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Abstract
We propose TROD, a novel transaction-oriented framework for de-
bugging modern distributed web applications and online services.
Our critical insight is that if applications store all state in databases
and only access state transactionally, TROD can use lightweight
always-on tracing to track the history of application state changes
and data provenance, and then leverage the captured traces and
transaction logs to faithfully replay or even test modified code
retroactively on any past event. We demonstrate how TROD can sim-
plify programming and debugging in production applications, list
several research challenges and directions, and encourage the data-
base and systems communities to drastically rethink the synergy
between the way people develop and debug applications.

1 Introduction
In this paper, we propose TROD, a novel Transaction-Oriented
Debugging framework for modern distributed web applications
such as a travel reservation website or an e-commerce microser-
vices application. TROD targets applications that follow three design
principles:
P1. Store all application-shared state in databases.
P2. Access or update shared state only through ACID transactions.
P3. Produce deterministic outputs and state changes.
We adopt these principles because they radically simplify the

problem of debugging modern distributed applications. Currently,
debugging is hard because developers need to unravel the complex
interactions of thousands of concurrent events [28]. Existing dis-
tributed debugging tools are limited as they rely on developers to
provide sufficient logs and traces [29], which requires intensive
manual logging or annotations. However, if applications follow
our principles, TROD can augment database transaction logging to
capture a complete record of application state accesses and changes,
enabling powerful features such as faithful replay of any past event.

The TROD principles are practical because they align with cur-
rent trends in application design. For example, developers increas-
ingly deploy applications on serverless platforms such as AWS
Lambda [2]. These serverless applications naturally follow TROD
principles because they handle requests with stateless and deter-
ministic functions and manage state using cloud databases. In fact,
we originally developed TROD to debug applications in the DBMS-
oriented operating system (DBOS) project [16], which runs pro-
grams as workflows of transactional serverless functions [14]. As
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part of DBOS, we found it was easy to build performant web and
microservice applications using TROD principles.

TROD helps developers investigate and better understand bugs
by faithfully replaying past events. Faithful replay is challenging
because we need to accurately reconstruct past state for applica-
tions while considering interleaving concurrent executions. How-
ever, because TROD assumes state is centralized in databases and
only accessed transactionally, it can capture a detailed history of
application state changes and events with lightweight always-on
transaction tracing. Developers can directly query traces to locate
buggy executions. Then, during replay, TROD can re-apply logged
state changes to reconstruct past application states. Since TROD can
consistently replay past events, it transforms most Heisenbugs [11],
bugs that happen rarely and are hard to reproduce because of com-
plex and unpredictable interactions between concurrent events,
into easily reproducible “Bohrbugs”.

TROD extends faithful replay to support an even more powerful
debugging feature: retroactive programming. Developers can use
TROD to test their modified code on past events, for example, to test a
bug fix before pushing it into production. Retroactive programming
is challenging because TROD cannot simply re-apply the transaction
log as in replay but must actually re-execute all concurrent events
as their computations and effects might change. Retroactive pro-
gramming is possible in TROD because request executions only share
state through transactions. Therefore, TROD can identify relevant
transactions and only enumerate possible re-execution orderings
of those transactions to thoroughly test different possible effects of
interleaving concurrent executions.

Our proposed implementation of TROD mainly focuses on cor-
rectness issues such as functionality or semantics bugs, with an
emphasis on hard-to-debug server-side concurrency issues [24].
At present, we have much of TROD running in DBOS. Preliminary
results are promising, including low overhead (<15%) always-on
tracing. We expect to present a demonstration at the conference.

