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ABSTRACT

Lakehouse storage systems that implement ACID transactions and
other management features over data lake storage, such as Delta
Lake, Apache Hudi and Apache Iceberg, have rapidly grown in
popularity, replacing traditional data lakes at many organizations.
These open storage systems with rich management features promise
to simplify management of large datasets, accelerate SQL work-
loads, and offer fast, direct file access for other workloads, such
as machine learning. However, the research community has not
explored the tradeoffs in designing lakehouse systems in detail. In
this paper, we analyze the designs of the three most popular lake-
house storage systems—Delta Lake, Hudi and Iceberg—and compare
their performance and features among varying axes based on these
designs. We also release a simple benchmark, LHBench, that re-
searchers can use to compare other designs. LHBench is available
at https://github.com/lhbench/lhbench.

1 INTRODUCTION

The past few years have seen the rise of a new type of analytical
data management system, the lakehouse, that combines the ben-
efits of low-cost, open-format data lakes and high-performance,
transactional data warehouses [22]. These systems center around
open storage formats such as Delta Lake [21], Apache Hudi [4]
and Apache Iceberg [6] that implement transactions, indexing and
other DBMS functionality on top of low-cost data lake storage (e.g.,
Amazon S3) and are directly readable from any processing engine.
Lakehouse systems are quickly replacing traditional data lakes: for
example, over 70% of bytes written by Databricks customers go
to Delta Lake [21], Uber and Netflix run their analytics stacks on
on Hudi and Iceberg (respectively) [2, 27], and cloud data services
such as Synapse, Redshift, EMR and Dataproc are adding support
for these systems [1, 3, 8, 17]. There is also a growing amount of
research on lakehouse-like systems [20, 23, 26, 30].

Nonetheless, the tradeoffs in designing a lakehouse storage sys-
tem are not well-studied. In this paper, we analyze and compare
the three most popular open source lakehouse systems—Delta Lake,
Hudi and Iceberg—to highlight some of these tradeoffs and identify
areas for future work. We compare the systems qualitatively based
on features such as transaction semantics, and quantitatively us-
ing a simple benchmark based on TPC-DS that exercises the areas
where they make different design choices (LHBench). We have open
sourced LHBench at https://github.com/lhbench/lhbench.
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Lakehouse systems are challenging to design for several reasons.
First, they need to run over low-cost data lake storage systems,
such as Amazon S3 or Azure Data Lake Storage (ADLS), that have
relatively high latency compared to a traditional custom-built data
warehousing cluster and offer weak transactional guarantees. Sec-
ond, they aim to support a wide range of workload scales and
objectives—from very large-scale data lake workloads that involve
loading and transforming hundreds of petabytes of data, to inter-
active data warehouse workloads on smaller tables, where users
expect sub-second latency. Third, lakehouse systems aim to be ac-
cessible from multiple compute engines through open interfaces, un-
like a traditional data warehouse storage system that is co-designed
with one compute engine. The protocols that these client engines
use to access data need to be designed carefully to support ACID
transactions, scale, and high performance, which is especially chal-
lenging when the lakehouse system runs over a high-latency object
store with few built-in transactional features.

These challenges lead to several design tradeoffs that we see
in three popular lakehouse systems used today. Some of the key
design questions include:

How to coordinate transactions? Some systems do all their co-
ordination through the object store when possible (for example,
using atomic put-if-absent operations), in order to minimize the
number of dependent services required to use the lakehouse. For
example, with Delta Lake on ADLS, a table remains accessible as
long as ADLS is available. In contrast, other systems coordinate
through an external service such as the Apache Hive MetaStore,
which can offer lower latency than an object store, but adds more
operational dependencies and risks limiting scalability. The three
systems also offered different transaction isolation levels.

Where to store metadata? All of the systems we analyzed aim
to store table zone maps (min-max statistics per file) and other
metadata in a standalone data structure for fast access during query
planning, but they use different strategies, including placing the
data in the object store as a separate table, placing it in the transac-
tion log, or placing it in a separate service.

How to query metadata? Delta Lake and Hudi can query their
metadata storage in a parallel job (e.g., using Spark), speeding up
query planning for very large tables, but potentially adding latency
for smaller tables. On the other hand, Iceberg currently does meta-
data processing on a single node in its client libraries.

