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Generalized Partial  Response for Equalized  Channels 
with Rational  Spectra 

DAVID G. MESSERSCHMITT, MEMBER, IEEE 

Abstract-Harashima and Miyakawa [I] and Tomlinson [2] have 
described a generalized  partial response technique which achieves 
the performance of the decision-feedback equalizer  without the 
error propagation problem. We show here  that when the equalized 
and  baud-rate sampled channel  assumes  the special rational z trans- 
form 
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where 10 = L, go = 1, the gi and li  are  integers,  and L is a power of 
2, the implementation  can assume an especially simple form  not 
requiring the  storage of analog  samples. The  numerator polynomial 
can  be chosen to achieve transmission zeros, as  in  ordinary  partial 
response, while the denominator can  be chosen to  reduce  the noise 
enhancement  in equalization. This  technique  results  in as much as  a 
doubling of the  peak  transmitted voltage and, as in  ordinary  partial 
response, an increase  in  the  number of received levels.. 

It is shown that on thef1/2  channel  characteristic of coaxial cable, 
most of the. noise  advantage of decision-feedback  equalization can 
be achieved with a moderate  number of received  levels, and  that 
some of this  noise  advantage can be  traded for a reduced  number of 
received  levels. The  greatest  advantage  accrues in multilevel trans- 
mission because of the lower  peak transmitted voltage penalty. 

I.  INTRODUCTION 

H ARASHIMA  and  Miyakawa [1] and Tomlinson [a] 
have  independently described  a method of data 

precoding  in  a  pulse-amplitude  modulation (PAM) 
transmitter which  eliminates  intersymbol  interference 
from  past  data  digits at   the receiver without noise en- 
hancement.  Modulo  arithmetic is employed in  the  trans- 
mitter to limit  the  peak  transmitted power. This  technique 
is essentially  a  generalization of partial response (PR) 
[3]-[7] to channels  with  noninteger  valued overall 
sampled  impulse  responses [l]. 

The  implementation of PR is relatively simple, with  the 
storage of a  small  finite  number of integer-valued 
transmitted  data  and  a modulo addition.  The generalized 
partial response (GPR)  technique, on the  other  hand, 
requires the  storage of a  number of noninteger  valued 
(analog)  past  transmitted precoded  samples. Of course 
these  analog  samples  can also be  quantized  and  stored  as 
binary,  numbers,  but  the  resultant  memory is much  larger 
than  that required for PR. 
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In  this  paper we will show that when the equalized 
and  sampled  linear  channel  has  only poles and no zeros 
(which we term  an autoregressive equalized  channel .in 
analogy to  random process  terminology)  the GPR im- 
plementation  can  be  reduced  to 1) the  storage of a  finite 
number of past  data digits  (which  are  generally  binary) 
equal to  the  number of channel poles, 2 )  the storage of i n  
equal  number of bounded  integers  which  summarizes the 
state of the  channel, 3) the generation of an ana.log trans- 
mitted  sample which is a  simple transformation of these 
stored  values,  and 4) an  updating of the  stored  integers 
which  can be accomplished by,  read-only  mem.ory.  This 
implementation, which  avoids  the  storage of analog  sam- 
ples or quantized versions of analog  samples,  takes  advan- 
tage of the  Markov  properties of the channel. 

The  importance of the all-pole equalized  channel is 
that  the unequalized  channel characteristic  can generally 
be  fairly closely approximated  with  relatively few poles, 
with  the  result  that  the noise enhancement  incurred  in 
the process of easily implemented  equalization is minimal. 
The use of PR, on the  other  hand, is usdaliy  motivated 
by a desire to  place zeros in  the  overall response, usually 
a t  dc or at  the half-baud  rate,  although it  has also been 
shown to  have  a noise a'dvantage on  channels  with  a  fast 
roll-off [SI, [SI. In  order to  accomplish  transmission 
zeros in  the  context of the autoregressive GPR  it will be 
shown that  the  system  can'  be combined with PR to 
achieve  transmission zeros. 

While  our  realization of GPR simplifies the  transnlittcr 
structure,  it  shares  with PR and previously  described 
GPR schemes an increase  in  the  number of received 
levels, complicating the  implementation of the receiver. 

