EECS 225A Spring 2005

Homework 6 solutions

1. Hayes problem 4.7

Solution

(a) Note that $E(z) = Y(z)A(z) - X(z)B(z)$, so

$$c(n) = \sum_{k=0}^{\infty} a(k)y(n-k) - \sum_{k=0}^{\infty} b(k)x(n-k)$$

With

$$E = \sum_{n=0}^{\infty} c^2(n)$$

the Normal Equations are found by setting the derivatives of E with respect to $a(k)$ and $b(k)$ equal to zero,

$$\frac{\partial E}{\partial a(k)} = 0 \quad ; \quad \frac{\partial E}{\partial b(k)} = 0$$

Thus,

$$\frac{\partial E}{\partial a(k)} = \sum_{n=0}^{\infty} 2c(n)y(n-k) = 2 \sum_{n=0}^{\infty} \left\{ \sum_{l=0}^{p} a(l)y(n-l) - \sum_{l=0}^{q} b(l)x(n-l) \right\} y(n-k) = 0$$

and

$$\frac{\partial E}{\partial b(k)} = -\sum_{n=0}^{\infty} 2c(n)x(n-k) = -2 \sum_{n=0}^{\infty} \left\{ \sum_{l=0}^{p} a(l)y(n-l) - \sum_{l=0}^{q} b(l)x(n-l) \right\} x(n-k) = 0$$
Dividing by two, and rearranging the sums, we have
\[
\sum_{l=0}^{p} a(l) \left(\sum_{n=0}^{\infty} y(n-l)y(n-k) \right) - \sum_{l=0}^{q} b(l) \left(\sum_{n=0}^{\infty} x(n-l)y(n-k) \right) = 0 \quad ; \quad k = 1, \ldots, p
\]
and
\[
-\sum_{l=0}^{p} a(l) \left(\sum_{n=0}^{\infty} y(n-l)x(n-k) \right) + \sum_{l=0}^{q} b(l) \left(\sum_{n=0}^{\infty} x(n-l)x(n-k) \right) = 0 \quad ; \quad k = 0, \ldots, q
\]
If we define
\[
\tau_y(k, l) = \sum_{n=0}^{\infty} x(n-l)y(n-k)
\]
\[
\tau_y(k, l) = \sum_{n=0}^{\infty} y(n-l)y(n-k)
\]
\[
\tau_x(k, l) = \sum_{n=0}^{\infty} x(n-l)x(n-k)
\]
then these equations become
\[
\sum_{l=0}^{p} a(l) \tau_y(k, l) - \sum_{l=0}^{q} b(l) \tau_y(k, l) = 0 \quad ; \quad k = 1, 2, \ldots, p
\]
\[
-\sum_{l=0}^{p} a(l) \tau_x(k, l) + \sum_{l=0}^{q} b(l) \tau_x(k, l) = 0 \quad ; \quad k = 0, 1, \ldots, q
\]
Assuming that the coefficients have been normalized so that \(a(0) = 1\), we have
\[
\sum_{l=0}^{p} a(l) \tau_y(k, l) - \sum_{l=0}^{q} b(l) \tau_y(k, l) = -\tau_x(k, 0) \quad ; \quad k = 1, 2, \ldots, p
\]
\[
-\sum_{l=0}^{p} a(l) \tau_x(k, l) + \sum_{l=0}^{q} b(l) \tau_x(k, l) = \tau_y(k, 0) \quad ; \quad k = 0, 1, \ldots, q
\]
Writing these in matrix form we obtain
\[
\begin{bmatrix}
R_p & -R_y \\
-R_y & R_x
\end{bmatrix}
\begin{bmatrix}
a \\
b
\end{bmatrix} =
\begin{bmatrix}
-R_x \\
\tau_y
\end{bmatrix}
\]
where \(a^T = [a(1), a(2), \ldots, a(p)]\), \(b^T = [b(0), b(1), \ldots, b(q)]\), \(\tau_x^T = [\tau_x(1, 0), \tau_x(2, 0), \ldots, \tau_x(p, 0)]\), and \(\tau_y^T = [\tau_y(1, 0), \tau_y(2, 0), \ldots, \tau_y(q, 0)]\). Also, \(R_x\) is a \(p \times p\) matrix with entries \(r_x(k, l)\), \(R_y\) is a \((q+1) \times (q+1)\) matrix with entries \(r_y(k, l)\), and \(R_{xy}\) is a \(p \times (q+1)\) matrix with entries \(r_{xy}(k, l)\).

