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Overall goal

» Exchanging information with civilizations living in other

solar systems would be an exciting voyage

» The capabilities and limitations of our Universe to
support such exchanges is little understood

» This work is a first step toward such understanding
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Some challenges

» No experimentation

» Relevant astronomical observations

» No coordination
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Implicit coordination

Design guidance based on:

» Simplicity: Occam’s razor

» Fundamental limits and resulting optimization

v

Where physical impairments are least controlling

v

Assumptions about capabilities and resources

Awareness of motivations and incentives

v

Immediate application

We seek to:

» Generalize the class of
target signals

» Take advantage of

advancing technology
Allen Telescope Array (ATA),

Hat Creek, California, is
devoted fto SETI observations

Some relevant distinctions

» Attractor beacon vs. information-bearing signal

» Discovery vs. ongoing communication

This talk focuses on:
» Radio frequencies
» Design of an information-bearing signal

» Receiver design for discovery of that signal
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The Cyclops beacon signature

A spectrogram of a narrowband signal in noise with
changing Doppler shift:

Complex-valued baseband equivalent signal
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This talk

Implicit coordination between transmitter and receiver
taking into account:

» White noise
» Radio-frequency interference

» Dispersion in the ionized interstellar medium (IISM)

Digital modulation alternatives

Complex-valued baseband signal:
» Data symbols {By}
» Amplitude modulation:
{Bx-h(t—kTs), —co <k <0}
» Orthogonal signaling:

{hg (t—kTs), —oo <k < oo}



Discovery opftions

» Multiple-symbol: Make addifional assumptions about
data symbol alphabet

» Symbol-by-symbol: Single symbol waveform h(f)
multiplied by some unknown amplitude and phase

Here we pursue the symbol-by-symbol option:
» Applies to all modulation alternatives

» Potentially forgos signal energy

Received signal impairments

Temporarily consider only:

» White Gaussian noise
» Radio interference in the vicinity of the receiver

Optimization infers specific and credible properties for W,

T, and h(t)

Time-frequency support for h(f)

Transmitter:
» What should W and T
be?

» What other properties
should h(t) have?

Receiver:

» How advantageous is it
to know more about
h(t)?
» How does the receiver
infer this knowledge”?

Two orthonormal bases

An orthonormal basis renders the reception
finite-dimensional:

Fourier series Sampling theorem
(time-limited signal) (bandlimited signal)
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Finite-dimensional representatfion of h(t)

Choice of basis:
» Transmitter and receiver must assume the same basis

» We choose the Fourier series

Dimensionality of basis:

» Degrees of freedom (DOF)is K = W - T

Regardless of basis:

» Noise is completely random and isotropic

Radio-frequency interference

» How to best deal with interference depends on its
characteristics

» Narrowband case:

» Want signal energy
uniformly distributed

@ over0<f<W
» Interference overlap
N W,-T_ W,
interference w-T - w
- > Time 7
» Want W large; T doesn’t

matter

Isotropic noise

» Matched filter looks in
the signal direction

» Sensitivity depends on &
and o2...

» ..and not W, T, and the
“shape” of h(f)

Interference

Broadband inferference:

» Want signal energy
uniformly distributed
over0<t<T

» Interference overlap
W-T, T

» Want T large; W doesn’t
matter




Ways to distribute signal energy Random signall

Carrier-like Pulse-like

If the signal is chosen from a random ensemble, it should
be completely random and therefore isotropic

» Statistically, signal component in direction of any
interference vector has energy & /(W - T)

» Spread spectrum: Make K = W - T large

Current and past SETI Cyclops searches ignore this type of
signal

Noise-like

Isotropic signal Pseudo-random signal

Binary expansion of ., e, or v/2

Real and imaginary

Isotropic signal
Energy = 1

Magnitude

Interference M A J\MM\HVL{




Some environmental factors

Time-invariant  » Plasma dispersion

v

Scattering

Time-varying » Doppler

v

Turbulence

v

Scintillation (fading)

Plasma dispersion

» The ISM is conductive due fo ionization in interstellar
gas clouds

» Homogeneous refractive index
-1/2
fo\ 2
"= (1 -(7) )

» Frequency-dependent excess group delay

D-DM
()= =

Bandwidth sfress test of the ISM

High datarate. W-T~1and 1/T large
Spread spectrum. W-T >> 1

We choose spread spectrum:

v

Suppresses interference

Usually less affected by multipath
Discovery is eqsier

ISM bandwidth is “free”

v

v

v

Relation of group delay and phase

Frequency response:

F(F) = IF()] - €49

Monochromatic phase shift:

2m - 7(f) = —dz(ff)



Typical case

Group delay changes linearly and phase quadratically

T msec
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Delay spread vs f.

Dispersion favors large fe: Tmax ~ fo°
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Delay spread

» Range of group delays across fe < f < fo + W

» A priori knowledge from pulsar observations

Tmax — T(fc) — T(fc + W)

DMmin < DM < DMmox

Phase after wrapping

¢ inradians

PR |

f=m/T, T=2msec,

0 <m < 2000

finMHz



Impulse response

Impulse response energy is spread uniformly over
0 <t < mmax but phase is chaotic

[l

arg(hm)

DFT~'{e/®m} and 7max ~ 0.8 msec

Effect of delay spread on one component of h(t)

Assuming ¢(f) ~ linear for f ~ fy

w(t) @2t ot |F(f)| e/9f) |—= el(0) w (t — 7(fy)) e/27 !