As will be  shown later,  the  ultimate noise performance 
of GPR is essentially that of the decision-feedback  equal- 
izer [lo], but  without  the  error-propagation problems. It 
has been  shown that  the  potential  improvement in per- 
formance  over  linear  equalization for decision-feedback 

' equalization is substantial  .on some  practical  channels 
[ll] when error  propagation  is  ignored. In  some  instances 
i t  has  been  shown that error  propagation is not  a serious 
impairment [lZ], [13]. This  includes  the coaxial cable 
example  considered later  in  this  paper. 

11. DESCRIPTION  OF  GENERALIZED 
PARTIAL  RESPONSE 

This section will give  a brief tutorial explana.tion of 
the  GPR  technique [l], [a]. As a  starting  point, consider 

~ ~~~- 

The a&hor  is with Bell Laboratories, Holmdel, N. J .  07733. the linear  system of Fig. l ( a ) ,  which consists of trans- 
~~ 
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Fig. 1. Decision-feedback and  transmitter prefiltering. (a) Equiva- 

lent equalized and sampled  linear  channel. (b) Tail  cancellation 
by decision-feedback. ( c )  Tail cancellation by prefiltering. 

mitter filter GT ( w )  , receiver filter G'R ( W )  , channel  transfer 
function H ( w )  , additive noise 72( t )  , and a baud-rate 
sampler which samples a t  t = k T ,  where T is the  baud 
interval. Assume that when the system  input is excited 
by a unit impulse, the  output sequence  in the absence of 
noise has z transform F(2). Assume further  that GT ( w )  

and GR ( w )  have been chosen such that F (2) is strictly 
causal  (conditions  on H ( w )  for this  to  be possible are given 
in [14], [15]), 

m 

F(2) = f m Z m .  (1)  
m=O 

Therefore, if we transmit a sequence of data digits { B I G } ,  
the reception is 

m 

r k  = f o B k  i- 2 fmBk--m i- 'nk (2) 

where n k  is the  additive noise. The summation  term  in ( 2 )  
is an undesirable  intersymbol  interference which we would 
like to eliminate  prior to a decision on BIG. One method of 
accomplishing this is by choosing GR(w)  so that f m  = 0, 
m 2 1, but  this  can  only be  done at   the expense of some 
noise enhancement:  Another  approach [lo] is to  use 
past decisions to  subtract  out  this  interference  prior,  to 
the receiver decision threshold  [Fig. 1 (b)],  but a penalty 
in  error  rate  due  to  error  propagation rilust be  accepted. 

This error  propagation  problem is eliminated  by  the 
data prefiltering  technique of Fig. 1 (c) . In  this  method, 
instead of transmitting B k ,  an analog  level zk is substi- 
tuted.  The residual  intersynlbol  interference is subtracted 
from BIG to  determine x i .  This is equivalent to  putting a 
filter F-'(Z)  in  the  transmitter;'  it achieves the same 
performance as  the decision-feedback method but  without 

l Note  that linear  equalization in  the receiver to eliminate the 
intersymbol  interference also corresponds to a F-'(Z) filter, but 
unlike that  at  the  transmitter, enhances the noise. 

m=l 

the error  propaga,tion  problem.  However, the peak  trans- 
mitted signal  can  he  very  largc (or even  infinite, if the 
filter is unstable). 

GPR modifies the prefiltering  method just described 
to limit the ,peak transmitted power. We will initially 
discuss the  binary case for  simplicity,  and generalize to  
multilevel  transmission later.  Let  the  data assume the 
two  valucs Be = f 1 (binary  antipodal  signaling). The 
received signal in the absence of noise and intersymbol 
interference then assumes one of two  values,  as  illustrated 
in  Fig. 2(a) ( =tjo, where j o  = 1 is assumed).  For  GPR 
the received levels are modified to those of Fig. 2 (b) .  
Data B k  = 1 now correspond to  any of the received levels ' 
(1 + CY + ,n.p) where 7% is an integer,  and similarly data 
BIG = - 1 correspond to  any of the received levels ( - 1 + 
CY + I@). We list below some considerations  relative to  
the received levels of Fig. 2 (b) . 

1) The motivation  for  using  these  levels is to  limit 
the peak  tra.nsnlitted  voltage to p /b ,  as will be seen shortly. 

2 )  The  constant O( is an  arbitrary offset which does not 
impact  the  error  probability. Unless otherwise stated, 
we assume that CY = 0. 

