
6 2 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 4 / $ 2 0 . 0 0 © 2 0 0 4 I E E E

Not all marketplace issues (for example, sales
channels) strongly affect software project
planning and decision-making, but the deci-
sions we discuss here do. Rather than discuss
contracted software development for specific
customers or open-source software efforts,
we’ll emphasize the uncertainties and strategic
issues that suppliers encounter in selling or li-
censing software in the general marketplace.3,4

We categorize these issues by the standard
ROI measures of revenue, cost, and risk.

Revenue
Revenue is affected by many factors, in-

cluding pricing strategies and unit sales. All
these factors strongly depend on design deci-
sions affecting customer-perceived value and
customer-incurred costs, as well as the status
of competition. Factors deserving careful con-
sideration include the customer’s costs of
switching to competitors, the value of com-
patibility with complementary products, and
any value associated with more widespread
adoption.

Companies can increase revenue by charg-
ing higher unit-license or subscription fees, by
increasing the number of units licensed, or
both. Total revenue is proportional to the
product of market share and market size, and
many revenue maximization strategies in-
crease one at the expense of the other.

focus
Marketplace Issues
in Software Planning
and Design

S
oftware management and project decisions must consider many
factors.1,2 The most recognized return-on-investment drivers in-
clude the value to users; the cost of development, maintenance,
upgrades, and customer support; and the risks of project failure,

budget overrun, and revenue shortfall. This article focuses on other ROI is-
sues related to positioning software in the marketplace, which serves as an
intermediary between a software supplier organization and its customers.

return on investment

Strategic decisions in planning and designing commercial software
often arise from marketplace issues related to the ROI measures
of revenue, cost, and risk. These issues should influence ongoing
project planning and design decisions and should not be left to
business managers alone.

David G. Messerschmitt, University of California, Berkeley

Clemens Szyperski, Microsoft Research

Increasing market share requires taking cus-
tomers away from competitors or attracting a
disproportionate share of new sales; the latter
is especially effective in rapidly growing mar-
kets. Economic theory suggests that, assuming
equally effective marketing and sales efforts,
customers gravitate toward the products with
the largest consumer surplus—the difference
between value (willingness to pay) and total
cost of ownership, including recurring opera-
tional and acquisition costs. Software design
should therefore focus on both increasing value
and reducing the customer’s total cost. In all
cases, the focus should be on the paying cus-
tomer (often an organization), not just the soft-
ware’s users. Although usability is obviously a
significant source of value, the customer often
has a larger agenda. For example, the customer
might want to increase productivity, which can
reduce the number of users. Moreover, the cus-
tomer has many costs other than software ac-
quisition—for example, provisioning, deploy-
ment (including process changes and training),
and administration and management of the
software installation. Systematically reducing
recurring operational costs and the costs of
business process changes and training offers
considerable leverage because these costs often
dwarf the cost of software acquisition. Reduc-
ing customer costs allows increased prices
(more revenue) and leads to increased surplus
(competitive advantage and more unit sales).

Increasing the overall market size often re-
quires cooperation with competitors,5 yielding
an explicit compact to reduce market share for
each competitor while increasing aggregate
revenues. Here, we discuss each of these
strategies, emphasizing the important issues in
designing and developing software.

Increasing value
Increasing value and satisfaction for cus-

tomers is critical for remaining competitive but
often isn’t sufficient to take market share away
from an established competitor. The reason is
that software has high first-copy costs and low
replication and distribution costs, creating sub-
stantial economies of scale (unit cost decreasing
with volume), although some recurring costs
such as distribution and customer support do
increase with unit sales. Suppliers should avoid
creating direct substitutes for other vendors’
products, partly because the economies of scale
for software strongly favor the supplier with the

larger market share: Established suppliers have
higher revenue with comparable costs. Obvi-
ously, substantial differentiation from competi-
tors in many possible dimensions—features, us-
ability, provisioning, and operations costs—is
crucial.4 Conversely, there are considerable ad-
vantages to being first to market with a new
product category or a significant enhancement.
Software design should therefore focus heavily
on useful, customer-valued innovation.

