Copyright license

Exchanging Information with the Stars

David G Messerschmitt Department of Electrical Engineering and Computer Sciences University of California at Berkeley messer@eecs.berkeley.edu

> Talk at: University of Minnesota

> > 14 April 2011

Overall goal

- Exchanging information with civilizations living in other solar systems would be an exciting voyage
- The capabilities and limitations of our Universe to support such exchanges is little understood
- This work is a first step toward such understanding

©Copyright David G. Messerschmitt, 2011. This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License.

To view a copy of this License, visit http://creativecommons.org/licenses/by-nc-sa/2.0/ or write to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

Some challenges

No experimentation

- Relevant astronomical observations
- No coordination

Implicit coordination

Design guidance based on:

- Simplicity: Occam's razor
- Fundamental limits and resulting optimization
- Where physical impairments are least controlling
- Assumptions about capabilities and resources
- Awareness of motivations and incentives

Some relevant distinctions

- Attractor beacon vs. information-bearing signal
- Discovery vs. ongoing communication

This talk focuses on:

- Radio frequencies
- Design of an information-bearing signal
- Receiver design for discovery of that signal

Immediate application

Allen Telescope Array (ATA), Hat Creek, California, is devoted to SETI observations We seek to:

- Generalize the class of target signals
- Take advantage of advancing technology

CYCLOPS (1970)

Co-Directors:	
Bernard M. Oliver	Stanford University
	(Summer appointment)
John Billingham	Ames Research Center, NASA
System Design and Advis	ory Group:
James Adams	Stanford University
Edwin L. Duckworth	San Francisco City College
Charles L. Seeger	New Mexico State University
George Swenson	University of Illinois
Antenna Structures Grou	p:
Lawrence S. Hill	California State College L.A.
John Minor	New Mexico State University
Ronald L. Sack	University of Idaho

CYCLOPS PEOPLE

Antenn: Lawr John Rona San Jose State College

outhern filipois Ur

chigan Technologi

Signal Processing Group:	
Jonnie B. Sednar	University of Tulsa
Douglas B. Brumm	Michigan Technological University
James H. Cook	Cleveland State University
Robert S. Dixon	Ohio State University
Johnson Luh	Purdue University
Francis Yu	Wayne State University

The Cyclops beacon signature

A spectrogram of a narrowband signal in noise with changing Doppler shift:

This talk

Implicit coordination between transmitter and receiver taking into account:

- White noise
- Radio-frequency interference
- Dispersion in the ionized interstellar medium (IISM)

Complex-valued baseband equivalent signal

Digital modulation alternatives

Complex-valued baseband signal:

- Data symbols $\{B_k\}$
- Amplitude modulation:

$$\{B_k \cdot h(t-kT_s), -\infty < k < \infty\}$$

Orthogonal signaling:

$$\{h_{B_k}(t-kT_s), -\infty < k < \infty\}$$

Discovery options

- Multiple-symbol: Make additional assumptions about data symbol alphabet
- Symbol-by-symbol: Single symbol waveform h(t) multiplied by some unknown amplitude and phase

Here we pursue the symbol-by-symbol option:

- Applies to all modulation alternatives
- Potentially forgos signal energy

Received signal impairments

Temporarily consider only:

- White Gaussian noise
- Radio interference in the vicinity of the receiver

Optimization infers specific and credible properties for W, T, and h(t)

Time-frequency support for h(t)

Transmitter:

- What should W and T be?
- What other properties should h(t) have?

Receiver:

- How advantageous is it to know more about h(t)?
- How does the receiver infer this knowledge?

Two orthonormal bases

An orthonormal basis renders the reception finite-dimensional:

Fourier series (time-limited signal)

Sampling theorem (bandlimited signal)

Finite-dimensional representation of h(t)

Choice of basis:

- Transmitter and receiver must assume the same basis
- ► We choose the Fourier series

Dimensionality of basis:

• Degrees of freedom (DOF) is $K = W \cdot T$

Regardless of basis:

Noise is completely random and isotropic

Isotropic noise Energy = K-o²

- Matched filter looks in the signal direction
- Sensitivity depends on *εs* and σ²...
- ...and not W, T, and the "shape" of h(t)

Radio-frequency interference

- How to best deal with interference depends on its characteristics
- Narrowband case:

- ► Want signal energy uniformly distributed over 0 ≤ f ≤ W
- ► Interference overlap $\frac{W_l \cdot T}{W \cdot T} = \frac{W_l}{W}$
- Want W large; T doesn't matter

Interference

Broadband interference:

- ► Want signal energy uniformly distributed over 0 ≤ t ≤ T
- Interference overlap $\frac{W \cdot T_l}{W \cdot T} = \frac{T_l}{T}$
- Want T large; W doesn't matter