(b) Suppose \(S(z) = C(z)/D(z)\). Then
\[
B(z) = B(z)X(z) - \frac{C(z)}{D(z)} A(z)X(z)
\]
and the error can be made equal to zero if
\[
\frac{B(z)}{A(z)} = \frac{C(z)}{D(z)}
\]

2. Hayes problem 4.10

Solution
The equations for the coefficients \(a_p(k) \), \(k = 1, \ldots, p \), that minimize the error \(\mathcal{E}_p \) are found by setting the derivatives of \(\mathcal{E}_p \) with respect to \(a_p(k) \) equal to zero. Thus, assuming that \(x(n) \) is real, we have

\[
\frac{\partial \mathcal{E}_p}{\partial a_p(k)} = \sum_{n=0}^{\infty} 2c(n)x(n - k - N) = 0
\]

Dividing by two, and substituting for \(c(n) \), we have

\[
\sum_{n=0}^{\infty} \left[x(n) + \sum_{l=1}^{p} a_p(l)x(n - l - N) \right] x(n - k - N) = 0
\]

or

\[
\sum_{l=1}^{p} a_p(l) \left[\sum_{n=0}^{\infty} x(n - l - N)x(n - k - N) \right] = -\sum_{n=0}^{\infty} x(n)x(n - k - N)
\]

If we define

\[
r_p(k, l) = \sum_{n=0}^{\infty} x(n - l)x(n - k)
\]

then it is easily shown that \(r_p(k, l) \) depends only on the difference, \(k - l \), and we may write

\[
r_p(k) = \sum_{n=0}^{\infty} x(n)x(n - k)
\]

Thus, the normal equations become

\[
\sum_{l=1}^{p} a_p(l)r_p(k - l) = -r_p(k + N)
\]

Finally, using the orthogonality condition

\[
\sum_{n=0}^{\infty} c(n)x(n - k - N) = 0
\]

we have, for the minimum error,

\[
\{ \mathcal{E}_p \}_{\text{min}} = \sum_{n=0}^{\infty} c(n) \left[x(n) + \sum_{l=1}^{p} a_p(l)x(n - l - N) \right] = \sum_{n=0}^{\infty} c(n)x(n)
\]

Therefore,

\[
\{ \mathcal{E}_p \}_{\text{min}} = \sum_{n=0}^{\infty} x(n) + \sum_{l=1}^{p} \sum_{n=0}^{\infty} a_p(l)x(n - l - N) x(n) = r_p(0) + \sum_{l=1}^{p} a_p(l)r_p(l + N)
\]

3. Hayes problem 4.21
If we define $a_p(0) = 1$, then the error $e(n)$ is

$$
e(n) = a_p(n) \cdot x(n) - b(0) \cdot y_{00}(n) = \sum_{l=0}^{p} a_p(l) x(n-l) - b(0) \left[\delta(n) + \delta(n - n_0) \right]$$

and the mean-square error that we want to minimize is

$$\xi_p = \sum_{n=0}^{2n_0-1} e^2(n) = \sum_{n=0}^{2n_0-1} \left[\sum_{l=0}^{p} a_p(l) x(n-l) - b(0) \delta(n) - b(0) \delta(n-n_0) \right]^2$$

Setting the derivative with respect to $a_p(k)$ equal to zero, we have

$$\frac{\partial E}{\partial a_p(k)} = \sum_{n=0}^{2n_0-1} 2 \left[\sum_{l=0}^{p} a_p(l) x(n-l) - b(0) \delta(n) - b(0) \delta(n-n_0) \right] x(n-k) = 0$$

If we define

$$r_x(k, l) = \sum_{n=0}^{2n_0-1} x(n-l) x(n-k)$$

then the normal equations become (recall that $a_p(0) = 1$)

$$\sum_{l=1}^{p} a_p(l) r_x(k, l) - b(0) x(-k) - b(0) x(n_0 - k) = -r_x(k, 0) \quad ; \quad k = 1, 2, \ldots, p$$