Network effects. In the presence of network
effects, the total number of adopters typically
increases a software product’s value.4,6 These
effects can be positive (for example, the value
of instant messaging to each user increases
with the number of participating users) or
negative (the value of the Internet at a fixed
capacity decreases if it becomes congested due
to more users). They can also be direct (prod-
uct instances are directly dependent) or indirect
(value depends on some complementary com-
modity such as the number of programmers
facile with a given language or the available
content in an information access application).
Network effects have become more pervasive
in post-Internet software because, within a dis-
tributed system, the components often have a
direct mutual dependence. They can stifle a
new product in its infancy or enable its adop-
tion to take off explosively once it reaches a
critical mass of adopters. A virtuous cycle, in
which success feeds upon success by reinforc-
ing network effects, can increase market size—
for example, the rapid adoption encountered
by the original Napster.

A software development can account for
network effects by either expanding the base
of adopters, often at the expense of market
share or unit prices, or consciously minimizing
the dependence of value on market size.
Choosing proprietary interfaces for similar or
overlapping products might fragment the base
of adopters, whereas choosing an open inter-
face can let the product tap into an existing
network. For example, with Web services,
competitors have mutually benefited from co-
operating on a common platform for distrib-
uted applications.

A distributed application’s architecture can
strongly affect the network. For example, at-
tracting many adopters to a peer-to-peer archi-
tecture is crucial. A client-server architecture,
on the other hand, offers first adopters full

M a y / J u n e 2 0 0 4 I E E E S O F T W A R E 6 3

Software
design should
focus on both

increasing
value and

reducing the
customer’s
total cost.

value (with notable exceptions, such as a site
that tries to create a collaborative community).
For instance, Napster depended on rapid adop-
tion for its value, whereas iTunes offered essen-
tially full value to its first adopter. Capabilities
such as software downloading with automatic
installation or mobile code help overcome the
early-adopter challenges of direct network ef-
fects (witness Napster or Skype) and enable the
establishment of applications that would oth-
erwise be impossible.

Extracting value through pricing. Pricing is the
strategic business process for converting value
into the greatest revenue,4 and it drives many
design decisions. Pricing alternatives such as
negotiating a selling price directly (typical of
outsourcing firms), licensing fees for each ma-
jor upgrade, or basing ongoing subscription
fees on usage measures have direct design im-
plications.3 For example, selling software capa-
bilities as a service limits deployment platform
options, thus simplifying design and mainte-
nance. Each pricing scheme demands a different
design philosophy, and some require explicit in-
tegral monitoring and billing elements, license
servers, and so on.

In software, large first-copy costs make
unit cost loosely dependent on unit sales, so
costs offer little insight into pricing. Thus,
suppliers should try to base price not on costs
but on customer surplus, considering cus-
tomer costs as well as value. This is more prac-
tical if a product is strongly differentiated from
those of competitors, because direct competi-
tion drives unit prices toward unit marginal
costs, which are below average costs given the
economies of scale. A corollary is that it’s ad-
vantageous to drive down customer costs for
complementary products from other suppliers
by choosing cheaper options or by encourag-
ing competitive options. For example, through
design and support, an operating-system sup-
plier should encourage both a diversity of ap-
plications and competitive options for each
application. In this case, choice and lower
prices for applications both work to the OS
supplier’s advantage. The OS supplier can en-
courage applications through attention to the
application suppliers’ needs with good docu-
mentation and support.

Basing pricing on consumer surplus rather
than costs has a fundamental challenge: Will-
ingness to pay is different for different users.

To maximize revenue, value pricing implies
price discrimination (basing unit price on
something other than the marginal unit costs
incurred on a customer’s behalf). Approaches
include segmenting customers into groups and
charging different prices (for example, student
discounts) or negotiating prices directly (for
outsourced development or large site licenses).
A common approach with strong design impli-
cations is creating different product variants,
all available for sale at the same time, and let-
ting customers self-select on the basis of their
willingness to pay. To support this, the design
must explicitly allow different combinations of
feature and performance sets that are not user
configurable. For example, the lower-price stu-
dent edition of some applications doesn’t make
use of a floating-point unit, thus lowering per-
formance. Of course, designers must trade this
flexibility against long-term maintenance and
support costs, which grow with the number of
variants and perhaps even the number of com-
binations of configuration options.