2 Debugging Frustrations
Debugging applications that serve many concurrent requests,

such as web services or microservices, is difficult because devel-
opers need to unravel the complex interleaving of concurrent exe-
cutions. We illustrate real debugging frustrations using a concur-
rency bug (Figure 1) reported in the popular database-backed online
education platform Moodle1: MDL-59854 [21]. This is a time-of-
check to time-of-use (TOCTOU) bug: a race condition exists in the
subscribeUser handler between checking if a subscription exists
(1st transaction) and inserting a new subscription into the database
(2nd transaction). However, debugging this issue is tricky because
it only surfaces if two requests for the same user to subscribe to
the same forum are interleaved in a certain way, and an error is

1Moodle stores shared application state in a relational SQL database and uses transac-
tions to manage state. It supports MySQL, Postgres, Microsoft SQL Server, or Oracle.
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1 def subscribeUser (userId , forum ):
2 # 1st transaction : Check subscription .
3 if ( isSubscribed (userId , forum )):
4 return True
5 # 2nd transaction : Insert a subscription entry .
6 result = DB. insert (" forum_sub ", userId , forum )
7 return result
8
9 def fetchSubscribers ( forum ):
10 # Error : Duplicated values in column userId .
11 result = DB. executeQuery (" SELECT userId FROM

forum_sub WHERE forum = forum ")
12 return result

Figure 1: Simplified code for a concurrency bug in the database-
backed online education platform Moodle (MDL-59854). The first
handler, subscribeUser, has two transactions and manifests a race
condition causing duplicated subscriptions but returns with no error.
The second handler, fetchSubscribers, fetches the list of subscribers
and raises an error if it detects duplicates.

only raised on a subsequent request to fetch a list of subscribers
to that forum. The developer who reported this bug commented:
“You have to be pretty fast and pretty lucky to actually reproduce this
issue.”

Locating and reproducing concurrency bugs like MDL-59854
is fundamentally challenging because these bugs are caused by
specific and rare interleavings of concurrent events that are seem-
ingly unrelated. Conventional error messages and stack traces, as
commonly used in bug reports, are not sufficient because they only
provide information on requests that fail but not on other requests
that may be involved in the bug. For example, in MDL-59854, logs
and stack traces did not explain why duplicated entries appeared
in the first place, and did not reference the original interleaved
execution order that caused the issue. Instead, developers had to
guess which requests and functions may have inserted or updated
entries to the affected database table, and struggled to reproduce
the bug because they lacked debugger support to faithfully replay
past events.

Based on this and other bug reports that we examined, we ob-
serve that to find and reproduce bugs, developers must often collect
information from multiple application production logs as well as
database logs. Debugging would be easier if developers had a full
view of application execution and database interactions and could
replay past events. To make this possible, we are building TROD.

3 TROD: Transaction-Oriented Debugger

3.1 TROD Overview

Our TROD proposal focuses on debugging correctness issues in dis-
tributed web applications and online services such as a travel reser-
vation web service or e-commerce microservices application. These
applications typically implement their business logic in backend
servers that consist of many request handlers. When a request
arrives at the backend, the application runtime invokes the corre-
sponding request handler to serve the request. Many applications
implement a microservice architecture [15], so to serve a single
user request, a request handler may invoke multiple other request
handlers through RPCs, forming a workflow of handler invocations.
TROD assumes that applications propagate a unique ID for each
request (ReqId) through RPCs, which is a common practice.
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Figure 2: TROD’s integration with production and development envi-
ronments. TROD’s tracing flows and debugging operations aremarked
with dashed arrows and colored text.

TROD requires applications follow three design principles (Sec-
tion 1). They should store all shared state and data in a transactional
database (P1), and request handlers should only access or update
shared state through ACID transactions (P2). Additionally, each
request handler should be deterministic (P3), where its output and
state changes are determined only by the input and the database
state at the time of its execution. Request handlers can maintain
local private state for individual requests, but otherwise access or
persist state across requests only through databases. TROD can work
for applications using multiple data stores if their transaction logs
are aligned (e.g., using a cross-data store transactionmanager [7, 9]),
but in the rest of the paper, we assume applications use a single
DBMS for simplicity.

As shown in Figure 2, TROD has two major components:
• Interposition Layer : TROD adds a thin shim layer that hooks into
the developer’s application framework. It interposes on every
handler and database query to trace application-database inter-
actions, including transaction execution orders and information
on which data items were read from or written to the database.

• Provenance Database: TROD utilizes an analytical database to store
traced data. TROD uses it to replay past events; developers can
also directly query this database for debugging.