How to efficiently handle updates? Like data lakes and ware-
houses, lakehouse systems experience a high volume of data loading
queries, including both appends and upserts (SQL MERGE). Support-
ing both fast random updates and fast read queries is challenging on
object stores with high latency that perform best with large reads
and writes. The different systems optimize for these in different
ways, e.g., supporting both "copy-on-write" and "merge-on-read”
strategies for when to update existing tables with new data.
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We evaluated these tradeoffs for all three systems using Apache
Spark on Amazon Elastic MapReduce—running the same engine to
avoid vendor-specific engines that optimize for one format, and to
instead focus on the differences that stem from the formats them-
selves and their client libraries. We developed a simple benchmark
suite for this purpose, LHBench, that runs TPC-DS as well as mi-
crobenchmarks to test metadata management and updates on large
tables. We found that there are significant differences in perfor-
mance and in transactional guarantees across these systems. For
read-only TPC-DS queries, performance varies by 1.7X between
systems on average and ranges up to 10X for individual queries.
For load and merge workloads, the differences in performance can
be over 5%, based on different strategies chosen in each system,
such as copy-on-write or merge-on-read. LHBench also identifies
areas where we believe it is possible to improve on all three for-
mats, including accelerating metadata operations for both small
and large tables, and strategies that do better than copy-on-write
and merge-on-read for frequently updated tables.

2 LAKEHOUSE SYSTEMS

Lakehouses are data management systems based on open formats
that run over low-cost storage and provide traditional analytical
DBMS features such as ACID transactions, data versioning, auditing,
and indexing [22]. As described in the Introduction, these systems
are becoming widely used, supplanting raw data lake file formats
such as Parquet and ORC at many organizations.

Because of their ability to mix data lake and warehouse function-
ality, lakehouse systems are used for a wide range of workloads,
often larger than those of lakes or warehouses alone. On the one
hand, organizations use lakehouse systems to ingest and organize
very large datasets—for example, the largest Delta Lake tables span
well into the hundreds of petabytes, consist of billions of files, and
are updated with hundreds of terabytes of ingested data per day [21].
On the other hand, the data warehouse capabilities of lakehouse
systems are encouraging organizations to load and manage smaller
datasets in them too, in order to combine these with the latest data
from their ingest pipelines and build a single management system
for all data. For example, most of the CPU-hours on Databricks
are used to process tables smaller than 1 TB, and query durations
across all tables range from sub-second to hours. New latency-
optimized SQL engines for lakehouse formats, such as Photon [24]
and Presto [15], are further expanding the range of data sizes and
performance regimes that users can reach.

The main difference between lakehouse systems and conven-
tional analytical RDBMSs is that lakehouse systems aim to provide
an open interface that allows multiple engines to directly query the
same data, so that they can be used efficiently both by SQL work-
loads and other workloads such as machine learning and graph
processing. Lakehouse systems break down the traditional mono-
lithic system design of data warehouses: they provide a storage
manager, table metadata, and transaction manager through client
libraries that can be embedded in multiple engines, but allow each
engine to plan and execute its own queries.

We next discuss some of the key design questions for lakehouse
systems and how Delta Lake, Hudi and Iceberg implement them.
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Table Metadata Transaction Atomicity Isolation Levels

Transaction Log + . Serializability,
Delta Lake Metadata Checkpoints Atomic Log Appends Strict Serializability
. Transaction Log + .
Hudi Metadata Table Table-Level Lock Snapshot Isolation
hot Isolati
Iceberg Hierarchical Files Table-Level Lock Snapshot Isolation,

Serializability

Table 1: Lakehouse system design features: How they store table
metadata, how they provide atomicity for transactions, and what
transaction isolation levels they provide.

2.1 Transaction Coordination

One of the most important features of lakehouse systems is trans-
actions. Each lakehouse system we examine claims to offer ACID
transaction guarantees for reads and writes. All three systems pro-
vide transactions across all records in a single table, but not across
tables. However, each system implements transactions differently
and provides different guarantees, as we show in Table 1.