Another value-pricing strategy is bundling,
or packaging different software products or
feature sets to sell as a unit. The dispersion in
value attached to the bundle is often less than
that of its constituents because different cus-
tomers place the highest value on different con-
stituents. So, there can be a higher bundled
price relative to its constituents. If the bundler’s
constituents are composable—the whole is func-
tionally greater than the sum of the parts—the
value increases further. An example of this
would be the exchange of information and its
formatting among the components of an office
suite. In anticipation of bundling, the design of
individual products—both internal and exter-
nal—should anticipate opportunities to com-
pose its constituent products.

Reducing customer costs
Reducing customer costs (other than for

software acquisition) is generally desirable. In
choosing a software vendor, customers will
consider many factors besides features and us-
ability. Some factors, such as the cost of hard-
ware maintenance contracts, are largely sepa-
rable from the software design, but most
interact strongly with the design. For example,
the design of software targeting an organiza-
tional user often presumes internal processes,
either limiting market share or causing cus-
tomers to make costly modifications to busi-

In software,
large first-copy

costs make
unit cost
loosely

dependent
on unit sales,
so costs offer
little insight
into pricing.

6 4 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

ness processes. Thus, to match variations in lo-
cal needs, it’s important to focus on processes,
process-change costs, and flexibility to meet
process differences across the customer group.
An example is the modular options provided
by enterprise-resource-planning vendors such
as SAP.

Another category of costs is switching
costs, which customers encounter in moving
from one vendor’s product to that of a com-
petitor. Switching costs are a form of lock-in
that let the original supplier charge a higher
price for upgrades, maintenance, and sup-
port.4 An example might include a customer
who must replace complementary products and
infrastructure or else incur costs in losing or
transforming data. (Of course, locking in exist-
ing customers has the unintended consequence
of discouraging new customers, who will likely
notice switching costs consciously incorporated
into the design by the supplier.) All else being
equal, a design should maximize switching
costs for customers moving to competitors and
minimize them for customers moving from
competitors. An example is providing transla-
tions from (but not toward) the data formats of
competitors’ products.

Customers are aware of lock-in; they are
concerned not only with competitive options
but also with being stranded with a supplier
who abandons maintenance and upgrade or
goes out of business. Presenting a credible
roadmap for future product evolution is help-
ful, especially when the customer perceives
considerable switching costs. Such a roadmap
should be an integral part of product planning
for marketing as well as for internal purposes.

Customers increasingly resist large mono-
lithic applications, which minimize a cus-
tomer’s integration costs and the need for sup-
port from the supplier but which also constrain
available functionality and incur greater switch-
ing costs. The alternative is modular solutions
with options for mixing and matching prod-
ucts from different suppliers, or modules from
the same supplier (the reverse of bundling).
For example, enterprise-resource-planning ap-
plications typically provide many configura-
tion options as well as the ability to choose ca-
pabilities or interoperate with other vendors’
products. A major strategic-planning issue is
thus whether or not to embrace or resist cus-
tomer-configurable modularity, open inter-
faces, and complementarity.

Increasing vendor cooperation
Encouraging complementary solutions from

other vendors increases value, although with
little differentiation from competitors who can
exploit the same complements. Two ways to
encourage complementary solutions with seri-
ous business implications are standardization
and APIs. A standardized interface can open
competition on both sides of an interface,
whereas an API encourages complementary
extensions while trying to maintain a propri-
etary position on one side. Choosing whether
to offer an API or participate in standardiza-
tion is a technical choice with serious business
ramifications.

Architecture. This phase of project planning
determines the boundaries of competition and
complementarity.7,8 This is also the stage when
most economic considerations arise.9 Because
the boundaries of firms must align with recog-
nized interfaces, these architectural boundaries
must also be consonant with the organization
of firms in the software industry. Does indus-
trial organization determine large-grained ar-
chitecture, or vice versa? Large firms tend to
define the architecture, whereas small firms
position themselves within an architectural
niche. Architectural control can be a competi-
tive advantage, so the way a supplier acquires
and retains it is an important strategic issue.