Simplifying Assumptions. We assume external service calls are
idempotent, so re-executions will not generate unexpected side
effects (e.g., send an email twice). We also assume that machines
are reliable and have enough hardware resources, so resource ex-
haustion is out of the scope of this paper. We leave proper handling
of external services and hardware environments for future work.

Additionally, we assume for simplicity that the database pro-
vides strict serializability, meaning transactions are serializable and
serialized in commit order [12]. However, TROD can work for lower
isolation levels such as snapshot isolation and read committed by
leveraging prior work on transaction reenactment [1], which can
faithfully replay transactional histories under weak isolation levels
using database audit logs and time travel capabilities.

3.2 TROD Principles

TROD design principles make debugging easier and more efficient
because they exploit the synergy between application development
and debugging. If request handlers are deterministic and only access
shared state transactionally through a database, TROD can automat-
ically intercept queries and trace data operations to capture prove-
nance information. Then, during replay, TROD can efficiently restore
application state by re-applying the captured sequence of changes
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made to the database, without needing to replay handler executions.
By contrast, if an application maintains shared state outside of the
database, such as in files or in-memory data structures, obtaining
provenance information requires low-level code instrumentation or
intensive manual annotations and can be prohibitively expensive.

TROD principles are practical because they align with two im-
portant trends in application development. First, developers in-
creasingly deploy applications on serverless platforms (e.g., AWS
Lambda [2]). Serverless applications naturally follow TROD princi-
ples because they handle requests with stateless and deterministic
functions and manage state using cloud databases. Second, due
to the growing demand for strong consistency, data stores are in-
creasingly adding transactional guarantees while providing high
performance [30]. For example, many NoSQL data stores now sup-
port ACID transactions (e.g., FoundationDB, MongoDB). Therefore,
it will only become easier for developers to adopt TROD principles
without substantially changing their applications or data stores.

3.3 TROD in Action

To show how TROD works, we describe how a developer could use
it to debug our earlier example MDL-59584 (Section 2), a bug that
caused duplicated entries in Moodle’s forum subscription table. A
major challenge in solving this bug was figuring out which opera-
tion created the duplicate entries. In TROD, this is easy: developers
directly query TROD’s provenance database to track which prior
requests inserted the duplicated records. TROD automatically traces
essential provenance information such as request IDs, timestamps,
handler names, transaction IDs, and transaction read and write sets,
storing this information in structured database tables (we discuss
details in Section 3.4). Here is an example query to find the requests
and corresponding handlers that inserted the duplicated records:

SELECT Timestamp, ReqId, HandlerName
FROM Executions as E, ForumEvents as F

ON E.TxnId = F.TxnId
WHERE F.UserId = 'U1' AND F.Forum = 'F2'

AND F.Type = 'Insert'
ORDER BY Timestamp ASC;

This query returns two different request IDs with the same han-
dler name (“subscribeUser”) and adjacent timestamps, indicating
a potential concurrency bug in the subscribeUser handler. De-
velopers can give this information to TROD to replay (Section 3.5)
the requests that inserted the duplicated subscription. During re-
play, TROD uses its captured provenance data to provide replayed
transactions with the correct database state/context by interposing
between handlers and the database. Developers can then use low-
level debugger tools like GDB to add breakpoints in the handler
code and step through the replayed request execution.

After identifying and fixing the bug, developers can test their bug-
fix patch with TROD’s retroactive programming feature (Section 3.6).
For instance, one developer suggested [21] that isSubscribed and
DB.insert should be wrapped in one transaction. Thus, they can
modify subscribeUser accordingly and use TROD to re-execute
request handlers to test the original two conflicting subscription
requests over a past snapshot, and observe if the patch actually
fixes the duplication issue.

3.4 Always-On Tracing and Declarative Debugging

To collect information needed for debugging, TROD’s interposition
layer automatically interposes on each request handler executed
during applications’ normal execution in production environments,
collecting request IDs, handler names, and execution timestamps.
TROD also interposes on every operation in the application data-
base to record which request handler invokes which transactions
and what data is read from or written to the database. Thus, TROD
can trace the flow of data through handler executions, record-
ing which transactions are part of which handler executions and
which data items they read or write. TROD organizes this captured
provenance data into structured tables in an easily accessible and
queryable provenance database. Our prototype of this always-on
tracing achieves low runtime overhead in DBOS (Section 3.7), indi-
cating it is practical.