3 )  The  constant p, which determines the peak  trans- 
mitted power, should be  greater  than  two so. that  the 
input  data digit  can be inferred  from the received level 
in the absence of noise. The choice 0 = 4 is the most 
reasonable, since i t  results  in  uniformly  spaced received 
levels. 
4) In  making a decision on the basis of the received 

levels of Fig. 2 (b) , an error  rate  penalty  relative  to  the 
format of Big. 2(a) is necessarily incurred.  For p = 4  t.he 
error  rate is approximately dou.bled, and  the  penalty 
decreases rapidly as p increases  from there. Specifically, 
for Fig. 2 (a ) ,  

P,  = Q (:) 
a.nd for  Fig. 2 (b) ,  

where 

1 "  
& ( x )  = - (2a) 1 d?J 

and  additive Gaussian noise with  variance u2 has  been 
assumed, as have decision thresholds  halfway  between 
received signal  levels. 

What is the  advantage of the received signal format of 
Fig. 2(b) ? Consider the  situation  from  the  point  of, view 
of the  transmitter. It has  stored all the values of ail the 
past  transmitted precoded data samples, and  thus knows 
the value of the intersymbol  interference the receiver will 
experience; that is, the  transmitter knou-s what  the re- 
ceived sample will be if the  transmitter  sends  nothing 
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Fig. 2. Generalized partial response. (a)  Binary polar received 

levels. (b) Generalized pattial response received levels. (c) GPR 
transmitter precoding: 

( x k  = 0).  :If the  current  data  are Be = I, the  transmitter 
needs to send only  a  large  enough  signal to  drive  the 
received sample to  the nearest point (1 + CY + ,nP). Thus 
the largest x k  which is ever  required is 

I x k  1 5 P/2. (6) 
The peak transmitted power has now been reduced to 
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stored)  and PR2 (where  past  integer  valued precoded 
data samples are  stored). It will be  shown in Section I11 
that if the equalized channel  response F (2) is chosen to  be 
autoregressive (rational  in Z with  no  zeros) the storage 
of ana.log samples can  be completely  avoided. It will 
then be shown that zeros of F(2) can  also  be  tolerated 
as long as  the  numerator polynomial  has  integer-valued 
coefficients and  the  denominator coefficients  assume  a 
special form. 

A .  G'PR for  Multilevel  Data 
GPR ,as  described in (8) extends  straightforwardly 

to nmltilevel input  data.  In  fact, for this case a much 
smaller  peak power penalty a t  a  given  level of performance 
can  be  accommodated. In  particular, when B k  assum.es 
one of I, levels equally  spaced  on the interval [ - 1,1], the 
spacing  between levels is 2 / ( L  - I ) .  This  same  equal 
level spacing at   the receiver can  be  maintained  with 
P = 2 + 2 / (11  - 1) , with  a  peak  transmitted  voltage 
bounded  by P / 2  = L /   ( L  - I ) .  The  resultant  upper 
bound on the increase in peak transmitted power is sum- 
marized below. -. 

Maximum  Increase  in  Peak 
manageable  proportions:  For  idstance, if P = 4, the  pea6 I Transmitted Power 
voltage is now potentially  double (6 dB)  that required L (decibels) 
in the absence of precoding. i 

A transmitter organization which accomplishes the 
scheme just described was invented  independently  by 
Harashima  and Rfiyakawa [l] and Tomlinson [ 2 ] .  The 
received sample  in  $he  absence of noise is just (2) with 
nk = 0. In  view of Fig. 2(b) , the received sample is also 

rk = B/c + f f  LkP ( 7 )  
for  some  integer Lk. Equating ( 2 )  (with ?xk = 0 and { B k ]  

replaced by { X k ]  ) with ( 7 )  , we get the precoded  sample 
(assuming f o  = 1)  

m 

x k  = CY + LkP + B k  - f m L k - m  ( 8 )  
m=1 

where Lk is chosen to satisfy (6) (which is merely  a  nlodulo 
P operation).  This  leads  to  the  transmitter organization 
of Fig. 2(c) (for CY = 0 ) .  Note  that when the ( f m ]  are 
summable, rk is bounded by 

m P "  I rk I 5 1 f m x k - m  1 5 5 I f m  1 (9) 
m=O * m=O 

and  the number of received levels is finite, as required by 
receiver implementation. The bound of (9) is quite weak, 
and in  practice r k  would remain  much smaller. 