At the coarsest grain, software has a layered
architecture, as Figure 1 shows. At the top are
various applications, and at the bottom are
various technologies, each evolving fairly inde-
pendently because of homogeneous, integrative
middle layers.3 Moving down the layers, prod-
ucts become less application-specific but more
technology-dependent; strategy depends on the

M a y / J u n e 2 0 0 4 I E E E S O F T W A R E 6 5

Integrative layers

Application components and frameworks

Applications

Processing Storage Communications

Technology-specific stacks

Figure 1. Top-level
software architecture.

supplier positioning within this stack. Those
near the top and bottom can more readily dif-
ferentiate products from competitors because
of the diversity of user needs and the diversity
of technology possibilities. Homogeneous mid-
dle layers offer higher value (network effects
again), so differentiation of features or function-
ality within them is a challenge. Structurally, no
supplier provides a total solution, but composi-
tion and integration with other layers are neces-
sary to provide value to customers, and coordi-
nation is essential.

Composability is also established architec-
turally. This requires both interoperability (shar-
ing data and participating in shared protocols)
and complementarity (having functionalities
that work together). Composition can be ex-
plicitly built into the design—for example, in
integrating infrastructure layers—or can be
opportunistic at deployment (making compo-
nents capable of assembly but still designing
them independently). The latter is far more
challenging technically and organizationally
but offers considerable value.

APIs. Open APIs invite extension through
complementary products or context-specific
add-ons by the user. However, they also cede
market share in the interest of encouraging in-
novation, broader choice, and customization.
Openness refers to documentation and right of
use without explicit business arrangements or
encumbrance by intellectual-property rights.
An API creates an implicit, long-term obliga-
tion for customer support. For example, Mi-
crosoft’s VBA extensions to Office include an
effective obligation to maintain and support
that capability for the product’s life.

Standardization. Open interface standards usu-
ally arise from industry standardization or de
facto from market success followed by broad
industry acceptance. An open interface is usu-
ally two-way, creating mutual dependence and
supporting competitive options on both sides.
A third approach to composition is explicit in-
tegration of components that a supplier or in-
termediary acquires in the marketplace.

Proprietary solutions offer greater opportu-
nity for innovation and differentiation from
competitors but can cause customer concern
about both lock-in and fewer complementari-
ties. Adherence to standards makes market
success more predictable, particularly in en-

suring interoperability with complements, and
is popular with customers. However, such ad-
herence gives the customer an opportunity to
mix and match solutions from different sup-
pliers, thus increasing competitive pressures.
Standardization processes have become an in-
tegral industry-coordination aspect of soft-
ware engineering.

Cost
A customer’s costs indirectly affect a sup-

plier’s revenue through unit sales or feasible
pricing, but the supplier’s costs directly reduce
margins. These costs include first-copy devel-
opment and testing, distribution, customer
support, and recurring development (mainte-
nance and upgrade), all strongly impacted by
the software’s design. Marketplace factors—
such as the chosen distribution platforms and
methods, reuse strategies, and make-or-buy
decisions—strongly influence these costs as
well. There are trade-offs between supplier
and customer costs; for example, increasing
expenditures on support and maintenance can
reduce the customer’s internal administrative
or user-support costs. The effect on margins
depends on how reduced customer costs trans-
form to higher revenue, either through higher
unit prices or increased unit sales. There are
also opportunities to minimize supplier costs
at the organizational (as opposed to project)
level through resource sharing, software reuse,
and buy-or-make decisions. Three important
market-related cost factors are platform and
distribution, recurring costs, and reuse and
multiple use.

Platform and distribution
Any software distribution defines the scope

of potential customers by targeting an infra-
structure platform (a set of capabilities assumed
to be available and static) and complementary
software assumed available.3 Porting and main-
taining software for more platforms can in-
crease revenues but can also increase develop-
ment, maintenance, testing, and support costs.
Portability through language and platform
choice can mitigate some costs. However, it also
demands more of each platform (assuming a
built-in virtual machine) and homogenizes the
infrastructure, making it more difficult to
promulgate new infrastructure capabilities. Re-
moving dependencies on assumed complemen-
tary software increases reach, but correctly in-

6 6 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

An open
interface is

usually
two-way,

creating mutual
dependence

and supporting
competitive
options on
both sides.

terfacing this software could also increase de-
velopment and recurring costs.

