖Πj‖2
2 − 2 〈Πi,Πj〉 .

Note ‖Πi‖2
2 and ‖Πj‖2

2 are both 1 ± O(ε), implying | 〈Πi,Πj〉 | = O(ε). The
lemma follows by applying this argument with ε scaled down by a constant.
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3 Faster JL

Typically we have some high-dimensional computational geometry problem,
and we use JL to speed up our algorithm in two steps: (1) apply a JL
map Π to reduce the problem to low dimension m, then (2) solve the lower-
dimensional problem. As m is made smaller, typically (2) becomes faster.
However, ideally we would also like step (1) to be as fast as possible. In this
section, we investigate two approaches to speed up the computation of Πx.

One of the analyses will make use of the following Bernstein bound.

Theorem 5 (Bernstein’s inequality). Let X1, . . . , Xn be independent random
variables that are each at most K almost surely, and where

n∑
i=1

E(Xi − EXi)
2 = σ2.

Then for all p ≥ 1

‖
n∑
i=1

Xi − E
∑
i

Xi‖p . σ
√
p+Kp.

Proof. Let r1, . . . , rn be independent Rademachers. Then

‖
∑
i

(Xi − EXi)‖p ≤ 2 · ‖
∑
i

riXi‖p (symmetrization)

.
√
p · ‖(

∑
i

X2
i )1/2‖p (Khintchine) (1)

=
√
p · ‖

∑
i

X2
i ‖

1/2
p/2

≤ √p · ‖
∑
i

X2
i ‖1/2

p

≤ σ
√
p+
√
p · ‖

∑
i

X2
i − E

∑
i

X2
i ‖1/2

p (triangle inequality)

≤ σ
√
p+
√
p · ‖

∑
i

riX
2
i ‖1/2

p (symmetrization)

≤ σ
√
p+ p3/4 · ‖(

∑
i

X4
i )1/2‖1/2

p (Khintchine)

≤ σ
√
p+ p3/4 ·

√
K · ‖(

∑
i

X2
i )1/2‖1/2

p (2)
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Defining E = ‖(
∑

iX
2
i )1/2‖1/2

p and comparing (1) with (2), for some constant
C > 0

E2 − C · p1/4 ·
√
K · E − Cσ ≤ 0.

Thus E must be smaller than the larger root of the above quadratic equation,
implying our desired upper bound on E2.

3.1 Sparse JL

One natural way to speed up JL is to make Π sparse. If Π has s non-zero
entries per column, then Πx can be multiplied in time O(s · ‖x‖0), where
‖x‖0 = |{i : xi 6= 0}|. The goal is then to make s,m as small as possible.

The following matrix Π was introduced in [CCF04], and it was analyzed
for DJL in [TZ12]. In this construction, one picks a hash function h : [n]→
[m] from a pairwise independent family, and a function σ : [n] → {−1, 1}
from a 4-wise independent family. Then for each i ∈ [n], Πh(i),i = σ(i), and
the rest of the ith column is 0. It was shown in [TZ12] that this distribution
provides DJL for m & 1/(ε2δ). Note that s = 1 as described here. The
analysis is simply via Chebyshev’s inequality, after doing an expectation and
variance calculation.

The reason for the poor dependence in m on the failure probability δ is
that we use Chebyshev’s inequality. This was avoided yesterday by using
Hanson-Wright, i.e. a bound on the p-norms of quadratic forms. Recall that
a bound on p-norms gives tail bounds via Markov’s inequality, and if one
unrolls the proof fully yesterday, one would find that yesterday’s lecture
obtained δ failure probability by using the Hanson-Wright p-norm bound
for p = Θ(log(1/δ)). That is to say, the improvement yesterday came from
bounding a higher moment than p = 2 (i.e. Chebyshev).

To improve the dependence of m on 1/δ, we allow ourselves to increase
s. Here we analyze the Sparse JL Transform (SJLT) [KN14]. This is a JL
distribution over Π having exactly s non-zero entries per column.

As previously, we assume x ∈ Rn has ‖x‖2 = 1. Our random Π ∈ Rm×n

satisfies Πr,i = ηr,iσr,i/
√
s for some integer 1 ≤ s ≤ m. The σr,i are indepen-

dent Rademachers. The ηr,i are Bernoulli random variables satisfying:

• For all r, i, E ηr,i = s/m.

• For any i,
∑m

r=1 ηr,i = s. That is, each column of Π has exactly s
non-zero entries.
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• The ηr,i are negatively correlated. That is, for any subset S of [m]× [n],
we have E

∏
(r,i)∈S ηr,i ≤

∏
(r,i)∈S E ηr,i = (s/m)|S|.

We would like to show the following, which is the main theorem of [KN14].

