
 Copyright 1999 University of California

 pur-

lication
ages" in
"Visual

me of
h sum-

e

er.

r,
Java: A System Programming Language
by David G. Messerschmitt

Supplementary section for Understanding Networked Applications: A First Course, Morgan
Kaufmann, 1999.

Copyright notice: Permission is granted to copy and distribute this material for educational
poses only, provided that this copyright notice remains attached.

A system programming language is used to implement objects and components in app
development. Some features of these languages is described in "Programs and Langu
Chapter 11, and the distinction between implementation and assembly is described in
Architecture Modeling" in Chapter 10.

Java is a representative object-oriented systems programming language [Arn96][Fla96]. So
the key language elements of Java that support object interfaces are listed in Table 1 (whic
marizes only small fraction of the features of Java).

Table 1 Key elements of a system programming language, with examples from Java.

Element Description Example

Keywords

Words that have
specific meaning to
and are reserved by
the language.

The word interface is used to specify the interface to an
object class. In the remainder of this Appendix, keywords ar
in a bold font to make them easy to distinguish from
programmer-defined names.

Specify object
class interface

Assign the class a
name, and specify
the methods,
parameters, and
return values.

In the following specification,
interface Account {

//Description of class interface
}

Account is a name assigned to the class by the programm
The “//” at the beginning of a line makes it a comment that is
ignored.

Specify
structure of

data

Declaration of the
data types passed as
method parameters
or return values in
an object interface.
A data type is a
specification the
range of values and
allowable operations
on data (see below).

All data must have a name and a declaration of type, like
int amount;

The statement
// boolean Withdrawal (int amount);

specifies a method at the interface with a single parameter
named amount , which describes data representing an intege
and the single unnamed return value is true if there was a
sufficient balance to make the withdrawal.
Page 1 8/18/99

 Copyright 1999 University of California

m is the
ed.
he
and

t

li-

d
ce this

ers and
d—it is

t class
ify the
 class

In Table 1, however, many key concepts discussed in Chapter 11 are displayed. One of the
data type. In Java, the type of all data must be specified before that data can be manipulat

E x a m p l e … Data type int specifies the representation of an integer represented by 32 bits. T
range of values—determined by the 32 bit representation—is between -2147483648
+2147483647. Typical allowed operations on integers are to add two integers or multiply them.

Data type char specifies a Unicode character, which is represented by 16 bits and has a sufficien
range of values to represent all the world’s major languages.
Data type boolean has just two values and is represented by one bit, but is represented symbo
cally in the language by true and false .

In the notation of Chapter 6, an action might be written
Withdrawal: amount → status

for the withdrawal form an account, where amount is the amount of funds to be withdrawn an
status is an indication of the result (were there sufficient funds?). In a Java class interfa
would be written as a method

boolean Withdrawal (int amount)

The major difference is that Java requires not only a descriptive name for data paramet
return values, but also a specification of the data types. Also, the return value is not name
just data of a specified type. There is only a single return value.

Bank account example
Here is an example of a simple Java program specifying the implementation of an objec
Account that manages a financial account balance: First, Java provides a way to spec
interface of the class without telling anything about what might be encapsulated or how the

Instantiate a
class

Create a new object
of a specified class.

An object with class Account would be created like this:
Account my_account;
my_account = new Account;

Afterward, my_account is a reference to an object with class
Account .

Invoke method
of an object

Interact with an
object by invoking
one of its methods,
passing parameters
and with a return
value (both are data
with a specified
structure).

With a reference to an Account, its Balance() method can
be invoked as follows:

boolean OK;
// Let’s withdraw $34.00
// in my_account
OK = my_account.Deposit(3400);

The my_account.Deposit is Java’s way of specifying
that the Deposit() method of my_account is to be
invoked. Now, OK will be true if my balance was $34.00
or more; otherwise, it will be false and the balance will
not be changed.

Table 1 Key elements of a system programming language, with examples from Java.

Element Description Example
Page 2 8/18/99

 Copyright 1999 University of California

nal
by the

rma-

t

rson,

r a mat-
is implemented:
interface Account{

// Return the balance in pennies
int Balance();

// The return value is true if the deposit is
// accepted, false otherwise
boolean Deposit (int amount);

// The return value is true if there was sufficient
// balance, false otherwise
boolean Withdrawal (int amount);
}

Having specified the interface, its implementation can be specified as follows:
public class Bank_account implements Account {

// Must store account balance
private int balance;

public int Balance() { return balance;}

public void Deposit (int amount) {
balance = balance + amount;
}

public boolean Withdrawal (int amount) {
if (amount <= balance) {

balance = balance - amount;
return true ;
}

else return false ;
}

}

The keywords public and private control the encapsulation of internal details. The inter
data balance is private, meaning that it isn’t visible outside the class, but can be accessed
methods of the class Bank_account .

This implementation illustrates in a small way the interpretation of data, turning it into info
tion through data processing. For example, the statement

balance = balance + amount;

expresses the interpretation of balance as the money in a account, and amount as the money
being deposited in the account. The resulting change in balance is information, in the sense tha
it influences the behavior (spending) of the owner of the Bank_account .

The way another object can make use of a Bank_account can be illustrated. Here is an inter-
face to a Person , which represents information about a citizen. This interface allows the Pe
among many other things, to accept and hold funds. At the interface, what the Person does with
those funds is appropriately abstracted—some may choose to hold it as cash (stuffed unde
Page 3 8/18/99

 Copyright 1999 University of California

ly.

s-
ulated
tress), others may open a bank account and deposit it, and others may spend it immediate
interface Person {

// Many methods omitted for brevity
// ...

// Accept funds from another
// Returns true if the money is accepted, false otherwise
boolean accept_funds (int amount);

}

A particular type of Person , a Bank_customer , may deposit these funds in a Bank_account ,
although this fact and other details are encapsulated:

class Bank_customer implements Person {
// This Person likes to store money in the
// bank rather than under a mattress

// This is the Person’s Bank_account, which is
// encapsulated--hidden from other classes
private Bank_account my_account;

// Many methods omitted for brevity
// ...

public boolean accept_funds (int amount) {
// Only accept funds if amount is positive!!
if (amount > 0) {

my_account.Deposit(amount);
return true ;

else return false ;
}

}

An important point to note about this example is the interpretation of amount that is reflected in
the processing performed within the accept_funds() method. It is treated as funds to be depo
ited in a Bank_account , and that interpretation is expressed by the program code encaps
within the class.
Page 4 8/18/99