We illustrate TROD’s provenance logs using MDL-59854. TROD
records transaction executions in the Invocations table (Table 1),
which contains both transaction information (e.g., transaction IDs
and timestamps) and request handler metadata (e.g., the handler
and function names that initiated the transaction). Records for a
request share the same ReqId, so developers can easily observe the
handler and transaction execution order within and across requests.
Developers can query this table to inspect execution histories, such
as finding all transactions involved in serving a request.

TxnId Timestamp HandlerName ReqId Metadata

TXN1 TS1 subscribeUser R1 func:isSubscribed
TXN2 TS2 subscribeUser R2 func:isSubscribed
TXN3 TS3 subscribeUser R2 func:DB.insert
TXN4 TS4 subscribeUser R1 func:DB.insert
TXN9 TS9 fetchSubscribers R3 func:DB.executeQuery

Table 1: An illustrative transaction execution log.

For each application table, TROD tracks data provenance such as
what data items are read or written by each transaction. For data
writes, TROD leverages the change data capture feature provided
by most of the databases. For data reads, TROD can use existing
database provenance techniques to rewrite queries [1] and record
read set automatically. For example, assume the provenance table
name for forum subscription is ForumEvents (Table 2).

TxnId Type Query UserId Forum

TXN1 Read Check if (U1, F2) exists null null
TXN2 Read Check if (U1, F2) exists null null
TXN3 Insert Insert (U1, F2) U1 F2
TXN4 Insert Insert (U1, F2) U1 F2
TXN9 Read Select UserId for F2 U1 F2
TXN9 Read Select UserId for F2 U1 F2

Table 2: An illustrative data operations log.

Developers can use a declarative language like SQL to directly
query TROD’s captured data for debugging, which simplifies locating
the root causes of bugs. For example, if we run the query shown in
Section 3.3 over Tables 1 and 2, TROD correctly returns information
identifying the buggy request executions: (TS3, R2, subscribeUser)
and (TS4, R1, subscribeUser).
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3.5 Bug Replay

Using TROD, developers can easily replay past requests in a de-
velopment environment. Our key insight is that if handlers are
deterministic and access shared state only transactionally, TROD can
faithfully replay a past execution by re-executing its code normally
but restoring the database before each transaction to a state equiv-
alent to what the transaction originally saw. To make this possible,
TROD adds a breakpoint before the beginning of each transaction.
Within a breakpoint, TROD queries the provenance database to find
what state changes the upcoming transaction depends on, and then
applies those changes to the development database. Therefore, the
re-executed transaction can see the same state and return the same
result as the original execution. TROD then repeats the above steps
at each breakpoint until all handlers and transactions finish.

TROD’s replay is practical and easy to use because it can faithfully
replay production events in a smaller development environment and
is compatible with other debugging tools. TROD can efficiently replay
request executions without needing to restore the entire production
database because it can use captured provenance information to
only restore those data items used in replayed transactions. During
replay, TROD lets developers use familiar low-level debugging tools
to inspect executions in detail. For example, developers can use
GDB to add breakpoints and single-step through a replayed han-
dler execution, or use built-in database monitoring tools to observe
detailed query plans. TROD augments these debugging tools with
new capabilities. For example, if a request spans multiple transac-
tions, TRODmakes it easy for developers to query which concurrent
executions may have updated the database between transactions,
making many concurrency bugs easier to understand.

To debug the Moodle issue (MDL-59854) with TROD, developers
can replay the request R1 that caused the duplication. TROD replays
the original execution order of R1, shown in Figure 3 (top). First,
TROD restores the database to a snapshot before R1 execution and
replays R1’s first transaction isSubscribed, which finds that no
subscription exists. Then, TROD injects the relevant database change
made by request R2, which inserts a subscription entry (U1, F2).
Next, TROD re-issues R1’s second transaction to the database and in
turn inserts the duplicated entry. During replay, developers can see
that the database was modified by R2 between the executions of
R1’s two transactions, indicating the cause of the bug. Therefore,
TROD provides detailed information for developers so they can bet-
ter understand how duplication occurs: interleaving executions of
transactions from two requests.