Delta Lake, Hudi, and Iceberg all implement transactions using
multi-version concurrency control [5, 14, 21]. A metadata structure
defines which file versions belong to the table. When a transaction
begins, it reads this metadata structure to obtain a snapshot of the
table, then performs all reads from this snapshot. Transactions com-
mit by atomically updating the metadata structure. Delta Lake relies
on the underlying storage service to provide atomicity through op-
erations such as put-if-absent (coordinating through DynamoDB for
storage layers that do not support suitable operations) [21], while
Hudi and Iceberg use table-level locks implemented in ZooKeeper,
Hive MetaStore, or DynamoDB [5]. It is worth noting that the most
popular lock-based implementations, using Hive MetaStore, do not
provide strong guarantees; for example, in Iceberg, it is possible for
a transaction to commit a dirty write if the Hive MetaStore lock
times out between a lock heartbeat and the metadata write [11].

To provide isolation between transactions, Delta Lake, Hudi, and
Iceberg all use optimistic concurrency control. They validate trans-
actions before committing to check for conflicts with concurrent
committed transactions. They provide different isolation levels de-
pending on how they implement validation. By default, Hudi and
Iceberg verify that a transaction does not write to any files also writ-
ten to by committed transactions that were not in the transaction
snapshot [5, 7]. Thus, they provide what Adya [19] terms snapshot
isolation: transactions always read data from a snapshot of commit-
ted data valid as of the time they started and can only commit if, at
commit time, no committed transaction has written data they in-
tend to write. Delta by default (and Iceberg optionally) also verifies
no transaction read conditions (e.g., in UPDATE/MERGE/DELETE oper-
ations) could be matched by rows in files committed by transactions
not in the snapshot [7, 10]. Thus, they provide serializability: the
result of a sequence of transactions is equivalent to that of some
serial order of those transactions, but not necessarily the order in
the transaction log. Delta can optionally perform this check for
read-only operations (e.g., SELECT statements), decreasing read-
write concurrency but providing what Herlihy and Wing [28] term
strict serializability: all transactions (including reads) serialize in
the order they appear in the transaction log.
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2.2 Metadata Management

For distributed processing engines such as Apache Spark or Presto
to plan queries over a table of data stored in a lakehouse format,
they need metadata such as the names and sizes of all files in the
table. How fast the metadata of these objects can be retrieved puts a
limit on how fast queries can complete. For example, S3’s LIST only
returns 1000 keys per call and therefore can take minutes to retrieve
a list of millions of files [21]. Despite their processing scalability,
slow metadata processing limits data lakes from providing the
same query performance as databases. Thus, efficient metadata
management is a crucial aspect of the lakehouse architecture.

To overcome the metadata API rate limits of cloud object stores,
lakehouse systems leverage the stores” higher data read rates. All
three formats we examine store metadata in files kept alongside the
actual data files. Listing the metadata files (much fewer in number
than data files) and reading the metadata from them leads to faster
query planning times than listing the data files directly from S3. Two
metadata organization formats are used: tabular and hierarchical.
In the tabular format, used by Delta Lake and Hudi, the metadata
for a lakehouse table is stored in another, special table: a metadata
table in Hudi and a transaction log checkpoint (in a combination of
Parquet and JSON formats) in Delta Lake [12, 21]. Transactions do
not write to this table directly, but instead write log records that
are periodically compacted into the table using a merge-on-read
strategy. In the hierarchical format, used by Iceberg, metadata is
stored in a hierarchy of manifest files [14]. Each file in the bottom
level stores metadata for a set of data files, which each file in the
upper level contains aggregate metadata for a set of manifest files
in the layer below. This is analogous to the tabular format, but with
the upper level acting as a table index.

In order to gather the data needed to plan queries, lakehouse
systems adopt two different metadata access schemes with different
scalability tradeoffs. Queries over Delta Lake and Hudi are typically
planned in a distributed fashion, as a batch job must scan the meta-
data table to find all files involved in a query so they can be used in
query planning. By contrast, queries over Iceberg are planned by
a single node that uses the upper level of the manifest hierarchy
as an index to minimize the number of reads it must make to the
lower level [13]. As we show in Section 3.4, single-node planning
improves performance for small queries where the overhead of
distributed query planning is high, but may not scale as well as
distributed query planning to full scans on large tables with many
files. It is an interesting research question whether query planners
can be improved to use a cost model to intelligently choose between
these planning strategies.

2.3 Data Update Strategies

Lakehouse storage systems adopt two strategies for updating data,
with differing tradeoffs between read and write performance:

The Copy-On-Write (CoW) strategy identifies the files con-
taining records that need to be updated and eagerly rewrites them
to new files with the updated data, thus incurring a high write
amplification but no read amplification.