Isotropic noise

Ways to distribute signal energy

Noise-like

Isotropic signal

Random signal

If the signal is chosen from a random ensemble, it should be completely random and therefore isotropic

- Statistically, signal component in direction of any interference vector has energy $\mathcal{E}_s/(W \cdot T)$
- Spread spectrum: Make $K = W \cdot T$ large

Current and past SETI Cyclops searches ignore this type of signal

Pseudo-random signal

Binary expansion of π , e, or $\sqrt{2}$

Real and imaginary

Magnitude

- - Scattering
- Time-varying > Doppler
 - ► Turbulence
 - Scintillation (fading)

Bandwidth stress test of the ISM

High data rate. $W \cdot T \approx 1$ and 1/T large Spread spectrum. $W \cdot T >> 1$

We choose spread spectrum:

- Suppresses interference
- Usually less affected by multipath
- Discovery is easier
- ► ISM bandwidth is "free"

Plasma dispersion

- The ISM is conductive due to ionization in interstellar gas clouds
- Homogeneous refractive index

$$n = \left(1 - \left(\frac{f_{\mathcal{P}}}{f}\right)^2\right)^{-1/2}$$

Frequency-dependent excess group delay

$$\tau(f) = \frac{\mathcal{D} \cdot \mathsf{DM}}{f^2}$$

Relation of group delay and phase

Frequency response:

 $F(f) = |F(f)| \cdot e^{i\phi(f)}$

Monochromatic phase shift:

$$2\pi \cdot \tau(f) = -\frac{\mathsf{d}\phi(f)}{\mathsf{d}f}$$

Typical case

Delay spread

 $f_c = 1 \text{ GHz}, W = 1 \text{ MHz}, \text{DM} = 100$

 $\tau_{\max} = \tau(f_C) - \tau(f_C + W)$

A priori knowledge from pulsar observations

 $DM_{min} \leq DM \leq DM_{max}$

Delay spread vs f_c

W = 1 MHz, DM = 1, 10, 100, 1000

Phase after wrapping

 $f = m/T, T = 2 \text{ msec}, 0 \le m < 2000$

Impulse response

 $\mathrm{DFT}^{-1}\{e^{i\phi_m}\}\ \mathrm{and}\ au_{\max}pprox 0.8\ \mathrm{msec}$

Effect of delay spread on one component of h(t)

Assuming
$$\phi(f) \approx$$
 linear for $f \approx f_0$

$$w(t) e^{i2\pi f_0 t} \longrightarrow [F(t)] e^{i\phi(t)} \longrightarrow e^{i\phi(f_0)} w(t - \tau(f_0)) e^{i2\pi f_0 t}$$

- ► Ignore effect of group delay on w(t) if $\tau_{\max} << T$
- Search over $T >> \tau_{max}$ as based on $\{f_c, W, DM_{max}\}$

 Fourier-series basis is natural for characterizing dispersion

$$h(t) = \sqrt{\mathcal{E}_s} \cdot w(t) \cdot \frac{1}{\sqrt{K}} \sum_{m=0}^{K-1} c_m \cdot e^{i2\pi m t/T}$$

- Search over T assuming knowledge of $\{c_m\}$
- Less need to search over $K = W \cdot T$ and w(t)

Performance metric

• What increase in \mathcal{E}_s , as a consequence of dispersion, is required to maintain fixed P_{FA} and P_{D} ?

 $\mathcal{E}_s \sim f(K)$ means $\mathcal{E}_s \approx \alpha \cdot f(K)$ for large K

• In terms of power \mathcal{P}_s , always favorable to increase T

$$\mathcal{P}_{s} = rac{\mathcal{E}_{s}}{T} pprox rac{\alpha \cdot f(W \cdot T)}{T}$$
 for large K

Always unfavorable to increase W

Processing path options

Energy penalty

Filter bank

Filter bank and de-spreading

$$(\implies) \equiv \text{ complex value transfer}$$

 $P_m = \left(\sqrt{\frac{\mathcal{E}_s}{K}} + O_m\right) \cdot e^{i\phi_m}$
 $E |O_m|^2 = \sigma^2$

Incoherent matched filter

Filter bank MF

Incoherent matched filter

Assuming τ_{max} (hence $\{\phi_m\}$) is supplied by a genie:

 $\mathcal{E}_{s} \sim 1$

Isotropic noise again

Energy estimation

Partial equalization for minimum delay spread

Detection based on energy estimation

Estimating "raw" \mathcal{E}_s does not require knowledge of τ_{max} or $\{C_m\}$:

Isotropic noise again

Maximum delay spread

• For specific f_c , W, and LOS τ_{max} is bounded

Maximum likelihood

• Signal subspace has dimension L < K:

$$\mathbf{d}_{\tau_{\max}} = \begin{bmatrix} \mathbf{e}^{i\phi_0} \\ \mathbf{e}^{i\phi_2} \\ \mathbf{e}^{i\phi_{K-1}} \end{bmatrix} \quad \text{for} \quad 0 \le \tau_{\max} \le \max_{\text{DM}} \tau_{\max}$$