3.6 Retroactive Programming

TROD not only lets developers faithfully replay past executions,
but also lets them retroactively program applications, modifying
code and testing it on past events. Retroactive programming is
important because it helps developers verify that a proposed bugfix
patch actually fixes the bug and does not introduce new bugs.

Retroactive programming is challenging because to fix bugs,
developers typically have to change application logic. For instance,
developers may split a long transaction into multiple shorter ones
or combine several small transactions into a big one. Therefore,
TROD cannot re-apply the transaction log as in bug replay, but must
actually re-execute all relevant concurrent requests. It is not obvious
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Figure 3: Top: Original transaction log. Bottom: Retroactive program-
ming log where TROD executes the modified code to serve original
user requests on a past database snapshot. We color boxes handling
the same request with the same color, and put the return values in
parentheses under each function name.

in which order to execute those concurrent requests, especially if
their logic and transaction boundaries have been changed. Naively,
there are a prohibitively large number of possible ways to interleave
instructions among concurrent executions. However, since TROD
requires handlers only share state through transactions, TROD can
identify relevant transactions (e.g., transactions that access the
same table) and enumerate possible re-execution orderings among
them to thoroughly test different possible effects of interleaving
concurrent executions.

To test the bugfix patch for the Moodle issue (MDL-59854), de-
velopers can use TROD to re-execute original requests R1, R2, and
R3 using the modified code where the subscribeUser handler now
wraps isSubscribed and DB.insert in one transaction. First, TROD
restores the development database to a snapshot right before R1
execution. Then, TROD branches off from the original history to exe-
cute and trace new executions. TROD tests two possible re-execution
orders for the concurrent requests (R1’ first or R2’ first), and we
show one of them in Figure 3 (bottom). After both R1’ and R2’ finish,
TROD executes R3’. Developers can observe that the third request
which fetches subscribed users no longer raises any errors.

3.7 TROD Prototype

We are currently prototyping TROD in DBOS. As introduced in
our recent paper [14], we implement always-on tracing using a
high-performance in-memory buffer and find that on popular mi-
croservices benchmarks, the overall tracing overhead is <100𝜇s per
request. This causes a relative overhead of <15% when using the
in-memory database VoltDB and negligible overhead when using
the on-disk database Postgres. We also run declarative debugging
queries over billions of events and get results in <5 seconds, which
is promising for interactive debugging. We are currently imple-
menting bug replay and retroactive programming, and expect to
give a demonstration at the conference.

4 Case Studies

In this section, we examine two categories of bugs: 1) concurrency
bugs, which can be debugged through TROD bug replay and retroac-
tive programming, and 2) security bugs, which can be debugged
using TROD tracing and declarative debugging.
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4.1 Concurrency Bugs

To show how TROD can simplify debugging, we examine concur-
rency bugs discussed in prior work on non-reproducible bugs [8]
and server-side request races [24]. In particular, we look at bug
reports from two popular database-backed web applications: Me-
diaWiki (MW) and Moodle (MDL). MediaWiki is an open-source
platform underlying Wikipedia and related sites, while Moodle is
an online education web platform; both have millions of users. Both
applications use a relational SQL database, such as MySQL and Post-
gres, and transactions to manage application data. We manually
review bug reports and search for recent bugs marked as “hard to
reproduce,” looking in particular for database-related bugs.

In MediaWiki, we observe that non-atomic update of multiple en-
tries is a common cause of concurrency bugs which TROD simplifies
debugging. For example,MW-44325 [17] has a race condition where
multiple concurrent edits of the same page can create duplicated site
URL links, which violates the uniqueness requirement of site URL
links. This bug is caused by non-atomic updates of the edited page
object and the SiteLink table that stores page links, but developers
struggled to reproduce the bug and accurately locate the root cause.
The bug discussion included 33 developers, started in November
2012, closed and reopened multiple times, and was finally marked
as resolved in October 2021. Developers took such a long time to
fix this bug because they mostly rely on production logs to figure
out ways to reproduce it; however, their logs do not provide a full
view of concurrent executions and data operations, so developers
have to guess the execution sequence that might lead to the error.
By contrast, to debug this issue with TROD, developers can simply
query TROD provenance data to inspect which requests edited the
same page and created the duplicated URL links. Then, developers
can use TROD to replay the buggy requests to examine the inter-
action of relevant concurrent executions and their corresponding
changes to the page object and the SiteLink table.