From  the  implementation  point of view, the multi- 
level received data  and  transmitter modulo  operation 
represent  obstacles. Particularly troublesome, however, is 
the necessity of storing  analog vblues of previous  precoded 
data samples. This should  be  compared  with the decision 
feedback of Fig. 1 (b)  (where  past  binary decisions are 

2 6.0 
4 2 . 5 
8 1 .16  

16 0.56 

We see that  this  penalty decreases  rapidly  with L. 
The average  transmitted power is also of concern. J. E. 

Mazo  and J .  Salz have shown in  an unpublished memo- 
randum  that when B k  assumes one of the L levels equally 
spaced on [- 1,1], the average  output power for GPR is 
bounded bv 

- _ _  1 (I, + I) 1 (" + 1) I 
< P < -  - + (10) 3 L - 1  3 L - 1 ( I ;  - 1 ) 2  

where independent  equally likely data  are assumed. The 
lower bound in (IO) is just  the power in the absence of 
GPR. The upper  bound on the penalty  in  average power 
in GPR decreases  with L. 

In  the sequel, wc will concentrate  on the simple case 
of binary transmission ( L  = 2 ) .  However, the  fact  that 
these  upper  bounds on peak and  average  transmitted 
power decrease  rapidly  with  increasing I; should be  kept 
in  mind, since they suggest that GPR becomes more 
attractive  as L increases in either  a  peak  or  average power 
limited  environment. Of course, it should also he  kept  in 

m > some M ,  the remaining fm are integers, and a = - 1. There 
It is readily shown that GPR reduces to  PR when fm = 0 for 

is then no  peak power penalty a t  the  transmitter. 
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mind that implementation difficulties in resolving the 
multilevel received levels compound as L increases. 

111. GPR  FOR  AUTOREGRESSIVE 
EQUALIZED  CHANNELS 

Let F ( Z )  be of the autoregressive  form 

1 
F ( 2 )  = ~ , & = l  

diZi 
N 

i=o 

1 - - , 1 ei I < 1. (11) 
N 

II (1 - eiZ) 
i=l 

The { e < )  will in general be complex numbers which occur 
in  conjugate  pairs. Before considering GPR for this re- 
sponse,  first consider the  non-GPR prefiltering  method 
of Fig. 1 (e). Since F- l (Z )  is  simply a polynomial  in 2, 

N 

2 k  = diBk-i. (12) 
i=O 

This simplified implementation does not involve  storing 
analog  samples, but  rather only N - 1 past  data digits. 
In  addition, we ,note  that if the  data  are  binary, for in- 
stance, x k  can  only  assume  one of 2N+1 values,  and  the peak 
transmitted power is strictly  bounded  in well-defined 
fashion. 

In order to implement the  GPR for this channel we 
cannot simply  reduce (12) modulo p, since the receiver's 
intersymbol  interference is determined  by  the  past pre- 
coded data (which was itself reduced  modulo p)  and  the 

1- fact  that  the { di}  may  not  be integers.  However, we will 
now show that  the  transmitter  can keep track of the 
intersymbol  interference at   the receiver  without  storing 
the  past precoded  samples  explicitly. 

c 

Assume that  the received sample rl: is the  standard 
GPR level of (7) 

for p = 4, a = 0, 

sample  is 5 k .  Then 

R ( Z )  = F ( Z ) X ( Z )  (17) 

= B ( Z )  + PL(Z).  
Wl=l 

(13) ' the modulo p operations  in  transmitter  and receiver are 
in obvious notation.  Taking  the inverse z transform, not .- necessarxsince the samples of (12) are automatically 

L 

N less than p/2.  In  particular, .(17) is  always  satisfied  for 
X k  = Bk -k DL!+ -k di(Bk-i + PLk-i). (14) ,E = '. 

i = l  

IEEE TRANSACTIONS ON COMMUNICATIONS, NOVEMBER 1975 

digits (Bk-1, * . * ,Bk-N) and N past values Of Lk, (Lk-1,- * * ,  

Lk-N). It then  determines Lk and  the precoded data 
sample xk by  the  standard modulo p operation using its 
knowledge of the ( di} . 