The Merge-On-Read (MoR) strategy does not rewrite files.
It instead writes out information about record-level changes in
additional files and defers the reconciliation until query time, thus
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producing lower write amplification (i.e., faster writes than CoW)
but higher read amplification (i.e., slower reads than CoW). Lower
write latency at the cost of read latency is sometime desired in
workloads that frequently apply record-level changes (for example,
continuously replicating changes from a one database to another).

All three systems support the CoW strategy, as most lakehouse
workloads favor high read performance. Iceberg and Hudi currently
support the MoR strategy, and Delta is planning to support it as
well [9]. Iceberg (and in the future, Delta) MoR implementations
use auxiliary "tombstone" files that mark records in Parquet/ORC
data files. At query time, these tombstoned records are filtered
out. Record updates are implemented by tombstoning the existing
record and writing the updated record into Parquet/ORC files. By
contrast, the Hudi implementation of MoR stores all the record-
level inserts, deletes and updates in row-based Avro files. On query,
Hudi reconciles these changes while reading data from the Parquet
files. It is worth nothing that Hudi by default deduplicates and sorts
the ingested data by keys, thus incurring additional write latency
even when using MoR. We examine the performance of the CoW
and MoR update strategies in detail in Section 3.3.

3 BENCHMARKING LAKEHOUSE SYSTEMS

In this section, we compare the three lakehouse storage systems,
focusing on three main areas: end-to-end performance, performance
of different data ingestion strategies, and performance of different
metadata access strategies during query planning. We have open
sourced our benchmark suite, LHBench, and implementations for
all three formats at https://github.com/lhbench/lhbench.

3.1 Experimental Setup

We run all experiments using Apache Spark on AWS EMR 6.9.0
storing data in AWS S3 using Delta Lake 2.2.0, Apache Hudi 0.12.0,
and Apache Iceberg 1.1.0. This version of EMR is based on Apache
Spark 3.3.0. We choose EMR because it lets us compare the three
lakehouse formats fairly, as it supports all of them but is not spe-
cially optimized for any of them. We use the default out-of-the-box
configuration for all three lakehouse systems and for EMR, without
any manual tuning except increasing the Spark driver JVM mem-
ory size to 4 GB to eliminate out-of-memory errors. We choose
to use the default configurations because lakehouse systems are,
by their nature, intended to support a diverse range of workloads
(from large-scale batch processing to low-latency BI), and systems
that work out-of-the-box without per-workload tuning are easier
for users. We perform all experiments with 16 workers on AWS
i3.2xlarge instances with 8 vCPUs and 61 GiB of RAM each.

3.2 Load and Query Performance

We first evaluate the effects of different data lakehouse storage
formats on load times and query performance using the TPC-DS
benchmark suite. We load 3 TB of TPC-DS data into Delta Lake,
Hudi, and Iceberg then run all TPC-DS queries three times and
report the median runtime, showing results in Figure 1.

Looking at loading times, we find that Delta and Iceberg load in
approximately the same time, but Hudi is almost ten times slower
than either of them. This is because Hudi is optimized for keyed
upserts, not bulk data ingestion, and does expensive pre-processing
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Figure 1: Comparison of Delta Lake, Hudi and Iceberg 3 TB TPC-DS
load and query times, including four queries with large differences.

during data loading including key uniqueness checks and key re-
distribution.

Looking at query times, we find that, overall, TPC-DS runs 1.4x
faster on Delta Lake than on Hudi and 1.7X faster on Delta Lake
than on Iceberg. To investigate the reasons for this performance
difference, we examine individual queries. We look specifically at
Q90, a query where Delta Lake outperforms Hudi by an especially
large margin, and Q67, the most expensive query overall (account-
ing for 8% of total runtime). We find that Spark generates the same
query plan for these two queries for all the lakehouse formats.