An application-as-service business model
eliminates the customer’s platform dependency.
The model reduces the supplier’s development
costs by reducing or eliminating the number of
heterogeneous platforms that must be sup-
ported. In addition, the model reduces the cus-
tomer’s costs by shifting user support from soft-
ware supplier to service provider. However, it
also introduces new billing and payment chal-
lenges and associated development costs.

Software distribution can occur in various
inexpensive ways, including removable media
with a physical distribution system, network
downloads, and mobile code. These differ in
terms of the burden placed on the user or sup-
port staff, timeliness, and supplier and cus-
tomer costs. An interesting trend is to release
source code, gaining possible help from users
in identifying and fixing defects and making it
easier for others, including customers, to de-
velop complementary products.

Recurring costs
Software developments incur major sup-

plier recurring costs of maintenance, upgrade,
and customer support as long as the software
is in use. Withdrawing support is a difficult
step that needs lead time and coupling to al-
ternative options for customers. Therefore,
maintenance and support are long-term finan-
cial burdens accepted at the time of first sale,
and should be included in all cost and risk as-
sessments. Measures such as automated up-
grade and defect-reporting mechanisms, aimed
at reducing recurring costs at the early require-
ments and architectural phases, can generate
substantial long-term cost savings.

The upgrade phase of a product life cycle be-
gins with an existing code base. One goal is to
introduce new features—especially because at-
tracting incremental revenues is a high priority,
and the most serious competition to a new ver-
sion comes from older versions, assuming up-
grading is optional. Reusing the existing code
base can interfere with innovation or at least
make it more costly. Upgrades must achieve ac-
ceptable backwards compatibility (for example,
accepting old and new file formats), lest switch-
ing to competing products become as attractive
to customers as adopting an upgrade. Thus, up-
grades give rise to some of the most difficult
cost-revenue design dilemmas.

Reuse and multiple use
An organizational approach to reducing

development costs is code reuse10,11 (using or
modifying code written for another project).
Reuse is not as commonplace as it seems,
because creating easily reused code requires
considerable added effort, contradicting the
on-time, on-budget incentives of project man-
agement. The forking inherent in code modifi-
cation in the next project also compromises
potential maintenance and upgrade savings,
and it increases the challenges of closing secu-
rity vulnerabilities discovered later.

Fortunately, a supplier can minimize coding
in other ways. One approach is to expand in-
frastructure to capture the needs of multiple
applications (for example, universal authenti-
cation). Another approach is to buy or license
modules or components, creating a software
supply chain.12 Components are multiple-use
modules that a supplier can configure and as-
semble into many contexts without inherent
modifications, thus enabling

� Shared resources and development costs
spread over more uses

� Improved quality through more in-place
experience

� Incentives to reduce complexity and us-
ability by meeting the needs of multiple
applications

Web services compose dynamically linked
components exported as network services,
combining the concepts of multiuse compo-
nents and application-as-service models. In-
cremental upgrade of individual components
allows a graceful evolution of functionality.
However, converging on component granular-
ities that are appropriate for various domains,
from tiny to large subsystems, is a challenge.

Risk
Risk constitutes unplanned deviations of

revenue and cost from objectives. Minimizing
uncertainties in revenue (especially downside
uncertainty) and costs (especially upside) is
important. This is because investors in a soft-
ware firm demand a higher return to account
for uncertainty of earnings; that is, they dis-
count valuation in the face of risk. Risk can be
desirable if it comes with appropriate com-
pensating rewards, but companies must avoid
or mitigate risks that cause deviation of results

M a y / J u n e 2 0 0 4 I E E E S O F T W A R E 6 7

Adherence
to standards

makes market
success more
predictable,
particularly
in ensuring

interoperability.