Assuming that $x(n) = 0$ for $n < 0$, with $x = [x(n_0 - 1), x(n_0 - 2), \ldots, x(n_0 - p)]^T$, the normal equations may be written in matrix form as follows

$$R_x a - b(0) x = -r_x$$

Finally, differentiating with respect to $b(0)$ we have

$$\frac{\partial E}{\partial b(0)} = -\sum_{n=0}^{\infty} 2 \left[\sum_{l=0}^{p} a_p(l) x(n-l) - b(0) \delta(n) - b(0) \delta(n-n_0) \right] \delta(n) + \delta(n-n_0)]$$

Thus,

$$x(0) - b(0) + \sum_{l=1}^{p} a_p(l) x(n_0 - l) - b(0) = -x(n_0)$$

or, in vector form, we have

$$x^T a - 2b(0) = -x(0) - x(n_0)$$

Putting all of these together in matrix form yields

$$\begin{bmatrix} R_x & x \end{bmatrix} \begin{bmatrix} a \\ 1 \end{bmatrix} = -\begin{bmatrix} r_x \\ x^T 1 \end{bmatrix}$$

4. Hayes problem 4.25
(a) As we did in Example 4.7.1, we would like to find an ARMA(1,1) model for \(x(n) \) that has the given autocorrelation values. Since the Yule-Walker equations are

\[
\begin{bmatrix}
 r_x(0) & r_x(1) \\
 r_x(1) & r_x(0)
\end{bmatrix}
\begin{bmatrix}
 1 \\
 a_1(1)
\end{bmatrix}
= \begin{bmatrix}
 c_1(0) \\
 c_1(1)
\end{bmatrix}
\]

then the modified Yule-Walker equations for \(a(1) \) are

\[r_x(1)a(1) = -r_x(2) \]

which gives \(a_1(1) = -r_x(2)/r_x(1) = -1/2 \).

For the moving average coefficients, we begin by computing \(c_1(0) \) and \(c_1(1) \) using the Yule-Walker equations as follows

\[
\begin{bmatrix}
 r_x(0) & r_x(1) \\
 r_x(1) & r_x(0)
\end{bmatrix}
\begin{bmatrix}
 1 \\
 a_1(1)
\end{bmatrix}
= \begin{bmatrix}
 c_1(0) \\
 c_1(1)
\end{bmatrix}
\]

With the given values for \(r_x(k) \), using \(a_1(1) = -1/2 \), we find

\[
\begin{bmatrix}
 c_1(0) \\
 c_1(1)
\end{bmatrix}
= \begin{bmatrix}
 3 & \frac{9}{4} \\
 \frac{9}{4} & 3
\end{bmatrix}
\begin{bmatrix}
 1 \\
 -1/2
\end{bmatrix}
= \begin{bmatrix}
 15/8 \\
 3/4
\end{bmatrix}
\]

and

\[[C_1(z)]_+ = \frac{3}{8} + \frac{3}{4}z^{-1} \]

Multiplying by \(A_1^*(1/z^*) = 1 - \frac{1}{2}z \) we have

\[[C_1(z)]_+ A_1^*(1/z^*) = (1 - \frac{15}{8} + \frac{9}{8}z^{-1}) (1 - \frac{1}{2}z) = -\frac{15}{16}z + \frac{9}{8} + \frac{3}{4}z^{-1} \]

Therefore, the causal part of \(P_x(z) \) is

\[[P_x(z)]_+ = \left[[C_1(z)]_+ A_1^*(1/z^*) \right]_+ = \frac{3}{8} + \frac{3}{4}z^{-1} \]

Using the symmetry of \(P_x(z) \), we have

\[C_1(z)A_1^*(1/z^*) = B(z)B^*(1/z^*) = \frac{3}{4}z + \frac{9}{8} + \frac{3}{4}z^{-1} \]

Performing a spectral factorization gives

\[P_x(z) = B(z)B^*(1/z^*) = \frac{3}{4}(1 + z^{-1})(1 + z) \]

so the ARMA(1,1) model is

\[H(z) = \frac{\sqrt{3}}{2} \frac{1 + z^{-1}}{1 - \frac{1}{2}z^{-1}} \]

(b) Yes. The model matches \(r_x(k) \) for \(k = 0, 1, 2 \), and for \(k > 2 \) note that

\[r_x(k) = \frac{1}{2}r_x(k - 1) \]

which they do.