Implementation becomes especially easy  in the binary 
case when the coefficients ( d i )  are chosen judiciously. 
Let  there  be integers L, li such that 

li d .  = - O < i < N ,  l o = L  (15) 
l L '  

(that is, let ( d i }  be a set of rational  numbers  with com- 
mon  denominator L ) .  Then (14) becomes 

l N  
L i=o 

zl: = - li(Bk-i -k PLk-i). (16) 

All the factors  in (16),  with  the exception of ( l / L ) ,  are 
integers as long as p is an integer.4 The  transmitter im- 
plementation  is  then reduced to  integer  arithmetic,  and 
a modulo DL operation  (which is simple  when /3 is an 
integer).  The  transmitter  must  then  generate one of BL 
equaily  spaced levels, which is easily accomplished with 
a  uniform D/A converter.  When L is  a power of 2 ,  the 
implementation is particularly  simple: if the  transmitter 
is implemented with  binary  arithmetic,  and  the  proper 
word length  is chosen for the representation of the results 
of arithmetic operations, the modulo  operation  is  implicitly 
and  automatically performed  by any overflow. The genera- 
tion of a number of equally  spaced  analog  levels  which 
is a power of 2 is aiso  particularly  convenient. 

It is  critical to  the implementation of both  transmitter 
and receiver that Lk be  an integer which is  strictly.bounded. 
It i s  apparent  that  the sequence of precoded data samples 
will be  identical for our scheme and  the one  described in 
Section I1 (the precoded  samples are unique) so that 
the bound on r k  (and hence LA) of (9) still  applies. Thus, 
we can  assert that Lk is  bounded  as  long  as ( fm) is abso- 
lutely  summable, which will always be  the case  for the 
P (2) of ( 11) (since there  are no poles on the  unit circle). 

A .  Accommodation of Transmission Zeros 

modulo p basis. The  transmitter  must  store N past  data) 

3 We assume that 01 = 0 in  the  sequel. 
11-A, (16) can be  placed  over a common denominator  which is L 

Similarly  when f l  is rational, as in  the  multilevel caSe of Section 

times  the  denominator of 8. 
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commonly a t  dc) or i t  is desired to  transmit  within  the 
Nyquist  band  without a discontinuity  in  the frequency 
spectrum at  the  Nyquist  rate. 

Transmission zeros can be provided  in  the  present 
context  with  conventional  techniques  such  as  bipolar 
signaling or adding  a decision-feedback  loop into  the 
receiver. However, we  will concentrate  here  in  incorporat- 
ing PR into  our scheme. Let  the equalized  response have 
the form 

where gi  and li are  integers  and lo = L ,  yo = 1. Then 

S N  

L i-0 i=l 

nf 

2 k  = - Z i ( B k - i  + PLs-i) - Q i X k - i  (19) 

and  as before L k  can  be  chosen to satisfy (6) .  However, 
we claim 'that when /3 is an  integer, zk assumes the  form 

(20) 

with  integer m k .  To see this  substitute (20) in  (19)  to  get 
N xr 

m k  = l i ( B k - i  + PLs-i)  - qim.k-i ( 2 s )  
i = O  i=l 

where all quantities  are  integers.  The  transmitter  must 
now store  the  quantities ( B k P i r  L k - - i ) ,  1 I i 5 N and 
r n k . 4 ,  1 5 i 5 M .  

IV.  CHOICE  OF  THE  EQUALIZED  CHANNEL 

When an overall  response of the  form of (IS) is chosen, 
the channel  output  must  be equalized to achieve that 
sampled response. It is readily  shown by  the  standard 
variational  argument [17] that  the minimum noise en- 
hancement is achieved by  the matched-filter/transversal- 
filter of Fig. 3, where 

Z k h ( t  - kT) + n(t)  ( 2 2 )  
k 

is the receiver input,  and n( t )  is white  Gaussian noise 
with double-sided spectral  density No12. Further, we 
define 

R[exp(jwT)] = 

Rk = C m h ( t ) h ( t  - k T )  dt  (25) 
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Fig. 3. Optimum equalizer for obtaining response F(Z) .  

matched filter output is No/2R (2) , the noise spectrum a,t 
the decision threshold  input is NoF (2) F ( E 1 )  /,2R (2). , 
and hence the noise variance at  the threshold  input is 

where  contour  integration is around  the  unit circle. The 
equalized  response F ( 2 )  should be chosen t o  minimize 
(X). 