without sufficient increases in margins.
Risk management is necessary at the proj-

ect, organizational, and industry levels. One
inevitable uncertainty is unit sales, making
gross margin (revenue minus cost) difficult to
plan. An example of a risk incurred deliber-
ately in the interest of increased margin is an
investment in innovative features with the goal
of increased sales. However, a supplier should
scrupulously minimize risks that aren’t associ-
ated with greater margins, such as ballooning
development costs, inadvertent encourage-
ment of competition, security holes, privacy
violations, and piracy. Such risks can dampen
sales or increase recurring costs. Risks that
aren’t manageable at the project level or that
are deliberately incurred can often be miti-
gated at an organizational level (for example,
through diversification of investments) or at
the industry level (for example, through in-
dustry cooperation on standardization). Cus-
tomers incur risk as well, and software design
should minimize uncertainties in either cus-
tomer value or costs unless compensatory re-
wards accrue to that customer.

At the project level
At the project level, risk arises from unan-

ticipated development costs (for example,
backtracking and reworking) and uncertainties
in revenues (for example, lower-than-expected
unit sales).

Real options. Without code reuse, the irre-
versible nature of most investments in soft-
ware development increases risk. Iterative
software processes, such as the spiral model,13

are fundamentally risk management tech-
niques because they stage investments, reeval-
uating their efficacy and dynamically adjusting
tactics. Net present value analysis, a simplistic
methodology for estimating ROI, accounts for
uncertainties by calculating average return.
Real options is a technical methodology from
financial economics that provides a theoretical
basis for staged irreversible investments,14,15

improving on NPV by explicitly considering
uncertainties at each stage and allowing defer-
ral of staged investment decisions. The real-
options methodology defers investment deci-
sions as much as possible, systematically
accumulating information to improve the
quality of those decisions, and quantifies the
resulting benefits.

Competition. Unanticipated competition is a
major market risk. Because of the large, fixed
first-copy costs in software development, a sup-
plier with a larger market share has an inherent
advantage—even with higher costs. Therefore,
it’s best to avoid direct competition with existing
products unless clear advantages in value, as op-
posed to cost, are evident.4 The cost advantages
of a large market share combined with customer
lock-in strategies benefit suppliers that complete
development and establish market share earlier.
Even in the absence of direct competition, de-
velopments should carefully weigh both techni-
cal and market windows of opportunity, avoid-
ing being too early or too late.

Exogenous risk factors. It’s possible to antici-
pate and effectively counter many exogenous
risk factors that are beyond a supplier’s control.
Examples are security vulnerabilities and pri-
vacy invasions.16 Cracker attacks can increase
maintenance costs for suppliers and operational
costs for customers, and customers’ security
and privacy concerns can stifle demand.

Another risk is that other suppliers could
appropriate ideas, steal code, or claim in-
fringement on their own inventions. Appropri-
ate use of intellectual-property rights can min-
imize these risks.17 For an invention (roughly
a novel and useful idea) incorporated into a
software product, the basic options are to
make it public (in free or copyrighted form),
maintain it as a trade secret, or patent it.
Trade secret laws can serve to punish malfea-
sance through theft of technology or through
employees changing jobs and carrying propri-
etary information to competitors. Strong
measures to avoid inadvertent public disclo-
sure of secrets can strengthen these rights.

Trade secrets and copyrights cannot pre-
vent others from developing the same or simi-
lar ideas independently. In software, exploit-
ing an idea often means revealing at least the
possibilities, and reverse engineering is gener-
ally legal. Patents can prevent appropriation
of inventions by other suppliers, even should
they develop the idea independently or re-
verse-engineer it, but patents also require prior
public disclosure of the invention. Patents are
effective only to the extent that ideas are fun-
damental and not easily circumvented. A port-
folio of patents can also defensively discour-
age or thwart infringement claims by others
by enabling counterclaims of infringement.

Patents are
effective

only to the
extent that
ideas are

fundamental
and not easily
circumvented.

6 8 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Projects should therefore systematically iden-
tify and examine ideas for novelty and useful-
ness, identifying those that reflect prior art or
are owned by others, and act accordingly.