Turns out:

$$L \approx \frac{1}{2} \left(\frac{\tau_{\max}}{T} \right) \cdot K$$

• Find orthonormal basis $\{\mathbf{e}_k, 1 \le k \le L\}$

Maximum likelihood (con't)

If projection of any $\mathbf{d}_{\tau_{\text{max}}}$ is entirely in direction of one basis \mathbf{e}_k , then it suffices to perform *L* independent trials:

- $Q_n = \mathsf{IMF} \text{ for } \mathbf{e}_m$
- Threshold input = $\max_n Q_n$
- $\mathcal{E}_s \sim \sqrt{\log L}$

Finding orthogonal basis

Singular value decomposition (SVD):

$$\mathbf{D} = \begin{bmatrix} \mathbf{d}_1 \, \mathbf{d}_2 \, \dots \, \mathbf{d}_K \end{bmatrix} = \mathbf{U} \, \mathbf{\Sigma} \, \mathbf{V}$$

U is a candidate for orthonormal basis:

 $\mathbf{U}^{\dagger}\,\mathbf{D}=\Sigma\,\mathbf{V}^{\dagger}$

 $au_{max} \leq T$, K = 50, L = 26

One-lag autocorrection

$$\Delta\phi_m = \phi_{m+1} - \phi_m \approx -\frac{2\pi}{T} \cdot \tau \left(\frac{m}{T}\right)$$

$$P_{m+1}P_m^* = \left(\sqrt{\frac{\mathcal{E}_s}{K}} + O_{m+1}\right) \left(\sqrt{\frac{\mathcal{E}_s}{K}} + O_m\right)^* \cdot e^{i\Delta\phi_m}$$

Autocorrelation

Nonlinear reduction in DOF

 {e^{i ∆φm}, 0 ≤ m < K} is always less than one period of a complex exponential

L = 5 orthonormal basis functions

• L = 2 usually suffices

Matched filtering after autocorrelation

Direct estimation of $\tau_{\rm max}$

- $\mathcal{E}_s \sim \sqrt{K}$ (same as energy estimator)
- Results from the autocorrelation noise-on-noise $O_{m+1}O_m^*$ term

Estimation of dispersion

$$\arg \left(P_{m+1}P_m^*\right) = \left(\Delta\phi_{m+1} + \Theta_{m+1} - \Theta_m\right) \mod 2\pi$$
$$\Theta_m = \arg \left(\sqrt{\frac{\mathcal{E}_s}{K}} + O_m\right)$$

• Slope of $\Delta \phi_m$ vs *m* is proportional to τ_{\max}

Phase estimation and unwrapping

Sensitivity of τ_{max} estimation

- $\mathcal{E}_s \sim K$ (much less sensitive then energy estimate)
- Otherwise $\Theta_m \rightarrow$ uniform distribution on $[0, 2\pi]$

$$\Theta_m = \arg\left(\sqrt{rac{\mathcal{E}_s}{\mathcal{K}}} + O_m
ight) \mod 2\pi$$

Principal tradeoffs

$\uparrow f_C$	Good	$\downarrow au_{ m max} \sim f_{ m c}^{-3}$
↑ <i>T</i>	Good	$\begin{array}{l} \downarrow \tau_{\max}/T \\ \downarrow \mathcal{P}_s = \mathcal{E}_s/T \\ \downarrow \text{Broadband interference} \end{array}$
	Bad	↓ Data rate ~ 1/T ↑ $\mathcal{E}_s \sim \sqrt{\log W \cdot T}$ ↑ Susceptibility to time-variation
$W\uparrow$	Good	\downarrow Narrowband interference
	Bad	$\uparrow \tau_{\max} \sim W$ $\uparrow \mathcal{E}_{s} \sim \sqrt{\log W \cdot T}$

Takeaways

What to look for:

- The more a priori knowledge of the signal, the more sensitive its detection
 - Conversely, high-sensitivity searches target a specific signal
- Optimization provides implicit design coordination in the form of guidance on the class of signal to use, and suggests spread spectrum

Takeaways (con't)

Where to look:

- Environmental impairments helpfully constrain search parameters
- Detection sensitivity near fundamental limits with reasonable computational burden and high search rate are technologically feasible today for spread spectrum signals with relatively large f_c and large T

Takeaways (con't)

How you can help:

- Communication engineering is immediately relevant to the exciting quest to find life elsewhere in our Universe
- Visit setiquest.org

Postscript

Thanks to:

- SETI Institute: Samantha Blair, Gerry Harp, Jill Tarter, Rick Standahar and Kent Cullers
- National Aeronautics and Space Administration

Further information

My homepage: www.eecs.berkeley.edu/~messer