Chapter 7

by

David G. Messerschmitt
Components

Component: A subsystem purchased “as is” from an outside vendor

A component implementation is encapsulated (although often configurable)

Examples of components

- Computer
- Disk drive
- Network
- Network router
- Operating system
- Integrated circuit
- Database management system

Why is a component implementation encapsulated?
Understanding Networked Applications

Interoperability

- Components are interoperable when they interact properly to achieve some desired functionality.
- Increasingly component interoperability cannot be dependent on integration, or is dependent on end-user integration.
 - PC and peripherals
 - Enterprise, inter-enterprise, consumer applications
 - Role for standardization

Outsourcing

Outsourcing: A subsystem design is contract to an outside vendor.
Responsibility is delegated.
System integration

Architecture ➔ subsystem implementation ➔ system integration

- Bring together subsystems and make them cooperate properly to achieve desired system functionality
 - Always requires testing
 - May require modifications to architecture and/or subsystem implementation

Why system decomposition?

- Divide and conquer approach to containing complexity
- Reuse
- Consonant with industry structure (unless system is to be supplied by one company)
- Others?
Components

A component implementation is **encapsulated** (although often configurable).

Examples of components

- Computer
- Disk drive
- Network
- Network router
- Operating system
- Integrated circuit
- Database management system

Component: A subsystem purchased “as is” from an outside vendor.

Why is a component implementation encapsulated?
Interoperability

- Components are interoperable when they interact properly to achieve some desired functionality.
- Increasingly component interoperability cannot be dependent on integration, or is dependent on end-user integration.
 - PC and peripherals
 - Enterprise, inter-enterprise, consumer applications
 - Role for standardization

Two ways to design a system

- System requirements
- Available components
- Decomposition from system requirements
- Assembly from available components
Outsourcing

Outsourcing: A subsystem design is contract to an outside vendor

Responsibility is delegated

Three types of software

Application

- Components and frameworks:
 What is in common among applications

- Infrastructure:
 Basic services (communication, storage, concurrency, presentation, etc.)
Standardization

by
David G. Messerschmitt

Outline

• Motivation for standards
• Elements of a standard
• Types of standards
• Process to develop a standard
Network effects

- The value of a product to the adopter depends on the number of other adopters
 - Direct
 - e.g. fax machine
 - Indirect, through common content or software
 - e.g. Windows, CD music

Lock-in

- Consumer:
 - Switching costs make consumer reluctant to adopt a new product
- Supplier:
 - Switching costs or cannibalization of existing products make supplier reluctant to pursue new product opportunity
Consumer lock-in

- Prevalence increases as the industry fragments, and consumer has to purchase complementary products to get a “complete solution”
 - Switching costs discourage moving to complete new solution
 - Supplier with a “better mousetrap” can’t penetrate market unless product is compatible with existing complementary product

Purpose of a standard

- Infrastructure:
 - Allow products or services from different suppliers or providers to be interoperable
- Application:
 - Enable applications to run across uncoordinated administrative domains
Scope of a standard

- **Included:**
 - architecture (reference model)
 - interfaces (physical, electrical, information)
 - formats and protocols (FAP)
 - compliance tests (or process)
- **Excluded:**
 - implementation
 - (possibly) extensions

Reference model

- Decide decomposition of system
 - where interfaces fall
- Defines the boundaries of competition and
 - ultimately industrial organization
 - competition on the same side of an interface
 - complementary suppliers on different sides
 - hierarchical decomposition at the option of suppliers
 - (possibly) optional extensions at option of suppliers
Some issues

• Once a standard is set
 – becomes possible source of industry lock-in;
 overcoming that standard requires a major
 (~10x?) advance
 – may lock out some innovation

• In recognition, some standards evolve
 – IETF, CCITT (modems), MPEG
 – backward compatibility

Types of standards

• *de jure*
 Sanctioned and actively promoted by some
 organization with jurisdiction, or by government

• *de facto*
 – Dominant solution arising out of the market

• Voluntary industry standards body

• Industry consortium

• Common or best practice
Examples

- **de jure**
 - Ada, VHDL
- **de facto**
 - Hayes command set, Windows API, Pentium instruction set, Ethernet
- **Voluntary industry standards body**
 - OMG/CORBA, IAB/IETF, IEEE
- **Industry consortium**
 - W3C/XML, SET
- **Best practice**
 - Windowed GUI

The changing process

- As technology and industry move more quickly, the global consensus standards activity has proven too unwieldy
 - e.g. ISO (protocols, SGML)
- “New age” standards activities are more informal, less consensus driven, a little less political, more strategic, smaller groups
 - e.g. OMG, IETF, ATM Forum, WAP
- **Programmable/extensible approaches for flexibility**
 - e.g. XML, Java
Old giving way to the new

Reasons for change

• From government sanction/ownership to market forces
 – Increasing fragmentation
 – Importance of time to market
• Greater complexity
 – Less physical/performance constraint for either hardware or software
Lock-in

• (Particularly open) standards reduce consumer lock-in
 – Consumers can mix and match complementary products
 – e.g. IBM (in their day) and Microsoft are perceived to be lock-in problems, other agendas in addition to pleasing customers

• Increase supplier lock-in
 – Innovation limited by backward compatibility
 – e.g. IP/TCP, x86, Hayes command set

Question

• What are some examples of open standards that reduce consumer lock-in?
 – Intranet applications
 • WWW, newsgroups, calendar, etc
 – Linux
 – PC peripherals
 • ISA, serial/parallel port, etc
 – Others?
Network effects

- Standards can harness network effects to the industry advantage
 - Revenue = (market size) x (market share)
- Increases value to customer
- Increases competition
 - Only within confines of the standard
 - But forces customer integration or services of a system integrator

Question

- What are examples of standards that serve to tame network effects?
 - Internet protocols
 - XML
 - CORBA
 - DVD
 - others?
Why standards?

- *de jure* standards are customer driven to reduce confusion and cost
- *de facto* standards are sometimes the result of positive feedback in network effects
- Customers and suppliers like them because they
 - increase value
 - reduce lock-in
- Governments like them because they
 - promote competition in some circumstances
 - May believe they can be used to national advantage

Voluntary standards process

Sanctioning organization(s)

Ongoing committees

Participating companies
Approaches

- Consensus
 - ISO
- Collaborative design
 - MPEG
- Competitive “bake off”
 - ITEF
- Coordination of vendors
 - OMG

Why companies participate

- Pool expertise in collaborative design
 - e.g. MPEG
- Have influence on the standard
- Get technology into the standard
 - Proprietary, with expectation of royalties
 - Non-proprietary
- Reduced time to market