Theorem 6. As long as m ' ε−2 log(1/δ) and s ' εm,

∀x : ‖x‖2 = 1, P
Π

(|‖Πx‖2
2 − 1| > ε) < δ. (3)

Proof. Abusing notation and treating σ as an mn-dimensional vector,

Z = ‖Πx‖2
2 − 1 =

1

s

m∑
r=1

∑
i 6=j

ηr,iηr,jσr,iσr,jxixj
def
= σTAx,ησ,

Thus by Hanson-Wright

‖Z‖p ≤ ‖
√
p · ‖Ax,η‖F + p · ‖Ax,η‖‖p ≤

√
p · ‖‖Ax,η‖F‖p + p · ‖‖Ax,η‖‖p.

Ax,η is a block diagonal matrix with m blocks, where the rth block is
(1/s)x(r)(x(r))T but with the diagonal zeroed out. Here x(r) is the vector
with (x(r))i = ηr,ixi. Now we just need to bound ‖‖Ax,η‖F‖‖p and ‖‖Ax,η‖‖p.

Since Ax,η is block-diagonal, its operator norm is the largest operator
norm of any block. The eigenvalue of the rth block is at most (1/s) ·
max{‖x(r)‖2

2, ‖x(r)‖2
∞} ≤ 1/s, and thus ‖Ax,η‖ ≤ 1/s with probability 1.

Next, define Qi,j =
∑m

r=1 ηr,iηr,j so that

‖Ax,η‖2
F =

1

s2

∑
i 6=j

x2
ix

2
j ·Qi,j.

We will show for p ' s2/m that for all i, j, ‖Qi,j‖p . p, where we take the
p-norm over η. Therefore for this p,

‖‖Ax,η‖F‖p = ‖‖Ax,η‖2
F‖

1/2
p/2

≤ ‖ 1

s2

∑
i 6=j

x2
ix

2
j ·Qi,j‖1/2

p

≤ 1

s

(∑
i 6=j

x2
ix

2
j · ‖Qi,j‖p

)1/2

(triangle inequality)
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≤ 1√
m

Then by Markov’s inequality and the settings of p, s,m,

P(|‖Πx‖2
2 − 1| > ε) = P(|σTAx,ησ| > ε) < ε−p · Cp(m−p/2 + s−p) < δ.

We now show ‖Qi,j‖p . p, for which we use Bernstein’s inequality.
Suppose ηa1,i, . . . , ηas,i are all 1, where a1 < a2 < . . . < as. Now, note Qi,j

can be written as
∑s

t=1 Yt, where Yt is an indicator random variable for the
event that ηat,j = 1. The Yt are not independent, but for any integer p ≥ 1
their pth moment is upper bounded by the case that the Yt are independent
Bernoulli each of expectation s/m (this can be seen by simply expanding
(
∑

t Yt)
p then comparing with the independent Bernoulli case monomial by

monomial in the expansion). Thus Bernstein applies, and as desired we have

‖Qi,j‖p = ‖
∑
t

Yt‖p .
√
s2/m · √p+ p ' p.

There are two natural distributions where η satisfies the conditions for
the SJLT. In the first, the columns are independent, and for each column i
(η1,i, . . . , ηm,i) is chosen uniformly at random from the

(
m
s

)
vectors in {0, 1}m

having weight exactly s. A second distribution is the CountSketch of [CCF04].
In this distribution, we assume s divides m, and the rows are partitioned ar-
bitrarily into s blocks each of equal size m/s (e.g. the first m/s rows, then
the next m/s rows, etc.). For each column i and for each block b with corre-
sponding η(b, i) = (ηcm/s+1,i, . . . , η(c+1)m/s,i), we set η(b, i) = ej ∈ Rm/s for a
uniformly random j ∈ [m/s]. This is done independently across all b, i pairs.

3.2 FFT-based approach

Another approach for obtaining fast JL was investigated by Ailon and Chazelle
[AC09]. This approach gives a running time to compute Πx of roughly
O(n log n), which is faster than the sparse JL approach when x is suffi-
ciently dense. Although we did not cover it this approach in lecture today,
I am including a description here. They called their transformation the Fast
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Johnson-Lindenstrauss Transform (FJLT). A construction similar to theirs,
which we will analyze here, is the m× n matrix Π defined as

Π =
1√
m
SHD (4)

where S is an m × n sampling matrix with replacement (each row has a
1 in a uniformly random location and zeroes elsewhere, and the rows are
independent), H is an unnormalized bounded orthonormal system, and D =
diag(α) for a vector α of n independent Rademachers. An unnormalized
bounded orthonormal system is a matrix H ∈ Rn×n such that HTH = I and
maxi,j |Hi,j| ≤ 1. For example, H can be the unnormalized Fourier matrix
or Hadamard matrix. The original FJLT replaced S with a random sparse
matrix P , which has certain advantages; see Remark 1.