Piracy (massive illicit replication of soft-
ware distributions) can be a substantial risk,
particularly for consumer software. It helps
that software gradually loses its potency over
time—this should be consciously maximized
in the maintenance and upgrade phases. Tech-
nical choices can also have a major impact.
For example, software can be self-aware and
can contact license servers as it executes, and
network upgrades can compare machine sig-
natures against registration records. The older
approach of copy protection has proven self-
defeating—mainly owing to invasiveness, inef-
fectiveness, and customer resistance.18

At the organizational level
Organizations have risk management tools

that are unavailable at the project level. These
include diversification and reuse across proj-
ects (mitigating the irreversibility of invest-
ments). For the former, a portfolio of products
achieves more consistent margins, provided
the constituent risks associated with that port-
folio aren’t strongly correlated.19 A typical or-
ganization uses shared resources in managing
multiple projects at various phases of comple-
tion and faces trade-offs between organiza-
tional and project efficiency. The opportunity
to allocate available resources among avail-
able investment opportunities is another im-
portant organizational risk management issue.

At the industry level
Industry cooperation, provided it doesn’t

violate antitrust laws, is feasible through in-
dustry standardization or coordination of
complementary investments. Such cooperation
can reduce risk by focusing suppliers on com-

M a y / J u n e 2 0 0 4 I E E E S O F T W A R E 6 9

Pricing of Complementary Goods and Network Effects, Nicholas Economides and V. Brian
Viard, tech. report 1812, Graduate School of Business, Stanford Univ., 2003; http://gobi.
stanford.edu/researchpapers/detail1.asp?Document_ID=1951.

Economides and Viard construct an economic model to explain the observed discrepancy be-
tween pricing strategies for Microsoft’s Windows and Office products, in which Office sells at a
significantly higher price than Windows despite comparable market shares. Starting from the cat-
egorization of products into base and complementary products, the model explains how the inter-
play of base and complement create positive feedback effects. The model also provides insight
into the differences in incentives, depending on whether complementary products are owned by
the same or different suppliers.

“Software Economics: A Roadmap,” Barry W. Boehm and Kevin J. Sullivan, Proc. Conf. The
Future of Software Engineering, ACM Press, 2000; http://portal.acm.org/citation.cfm?id=
336584&coll=Portal&dl=ACM&CFID=19273781&CFTOKEN=53125957.

Organized as an adjunct event to the 2000 edition of the International Conference on Software
Engineering, The Future of Software Engineering gathered and presented topical roadmaps on
many subdisciplines of software engineering. In that framework, Boehm and Sullivan helped scope
research directions and open issues in software economics. As a starting point, they criticized the
traditional overemphasis on software’s structural and correctness properties while underestimating
the importance of capture and management of requirements and risks. Traditionally, software proj-
ect management focuses on costs but not enough on realized values, which is measurable only
based on how well that project identifies and meets requirements. Looking forward, the authors sug-
gest moving to a value-oriented discipline using the real-options methodology.

Software Ecosystem: Understanding an Indispensable Technology and Industry, David G.
Messerschmitt and Clemens Szyperski, MIT Press, 2003.

The material covered in this book is closely related to our article. Of course, the book goes
deeper and provides many pointers to the literature.

Further Reading

posable and complementary solutions, and by
reducing customer confusion and resistance.

One major industry risk is the chicken-and-
egg conundrum of applications and infrastruc-
ture.3 Upgrading and widely deploying infra-
structure capabilities offers little value without
applications requiring those capabilities. Ap-
plications dependent on advanced infrastruc-
ture must cope with a smaller installed base
and greater costs borne by customers upgrad-
ing their infrastructure. Coping strategies in-
clude infrastructure and applications suppliers
coordinating investments or an infrastructure
supplier seeding the market for applications. A
recent example is the wide industry coopera-
tion in the standardization and deployment of
Web services.

B ecause revenue, cost, and risk interact
and have trade-offs, high-quality de-
cision-making depends on the quanti-

tative modeling of costs, benefits, and uncer-
tainties that considers these trade-offs. Better
communication between software engineers,
project managers, and business managers,
through greater familiarity with one another’s
domains and a common vocabulary, will en-
hance overall project success.