If the  solution is not  constrained to  be  autoregressive, 
( 2 6 )  is minimized by  the choice 

F ( Z )  = C ( Z ) / C ( O )  (27) 

where 

R ( 2 )  = C(Z)C(Z-') (28 )  

C(2)  # 0, I 2 I I 1 

is the  unique causal  minimum  phase  factorization of 
R (2) .  The equalized  response is then  that of t4e  optimum ' L - 
decision-feedback  equalizer, for which  a \'closed  form'/ 
expression for uz is available [14],  [15]. 

be  autoregressive.  Otherwise,  an  analytic  solution of the 
minimization of (26) for autoregressive F ( 2 )  with 
F ( 0 )  = 1 does not  appear possible, and  numerical  solution 
is necessary. 

A  frequent criticism of transmitter precoding  schemes 
is that  there is no possibility of adapting  the  transmitter 
to a  time-varying  channel  without  a  separate  feedback 
channel.  However,  this criticism is not justified when, as 
on coaxial cable channels,  the channel variations  are  small 
enough that a single equalized F (2) will give  a substantial 
noise advantage over the  entire ensemble of channels. In  
that case, the receiver equalizer can  be  made  adaptive 
in the sense that  i t  tries  to  achieve  the equalized  response 
F ( 2 )  assumed by  the  transmitter.  In  this way, the  tech- 
nique  can  be  applied to  advantage  to some  time-varying 
channels. 

-- 
.- ~ ~- 

When C( 2)  is  autoregressive, F(2) will automatically ' 1 .  
I I _  

V. DETERMINATION OF RANGE OF 
RECEIVED  LEVELS 

The  determination of the range of L k  has  important 
i  plications to r ceiver complexity,  gain stabiliz&ion, and 

*?&'@&$%%e can  assert that 1 Lk 1 5 L,,,, then 
__ .-. .~ 

the  potential  number of received levels is (21J,,, + 1) 
times  the  number of data levels. In  this section we  will 
describe an efficient algorithm  which  has  been  programmed 
on the  computer  and which  determines the range of L k  

as can  be  found  in C1.51. The noise spectrum at  the sampled for a  given  equalized  channel. The  method  as we  will 
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describe it is applicable to  the  pure autoregressive case 
only, but  it  can  be generalized in  straightforward  fashion 
to  the transmission zero case of (18). 

It was established by (9) that  the  raage of received 
levels is finite.  However, this  bound is .extremely weak, 
as  the following example will illustrate.  Let F ( 2 )  = 
( 1  - AZ)-l, in which case 

~k = Bk - ABk--1, 

the modulo  operation is not required as long as I A 1 < 1, 
and 

/ % I  I 1 + A  

for A > 0. By  the method of (9) , we have 

However, we know that  in  this case rk = f 1, and  the 
bound of (29) becomes progressively weaker as A -+ 1. 

Determining the  actual  range of L k  is ‘quite  straight- 
forward, a t  least  in principle. Define the state of the system 
at time k as 

S k  = (Lk-i,Bk-i, 1 5 i I N )  . (30) 

Then, based  on (6) and (13),  the new state S k + l  is a well 
defined function of S k  and Bk, 

Sk+l = f ( B k , S k ) .  (31) 

We  can  divide the  states  into  mutually exclusive groups 
corresponding to each possible (Bk-1, * - ,BL-N), as illus- 
trated for the  binary case with N = 2 by  the four boxes in 
Fig. 4 (a) .  When the state is updated,  depending on which 
of the  two  values of Bk occurs, a state  in one of the two 
new boxes will result. The movement of states between 
boxes as a  function of Bk is shown  in  Fig. 4 (a).   The motion 
of the system is also determined  by  the  initial  condition, 
which we specify  as 

Bk = L k  = 0, IC < 0. ( 3 2 )  

Based  on ( 3 2 ) ,  the  state SN is determined solely by  the 
data sequence ( B N - - l ,  - - ,Bo) and  not  by  any  past  history 
of the  system;  that is, there is only one state SN for  each 
of the boxes in  Fig. 4 (a) .  These  initial  states  are shown 
in Fig. 4(b),   and marked  with  a  LLzero’’ to indicate that 
they  are  initial conditions. 