The performance difference between the three lakehouse stor-
age systems is explained almost entirely by data reading time; this
is unsurprising as the engine and query plans are the same. For
example, in Q90, reading the TPC-DS Web Sales table (the largest
of the six tables accessed) took 6.5 minutes in Delta Lake across all
executor nodes, but 18.8 minutes in Hudi and 18.6 minutes in Ice-
berg. Delta Lake outperforms Hudi because Hudi targets a smaller
file size. For example, a single partition of the Store Sales table is
stored in one 128 MB file in Delta Lake but twenty-two 8.3 MB files
in Hudi. This reduces the efficiency of columnar compression and
increases overhead for the large table scans common in TPC-DS;
for example, to read the Web Sales Table in Q90, the executor must
read 2128 files (138 GB) in Delta Lake but 18443 files (186 GB) in
Hudi. Comparing Delta Lake and Iceberg, we find that both read the
same amount of bytes, but that Iceberg uses a custom-built Parquet
reader in Spark that is significantly slower than the default Spark
reader used by Delta Lake and Hudi. Iceberg’s support for column
drops and renames required custom functionality not present in
Apache Spark’s built-in Parquet reader.

While the performance of most queries follows the patterns just
described, explaining the overall performance difference, there are
some noteworthy exceptions. For very small queries such as Q68,
the performance bottleneck is often metadata operations used in
query planning. As our reported results are the medians of three
consecutive runs, these queries are fastest in Hudi because it caches
query plans. We examine metadata access strategies in more detail,
including from cold starts, in Section 3.4. Additionally, because
Iceberg uses the Spark Data Source v2 (DSv2) API instead of the
Data Source v1 API (DSv1) used by Delta Lake and Hudi, Spark
occasionally generates different query plans over data stored in
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Figure 2: Performance of the 100 GB TPC-DS incremental refresh
benchmark. The benchmark loads data, runs five queries (Q3, Q9,
Q34, Q42, and Q59), then merges changes into the table ten times and
runs these queries again. Hudi ran compaction in merge iteration
10, so we report it separately from 1-9. Iceberg results were run with
a higher S3 connection pool size due to timeout errors [16]. Delta
and Hudi results were run with the default EMR configuration.

Iceberg than over data stored in Delta Lake or Hudi. The DSv2 API
is less mature and does not report some metrics useful in query
planning, so this often results in less performant query plans over
Iceberg. For example, in Q9, Spark optimizes a complex aggregation
with a cross-join in Delta Lake and Hudi but not in Iceberg, leading
to the largest relative performance difference in all of TPC-DS.

3.3 Update Strategies

To evaluate the performance of Merge-on-Read (MoR) and Copy-on-
Write (CoW) update strategies, we run an end-to-end benchmark
based on the TPC-DS data refresh maintenance benchmark, as well
as a synthetic microbenchmark with varying merge source sizes.

3.3.1 TPC-DS Refresh Benchmark. The TPC-DS benchmark spec-
ification provides a set of data refresh operations that simulate
maintenance of a data warehouse [18, 31]. We evaluate Delta, Hudi,
and Iceberg against a 100 GB TPC-DS dataset. We test CoW in all
systems and MoR in Hudi and Iceberg only, because Delta 2.2.0
does not implement MoR. The benchmark first loads the 100 GB
TPC-DS base dataset, then runs five sample queries (Q3, Q9, Q34,



Analyzing and Comparing Lakehouse Storage Systems

—8— |ceberg (CoW) —&— Iceberg (MoR)

3 600 c
v 5
o

£ 10x
= 400 H
3 »
@ >
2200 g
2 I

0 1x

104 105 10° 104 105 10°

Rows Updated Rows Updated
Figure 3: Latency of a merge of varying sizes (left) into a synthetic
table with associated slowdown in query latency after the merge
(right). The merge rows are 50% inserts and 50% updates.

Q42, and Q59). It then runs a total of 10 refreshes (each for 3% of the
original dataset) using the MERGE INTO operation to update rows.
Finally, it reruns the five sample queries on the updated tables.

Figure 2 shows the latency of each stage of the refresh bench-
mark in each system. Hudi and Delta results are run with the default
EMR configuration with no change. We found that Iceberg 1.1.0
MoR consistently encountered S3 connection timeout errors in this
benchmark, leading to very long running times. We tried increasing
the S3 connection pool size for Iceberg runs per AWS EMR docu-
mentation [16], but it did not resolve the issue in Iceberg 1.1.0. We
therefore also report results with Iceberg 0.14.0 for MoR, which
performed well with the increased connection limit.