References
1. B. Boehm, Software Engineering Economics, Prentice

Hall, 1981.
2. R. Pressman, Software Engineering: A Practitioner’s

Approach, McGraw-Hill, 2000.
3. D. Messerschmitt and C. Szyperski, Software Ecosys-

tem: Understanding an Indispensable Technology and
Industry, MIT Press, 2003.

4. C. Shapiro and H. Varian, Information Rules: A Strate-
gic Guide to the Network Economy, Harvard Business
Press, 1998.

5. A. Brandenburger and B. Nalebuff, Co-Opetition: A
Revolution Mindset That Combines Competition and
Cooperation, Doubleday, 1997.

6. O. Shy, The Economics of Network Industries, Cam-
bridge Univ. Press, 2001.

7. L. Bass, P. Clements, and R. Kazman, Software Archi-
tecture in Practice, Addison-Wesley, 1998.

8. P. Clements, R. Kazman, and K. Klein, Evaluating Soft-
ware Architectures: Methods and Case Studies, Addi-
son-Wesley, 2002.

9. R.J. Kazman, J. Asundi, and M. Klein, “Quantifying
the Costs and Benefits of Architectural Decisions,”
Proc. 23rd Int’l Conf. Software Eng. (ICSE 01), IEEE
CS Press, 2001, pp. 297–306.

10. H. Mili et al., Reuse-Based Software Engineering: Tech-
niques, Organizations, and Controls, John Wiley &
Sons, 2001.

11. I. Jacobson, M. Griss, and P. Jönsson, Software Reuse:
Architecture, Process and Organization for Business
Success, Addison-Wesley, 1997.

12. C. Szyperski, Component Software, 2nd ed., Addison-
Wesley, 2002.

13. B. Boehm, “A Spiral Model of Software Development
and Enhancement,” Computer, May 1988, pp. 61–72.

14. K. Sullivan, “Software Design: The Options Approach,”
2nd Int’l Software Architecture Workshop, Joint Proc.
SIGSOFT 96 Workshop, ACM Press, 1996, pp. 15–18.

15. L. Trigeorgis, Real Options: Managerial Flexibility and
Strategy in Resource Allocation, MIT Press, 1996.

16. R. Anderson, Security Engineering: A Guide to Building
Dependable Distributed Systems, John Wiley & Sons,
2001.

17. K. Rivette and D. Kline, Rembrandts in the Attic: Un-
locking the Hidden Value of Patents, Harvard Business
Press, 1999.

18. D. Wallach, “Copy Protection Technology Is Doomed,”
Computer, Oct. 2001, pp. 48–49.

19. E. Elton and M. Gruber, Modern Portfolio Theory and
Investment Analysis, 6th ed., John Wiley & Sons, 2003.

For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

7 0 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

About the Authors

David G. Messerschmitt is the Roger A. Strauch Professor of Electrical Engineering
and Computer Sciences at the University of California, Berkeley. His research interests include
the impact of business and economics on technology. Messerschmitt received his PhD in com-
puter, information, and control engineering from the University of Michigan. He is a member
of the US National Academy of Engineering. Contact him at Dept. of Electrical Engineering and
Computer Sciences, 231 Cory Hall, Univ. of California, Berkeley, CA 94720-1770; messer@
eecs.berkeley.edu.

Clemens Szyperski, who is affiliated with Microsoft Research, is a software architect
at Microsoft and an adjunct professor with the School of Computing Science, Queensland Uni-
versity of Technology, Australia. His research interests center on component software. Szyper-
ski received his PhD in computer science from the Swiss Federal Institute of Technology, Zurich.
He is a member of the ACM. Contact him at Microsoft Research, One Microsoft Way, Redmond,
WA 98052-8300; cszypers@microsoft.com.

The key to providing you quality information
you can trust is IEEE Software’s peer review
process. Each article we publish must meet
the technical and editorial standards of
industry professionals like you.Volunteer as
a reviewer and become part of the process.

Become an

Become an IEEE Software reviewer today!
Find out how at www.computer.org/software.

reviewer

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