The motivation for the construction (4) is speed: D can be applied in
O(n) time, H in O(n log n) time (e.g. using the Fast Fourier Transform),
and S in O(m) time. Thus, overall, applying Π to any fixed vector x takes
O(n log n) time. Compare this with using a dense matrix of Rademachers,
which takes O(mn) time to apply.

We will show that for m & ε−2 log(1/δ) log(1/(εδ)), the random Π de-
scribed in (4) provides DJL. In fact we will analyze a slightly different con-
struction in which S is replaced by an n×n diagonal matrix Sη, Sη = diag(η),
where the entries of η ∈ {0, 1}n are independent with E ηi = 1/m (so Π has
m rows in expectation). The proof to analyze the Π from (4) is essentially
identical. The proof we provide here is an adaptation of the proof of a more
general theorem [CNW15, Theorem 9] to the current scenario.

Theorem 7. Let x ∈ Rn be an arbitrary unit norm vector, and suppose
0 < ε, δ < 1/2. Also let Π = SηHD as described above with a number of
rows equal to m & ε−2 log(1/δ) log(1/(εδ)). Then

P
Π

(|‖Πx‖2
2 − 1| > ε) < δ.

Proof. We use the moment method. Let η′ be an independent copy of η, and
let σ ∈ {−1, 1}n be uniformly random. Write z = HDx so that ‖Πx‖2

2 =∑
i ηiz

2
i . Then

‖ 1

m

n∑
i=1

ηiz
2
i − 1‖p = ‖‖ 1

m

∑
i

ηiz
2
i − 1‖Lp(η)‖Lp(α) (5)
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≤ 2

m
· ‖‖

∑
i

σiηiz
2
i ‖Lp(η)‖Lp(α) (symmetrization)

≤ 2

m
· ‖
∑
i

σiηiz
2
i ‖p

.
√
p

m
· ‖(
∑
i

ηiz
4
i )

1/2‖p (Khintchine)

≤
√
p

m
· ‖(max

i
ηi|zi|) · (

∑
i

ηiz
2
i )

1/2‖p

≤
√
p

m
· ‖max

i
ηiz

2
i ‖1/2

p · ‖
∑
i

ηiz
2
i ‖1/2

p (Cauchy-Schwarz)

≤
√

p

m
· ‖max

i
ηiz

2
i ‖1/2

p · (‖
1

m

∑
i

ηiz
2
i − 1‖1/2

p + 1) (triangle inequality)

(6)

We will now bound ‖maxi ηiz
2
i ‖

1/2
p . Define q = max{p, logm} and note

‖ · ‖p ≤ ‖ · ‖q. Then

‖max
i
ηiz

2
i ‖q =

(
E
α,η

max
i
ηiz

2q
i

)1/q

≤

(
E
α,η

∑
i

ηiz
2q
i

)1/q

=

(∑
i

E
α,η
ηiz

2q
i

)1/q

≤
(
n ·max

i
E
α,η
ηiz

2q
i

)1/q

=

(
n ·max

i
(E
η
ηi) · (E

α
z2q
i )

)1/q

(α, η independent)

=
(
m ·max

i
E
α
z2q
i

)1/q

≤ 2 ·max
i
‖z2

i ‖q (m1/q ≤ 2 by choice of q)

= 2 ·max
i
‖zi‖2

2q

. q (Khintchine) (7)
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Eq. (7) uses that H is an unnormalized bounded orthonormal system.

Defining E = ‖ 1
m

∑
i ηiz

2
i −1‖1/2

p and combining (5), (6), (7), we find that
for some constant C > 0

E2 − C
√
pq

m
E − C

√
pq

m
≤ 0,

implying E2 . max{
√
pq/m, pq/m}. By the Markov inequality

P(|‖Πx‖2
2 − 1| > ε) ≤ ε−p · E2p,

and thus to achieve the theorem statement it suffices to set p = log(1/δ) then
choose m & ε−2 log(1/δ) log(m/δ).

Remark 1. Note that the FJLT as analyzed above provides suboptimal
m. If one desired optimal m, one can instead use the embedding matrix
Π′Π,where Π is the FJLT and Π′ is, say, a dense matrix with Rademacher
entries having the optimal m′ = O(ε−2 log(1/δ)) rows. The downside is
that the runtime to apply our embedding worsens by an additive m · m′.
[AC09] slightly improved this additive term (by an ε2 multiplicative factor)
by replacing the matrix S with a random sparse matrix P .

Remark 2. The usual analysis for the FJLT, such as the approach in [AC09],
would achieve a bound on m of O(ε−2 log(1/δ) log(n/δ)). Such analyses op-
erate by, using the notation of the proof of Theorem 7, first conditioning on
‖z‖∞ .

√
log(n/δ) (which happens with probability at least 1− δ/2 by the

Khintchine inequality), then finishing the proof using Bernstein’s inequality.
In our proof above, we improved this dependence on n to a dependence on
the smaller quantity m by avoiding any such conditioning.
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