Now, as  illustrated  in Fig. 4 (c) , for  each  initial  “zero” 
state  there  are  two new states S N + ~  generated  in boxes 
determined by Fig. 4 (a) .  One or both of these new states 
may,  in  fact, be an  already existing state,  as  illustrated 
by  the transition  from the “zero” state  in  the lower right 
box to  the “zero” state  in  the lower left box corresponding 
to  Bt = 1. All the  truly new states  are  marked  by a  “one” 
to indicate the first  iteration.  At the next  iteration, illus- 
trated  in’ Fig. 4 (d) ,  transitions  from  all the  states  marked 
“one” are determined. In  this case, all the transitions  end 
in  already existing states.  This  must  happen  eventually 
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(a) 
B, = I  0, = - I  I-----, r----1 

r 
I 

-1  
I 

(dl 
Fig. 4. Determining number of received levels.  (a)  Movement of 

states when Bk = 1 or B k  = -1. (b)  Initial  states.  (c) Generation 
of new states.  (d)  Termination of states. 

(although usually not  at  the second iteration!), since 
the  total  number of states  is finite, and we cannot con- 
tinue to generate new states indefinitely. The result is a 
complete and  minimal  set of states for the  system,  and 
the  largest L k  can  be  determined  accordingly. 

The extension of this  Markov chain  approach to  the 
system  with  transmission zeros in (21) is possible, but 
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only at .the expense of a 'far greater  number of states. 
Since L k  is chosen  such that 

2Rod 
10 log ~ 

N". (37) 

where u2 is given by  (26). When N = 0 (the zero forcing 
equalizer case),  (37) is 30.3 dB for y = 60 dB.  The mini- 
mum  value of (37) which is attainable  by  GPR is the @'- 

when y = 60 dB [ll]. Thus,  there is a  potential 10 dB 
performance  advantage to  be  gained by  GPR. 

Thus  the  number of possible sequences (mkPL, - - - ,mkPM) When the A of (36) was  chosen optimally, i t  was  found 
is finite,  and  the  state of (30) can  be  augmented  to  that  the  resulting L,,,.* was excessive. Therefore, i t  is 

necessary to  sacrifice some noise advantage  to  limit  the 

The  number of states  remains  finite  and  (31)  remains shown in  Fig. 5, where the  range of received levels was 
valid, SO that  the remainder of the analysis  proceeds  determined by  programming  the  algorithm of Section 
without  major modification. V. The regions of fixed L,,., are  delimited by  dashed lines. 

It should also be  straightforward,  although we have It is also interesting  to  compare GPR with Class I 
not  attempted  to  do so, to  determine  exactly  the  peak P R  [5] which  has  been  shown to  have  a noise advantage5 
and  average  transmitted power for our  autoregressive 7 on coaxial cable [SI, [SI. The  attractive  feature of Class 

- - - _ _  

for /3 = 4, it follows that value for the  decisionrKdback _equalizer, and is 
19.9 dB j z s j  

-- --- c. 
-2L + 1 5 mk 5 2L. 

" = (Lk--i,Bk--i,l 5 5 N7mk-i,1 5 5 M ,  ' (33) number of received levels. The numerical  results are 

GPR case by exploiting the  finite  state  structure  just I PR is that  it  has  no  peak or average  transmitted power-. 1 described. penalty. As s h o w n x g .  5 ,  Class I PR has  a 5 dB ad- 
vantage over zero forcing equalization  (we  found  Class 

~ _I_L 

i 

VI. APPLICATION  TO  THE fl CHANNEL 

In  this section we  will determine  the  reduction  in noise 
enhancement  which  can  be  obtained  on the fl channel 
characteristic of coaxial cables and some  wire  pairs. The 
frequency  response is given  by [ll] 

I H ( w )  l 2  = 2rK2Ro exp ( - 2 K ~ l ' ~ )  (34) 

where Ro is the energy  in an isolated pulse, K is a  constant 
proportional to  the line  length,  and  transmitted impulses 

___- are  assumed. - ~ If we define y to be the loss of the  line a t  
the half-baud rate  in decibels, then 

A .  Optimum Pole Placement 

The  minimization of (26) was  accomplished for an 
autoregressive F ( 2 )  using an  iterative  optimization 
program.  The  program was  initially  run for y = 60 and 
with one to four  complex poles constrained to  lie outside 
the  unit  disk;  the  result  in  each case was  a set of real and 
equal poles. While this  may be  a local rather  than global 
pinimum,  the performance figures to follow indicate 
that  it  is a good solution  in the sense that  the maximum 
attainable  improvement is approached  rapidly.  The 
resulting  equalized  channel is given by 