Another similar bug was MW-39225 [18] where the page edit
handler rarely and randomly returns wrong article size changes
in the presence of concurrent edits. This bug is due to non-atomic
page edits so the concurrent requests can see partially updated data.
Developers complained that the server logs were not helpful, and
they had to guess ways to reproduce the bug, which led to a three-
month-long discussion thread. Similar to MW-44325, developers
can use TROD to locate and reproduce this bug through declarative
debugging and bug replay.

InMoodle, we found several more database-related time-of-check
to time-to-use (TOCTOU) bugs similar to MDL-59854 (Section 2),
which caused duplications in other database tables and can be de-
bugged with TROD. Sometimes, fixes to these bugs cause more bugs.
For example, the patch for MDL-59854 later caused another produc-
tion error, MDL-60669 [20], because it did not consider the corner
case where duplications still exist in deleted courses, so restoring
those courses raised errors. TROD’s retroactive programming fea-
ture can prevent these new bugs by helping developers validate
bug fixes before applying them in production. For example, to thor-
oughly test their bug fixes, developers can apply the modified code
and serve past user requests directly related to this bug and other
requests that may touch the same table.

4.2 Security Bugs

Prior work has shown that security bugs form a large and grow-
ing class of bugs in web applications [23]. These bugs may allow
attackers to illegally modify application state or exfiltrate sensitive
user data from an application, leading to severe security breaches.
However, investigating security issues is hard because developers
need to trace across many request handlers running on different
machines. Currently, developers can only investigate these issues
using system logs, but these logs may not provide sufficient in-
formation to track attacks [5]. For example, logs usually contain
error messages but do not provide visibility into how applications
interact with databases. By contrast, developers can easily query
TROD’s provenance database to check for access control violations
or potential data exfiltrations.

TROD makes it easy to check web applications for violations of
common access control patterns, as identified by Near and Jack-
son [23], such as the Authentication pattern (only allowing logged-
in users to read certain objects) and the User Profiles pattern (only
users themselves can update their profiles). We now demonstrate
how TROD can help detect potential violations of the User Profiles
pattern; TROD can detect violations of the other patterns through
similar means. Specifically, we want to find all requests that ille-
gally updated a profile (i.e., the request was not made by the profile
owner). We can do this with the following SQL query:

SELECT Timestamp, ReqId, HandlerName
FROM Executions as E, ProfileEvents as P

ON E.TxnId = P.TxnId
WHERE P.UserName != P.UpdatedBy AND P.Type = 'Update'

TROD can also support more complex forensics investigation
queries such as detecting data exfiltration through workflows [5],
where attackers can leverage RPCs between handlers to move stolen
data laterally through workflow executions and finally exfiltrate
data over a seemingly valid workflow. Since TROD traces the entire
workflow of handler invocations that serve each request, developers
can query TROD provenance data to track all subsequent changes
made by a request that improperly accessed sensitive data, and
determine if the data is exfiltrated.