» Ignore effect of group delay on w(t) if Tmax << T

» Search over T >> tmax Os based on {fs, W, DMmax}

Fourier-series representation of h(f)

» Fourier-series basis is natural for characterizing
dispersion

K—1
] .
h(t) = /& - w(t) - T Y cm- et
m=0

» Search over T assuming knowledge of {c}

» Less need tosearchover K =W - T and w(t)

Performance metric

» What increase in &, as a consequence of dispersion,
is required to maintain fixed Pea and Pp?

&~ f(K) means &~ a-f(K) forlarge K

» In terms of power Ps, always favorable to increase T

Ps = % ~ Lw for large K

» Always unfavorable to increase W



Processing path options Energy penalty

Filter Partial 1-lag MF
bank [] equ autoc VS, Trax | VK
, >58N{]7\/W3\/?7K}
ME DET-] MF Estimate %
VS. Tmax Tmax
» At K =109,
&~ {1,3.7,108,10¢
Energy : — - DE s~ { }
! Increase in & required to

Es~ 1 VK v/ 1ogK maintain Pra and Pp

{ == } = vector fransfer

Filter bank Filter bank and de-spreading
One channel (out of K):
Y(t) ® wi(-1) fof ST L @ — P
Fitter | ” H
bank o—i2rmt/T cr

( == ) = complex value transfer

& ,
Pm = (\/ Ys + Om) .elom

E|Omf? = o2



Incoherent matched filter

Filter
bank

MF

Es ~ 1

Isotropic noise again

Signal

Isotropic noise
Energy = Keo?

Incoherent matched filter

Assuming Tmax (hence {¢m}) is supplied by a genie:

Phase Matched Incoherent
Py ——= equalizer filter carrier o
—i¢m 1K phase E
- K N
(95 ~ -l

Energy estimation

Filter Partial
—— ———>
bank equ
DFT~!
Energy




Partfial equalization for minimum delay spread

Group delay
max
A priori knowledge _ :
min
f
Equalizer w
Equalization for
minimum spread min
f
Group delay w
max
Reduced delay spread \
min
' f
w

Isotropic noise again

Signal

Isotropic noise
Energy = Keo?

Detection based on energy estimation

Estimating “raw” & does not require
knowledge of Tmax Or {Cm}:

Ym or Pm——= |2 EK—_1 Y

Maximum delay spread

[P

t msec

» For specific fo, W, and LOS mmex is bounded



Restricted-delay spread energy estimation

Partial
Partial Impulse energy

Pm—— delay response L L . Q
equalizer DFT ! S|P
k=0

gsNVTmc:x'W

Maximum likelihood

» Signal subspace has dimension L < K:

eldo
dTmox = eli¢2 for O S Tmaoix S rg%]/lx Tmax
ek

» Turns out:

L~ () &

» Find orthonormal basis {ey, 1 < k < L}

Maximum likelihood

Filter | Partial
bank equ

MF

VS. Tmax

v/ IogK

Maximum likelihood (con’t)

If projection of any d,,, is enfirely in direction of one basis
e,. then it suffices to perform L independent trials:

» Q= IMF for em

» Threshold input = max, &n

> &~ /logl



Finding orthogonal basis
Singular value decomposition (SVD):

D=[didy...d¢] =UZ VI

U is a candidate for orthonormal basis:

Urp=x Vvt

Tmax < T. K =950, L =26

One-lag autocorrection

Adpm = dmy1 — ¢m = —2%7'(?)
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Autocorrelation
Filter Partial 1-lag
bank equ autoc

Nonlinear reduction in DOF

» {€/89m 0 < m < K} is always less than one period of
a complex exponential

L = 5 orthonormal basis functions

» [ = 2 usually suffices



Matched filtering after autocorrelation

Filter Partial 1-lag MF
bank equ autoc VS. Tmax

» & ~ VK (same as energy estimator)

» Results from the auftocorrelation noise-on-noise
Oms 105, term

Estimnation of dispersion

arg (Pm+1Pm) = (A¢me1 + Omy1 — Om) mod 2x
©Om = arg (\/ig + Om>

» Slope of Agpm vs mis proportional to rmax

Direct estimation of 7o

Filter Partial

bank equ

1-lag
autoc

Estimate

Traox

Phase estimation and unwrapping

arg (Pme1Pr)

Es
&S 0K
0'2 “

K = 1000 (30 dB)
a=10,3,and 0 dB




Sensitivity of rmax €stimation

» & ~ K (much less sensitive then energy estimate)

» Otherwise ©, — uniform distribution on [0, 27]

Om = arg (‘/f{s + Om> mod 27

Takeaways

What to look for:

» The more a priori knowledge of the signal, the more
sensitive its detection

» Conversely, high-sensitivity searches target a specific
signall

» Optimization provides implicit design coordination in
the form of guidance on the class of signal to use,
and suggests spread spectrum

Principal fradeoffs

T fC GOOd \l/ Tmax "~ fg3

/]\ T GOOd J, ngx/T
Jz Ps = 5S/T
J Broadband interference

Bad |l Datarate ~ 1/T

TE ~/logW.T

1 Susceptibility to time-variation

W1 Good | Narrowband interference

BOd T Tmax "~ W

T &~ /logW. T

Takeaways (con’t)

Where o look:

» Environmental impairments helpfully constrain search
parameters

» Detection sensitivity near fundamental limits with
reasonable computational burden and high search
rate are technologically feasible today for spread
spectrum signals with relatively large f. and large T



Takeaways (con’t)

How you can help:

» Communication engineering is immediately relevant
to the exciting quest to find life elsewhere in our
Universe

» Visit setiquest.org

Postscript

Thanks to:

» SETI Institute: Samantha Blair, Gerry Harp, Jill Tarter,
Rick Standahar and Kent Cullers

» National Aeronautics and Space Administration

Further information

My homepage:

www.eecs.berkeley.edu/~messer
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