F ( 2 )  = (1 - AZ)-N (36) 

where A-' is  the pole location, 

7 - 

A matched filter output  has noise variance No/2Ro (when 
the signal is normalized to  unit  height), so that  the noise 
penalty  relative to  the  matched filter bound for an isolated 
pulse is given by 

I 

I1 to  have  a  virtually  identical  advantage). 
I _  

The  results of Fig. 5 are  summarized below. 
1) A  substantial ( 5  dB)  advantage is obtained  by 

GPR  without  any increase in the  number of received 
levels (L,,., = 0). However,  this  same  advantage  can 
be  obtained  with  Class I PR,  with no transmitted power 
penalty,  and  three received kevels for binary  transmission. 

4 or L,,, 2 1, the  advantage of GPR increases 
with  the  number of poles ( N ) ,  which is related to  the 
complexity of the  transmitter. v3, I L . 1 ,  . ._ I , -  ;- !- 

3) About 9 of the  potential 10 dB  advantage.can  be 
achieved  with L,,, = 1 or 2 .  However, if GPR is penal- 
ized for its  maximum possible increase in  peak  transmitted 
power, i t  has an  advantage over  Class I P R  only for 
multilevel (but  not  binary) 

Finally,  the  reader is cautioned that  those  results  apply 
only to  coaxial cable with y = 60 dB.  In  particular, on 
channels  with  a  more __ .- modest roll-off with f r e q u e n c y , j y , l ,  
Class I PR often  incurs  a  noise  psnalty . -.._ (not  advantage). \ 

. 

N-2TF . . . - .~ ----- - .--- - -. - - .. . . .. 

VII. CONCLUSIONS 
2 

We  have described  a  modification of GPR which  is 
valid for an overall equalized  channel with  rational spec- 
trum  and which  eliminates the necessity of storing  analog 
samples  in  the  transmitter.  This  technique  can come  close 
to  achieving  the  improvement  in noise penalty of the 
decision-feedback equalizer without  the  error  propagation 
problem of that receiver. The  inevitable price that is paid 
for this benefit is 1) a  potential  doubling of the peak 
transmitted  voltage  in -the binary case and 2 )  (usually) 
an increase in the number of received levels. The  tech- 
nique  can  be  applied to channels  with  a  moderate  amount 

easily evaluated  by  letting F(2) = 1 + 2 in (26). 
This noise advantage for optimum receiver equalization  is 

Harashima  and  Miyakawa [16] have previously shown that on 

with GPR. 
coaxial cable a large number of transmitting levels is optimum 
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Fig. 5. Noise penalty versus pole position, N equal  real poles, y = 60 dB. 
K. -= 

of time  variation  by  making  the receiver  equalization ceiving filters in  digital  PAM-systems with a Viterbi detector,” Telecommunication  Theory,  Royal Inst. Technol.,  Stockholm, 
adaptive. Sweden, Tech. Rep. 89, pp. 20-21,  37, Oct. 1974.,, 

this case GPR can yield a  substantial  advantage  over [11] D. G. Messerschmitt, “A geometric theory of intersymbol 
zero-forcing equalization  exclusively at  the receiver, but interferencepart  11: Performance of the maximum likelihood 

that  if GPR is penalized for the  upper  bound on its in- [12] D. L. Duttweiler, J. E. Mazo, and D. G. Messerschmitt,  “An 
detector,” Bell Syst. Tech. J., vol. 52, pp. 1521-1539, Nov. 1973. 

crease in  peak  transnlitted  power,  it is more  attractive equalization,,, IEEE Trans. InfornL. TTheory, vel. IT-z0, pp, upper  bound on the  error  probability in decision-feedback 

than Class I PR only  for  multilevel (but  not  binary) 490-497, July 1974. 
data.  Decision-feedback  equalization  remains an attrac- [13] D. G. Messerschmitt, “Design of a finite  impulse response for 

the Viterbi  algorithm and decision-feedback equalizer,” pre- 
tive  alternative, since it incurs  no  increase  in transmitted sented at  the  Int. Conf. Commun., Minnemolis.  Minn..  June 

Application to  a coaxial cable  channel  reveals that  in [lo] L. A. McColl, ‘‘Signaling method  and  apparatus, u. s. Patent 
2 056  284, Oct. 1936. 

power or number of received decision levels, and for 
random  data  its error propagation can be controlled by 
limiting the number of feedback  taps [13]. 
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