5 Challenges and Research Directions
Debugging Performance and Data Issues. In this paper, we
mainly focus on functionality bugs, but we hope to extend TROD to
other categories such as 1) performance bugs where executions are
correct but slow, and 2) data quality bugs which lead to well-formed
but incorrect data, caused mainly by human errors. We can extend
TROD to support more monitoring features like performance profil-
ing to help developers troubleshoot performance bugs. For example,
commercial APM (application performance monitoring) tools such
as Retrace [27] and New Relic [26] allow developers to annotate
their applications to obtain transaction traces for debugging slow
queries. TROD can similarly augment its execution tracing to record
performance metrics such as latencies of individual handlers and
end-to-end executions, and store this information in a structured
and queryable format. We believe these automatically generated
traces would make it far easier for developers to use data-driven
performance debugging tools like Seer [10], which currently require
extensive and tedious manual annotations.
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We also believe TROD can simplify debugging data quality is-
sues, because it captures all application data changes and accesses.
TROD can leverage prior work on data debugging. For example, we
may support data quality tests over TROD’s provenance database to
discover erroneous edits [22], and find requests that caused data
quality degradation. One challenge is to balance the granularity of
provenance recording and the accuracy of data quality testing. We
expect to extend TROD’s bug replay to reconstruct more detailed
provenance data retroactively [1] without harming performance.

Handling Multiple Data Stores.Modern web applications and
microservices may use multiple data stores for heterogeneous data.
For example, they can use a combination of a relational DBMS
(e.g., Postgres, MySQL), a key-value store (e.g., Redis), a document
store (e.g., MongoDB), and a search engine (e.g., ElasticSearch) [15].
It is challenging for these applications to use TROD because some
data stores do not support transactions, and transaction logs of
different stores are usually not aligned. However, recent work has
proposed transaction managers that support transactions across
heterogeneous, even non-transactional, data stores [7, 9]. Such
transaction managers can also provide aligned transaction logs.
Therefore, we believe TROD can work for applications using multiple
data stores if they adopt such cross-data store transaction managers.

Guaranteeing Security and Privacy.Web applications often need
to comply with regulations such as GDPR and CCPA to guarantee
the security and privacy of sensitive user data. This poses a chal-
lenge for TROD because TROD may log sensitive user data such
as personally identifiable information (PII). In order to effectively
debug applications while respecting user privacy, TROD needs to
let users completely remove any provenance data entry that poten-
tially contains their personal information and support debugging
from partial data. Therefore, we plan to research ways to maintain
non-sensitive but critical metadata and partially log encrypted data
for debugging without violating regulations.

6 Related Work

Provenance forDebugging. Priorwork [13] has shown that prove-
nance information can improve the reproducibility of database
transactions and process debugging. Similar to TROD, VisTrails Total
Recall [4] enables reproducibility for scientific workflows that in-
teract with databases by combining workflow and data provenance.
GProM [1] introduces a provenance middleware that interposes
between user queries and databases; it also relies on transaction
logs and database time travel to reconstruct provenance on de-
mand to reduce overhead. GProM works for lower isolation levels,
such as snapshot isolation and read-committed. Watermelon [28]
generalizes why-provenance to debugging distributed systems and
proposes wat-provenance (why-across-time provenance), which
also requires determinism. Chen et al. [3] propose network prove-
nance to debug computer networks at Internet scale. However, prior
work focuses either on database queries or application logic, and
thus cannot faithfully replay database-backed applications or sup-
port retroactive modifications. We believe that TROD could adapt
and extend these ideas from prior provenance research to further
optimize the tracing and representation of essential information
for debugging distributed applications.

Bug Replay and Retroactive Programming. Arnold [6] and Om-
niTable [25] capture detailed lineage of the entire system state at the
granularity of individual instructions and every memory and regis-
ter state of processes, which allows them to reproduce any transient
state in the past. They do not support distributed applications, but
TROD can borrow ideas from these systems to handle external calls
and non-deterministic events. Pensieve [29] reproduces distributed
systems failures using system logs and application bytecode, but it
requires developers to provide sufficient information in the error
logs. TROD’s retroactive programming is inspired by Retro-𝜆 [19],
an event-sourced platform that supports retroactive programming
for serverless applications, but it only considers a single isolated
microservice and does not support transactions.

7 Conclusion
Debugging distributed online web applications is challenging. Cur-
rent practices require intensive manual logging and guesswork. In
this paper, we proposed TROD, a novel transaction-oriented debug-
ger for distributed web applications. We showed that TROD provides
always-on tracing and declarative debugging, faithfully reproduces
any concurrency bugs, and allows developers to test modified code
retroactively on any past event. We encouraged the database and
systems communities to drastically rethink the synergy between
the way people develop and debug applications.
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