Merges in Hudi MoR are 1.3X faster than in Hudi CoW at the
cost of 3.2x slower queries post-merge. Both Hudi CoW and MoR
have poor write performance during the initial load due to addi-
tional pre-processing to distribute the data by key and rebalance
write file sizes. Delta’s performance on both merges and reads is
competitive, despite using only CoW, due to a combination of gen-
erating fewer files, faster scans (as discussed in Section 3.2), and a
more optimized MERGE command. Merges in Iceberg version 0.14.0
with MoR are 1.4X faster than CoW. Post-merge query performance
remains similar between table modes.

3.3.2 Merge Microbenchmark. Generated TPC-DS refresh data
does not have a configurable scale parameter. To better understand
the impact of the size of a refresh on merge and query performance,
we also benchmark Iceberg CoW 1.1.0 and Iceberg MoR 1.1.0 with
an isolated microbenchmark. We load a synthetic table with four
columns and then apply a single merge from a randomly sampled
table with a configurable fraction of the base table size. In addition
to the latency of the merge operation, we compare the slowdown
for a query after the merge. For each merge scale evaluated, 50% of
the rows are inserts while 50% are updates.

Figure 3 shows results for a 100 GB benchmark. Iceberg MoR
merge latency is consistently lower than that of Iceberg CoW except
for the 0.0001% merge configuration (due to fixed overheads in the
Iceberg MoR implementation). Iceberg MoR is 1.48x faster at the
largest merge configuration (0.1%). We expect Iceberg CoW and
MoR merge latency to converge for large merges approaching the
size of a full file. For reads, MoR experiences large slowdowns after
the merge is performed due to additional read amplification. Iceberg
must combine the incremental merge files with the larger columnar
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Figure 4: Startup (including query planning) and query execution
times of basic table operations on a varying amount of data stored
in 10 MB files in Delta Lake and Iceberg.

files from the initial load. At about 10,000 rows, Iceberg MoR query
latency exceeds that of Iceberg CoW.

3.4 Impact of Distributed Metadata Processing

We now examine the performance impact of lakehouse metadata
processing strategies on large tables stored in many files. We gen-
erate TPC-DS data (from the store_sales table) and store it in
a varying number of 10 MB files (1K to 200K files, or 10 GB to 2
TB of total data) in Delta Lake and Iceberg. We choose these two
systems to contrast their different metadata access strategies: Delta
Lake distributes metadata processing during query planning by
running it on Spark, while Iceberg runs it on a single node. To
isolate the impact of metadata operations, we use three queries
with high selectivity: one accessing a single row, one accessing a
single partition, and one accessing only rows containing a specific
value (which allows both systems to minimize the number of files
scanned using zone maps). We measure both the query startup time,
defined as the time elapsed between when a query is submitted and
when the first data scan job begins executing, and the total query
execution time. All measurements are taken from a warm start as
the median of three runs. We plot the results in Figure 4.

For these selective queries, metadata access strategies have a
large effect on performance, and are the bottleneck for larger tables.
Specifically, while Iceberg’s single-node query planning performs
better for smaller tables, Delta Lake’s distributed planning scales
better and improves performance by 7-12X for a 200K file table.

4 RELATED WORK

To provide low-cost, directly-accessible storage, lakehouse systems
build on cloud object stores and data lakes such as S3, ADLS, HDFS,
and Google Cloud Storage. However, these systems provide a min-
imal interface based on basic primitives such as PUT, GET, and
LIST. Lakehouse systems augment data lakes with advanced data
management features such as ACID transactions and metadata
management for efficient query optimization. There has been much
prior work on building ACID transactions on weakly consistent
stores. For example, Brantner et al. [25] showed how to build a
transactional database on top of S3, although their focus was on
supporting highly concurrent small operations (OLTP) not large
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analytical queries. Percolator [32] bolted ACID transactions onto
BigTable using multi-version concurrency control, much like Delta
Lake, Hudi and Iceberg, but otherwise used BigTable’s query ex-
ecutor unmodified.

Cloud data warehouses, such as Redshift and Snowflake, provide
scalable management of structured data, supporting DBMS features
such as transactions and query optimization with a focus on ana-
lytics. These systems typically use columnar architectures inspired
by MonetDB/X100 [29] and C-Store [33]. Some of them ingest data
into a specialized format that must later be reconciled with the
steady-state storage format (for example, by C-Store’s tuple mover),
similar to the merge-on-read strategy used by some lakehouse
systems. To improve scalability, cloud data warehouses are increas-
ingly adopting a disaggregated architecture where data resides in a
cloud object store but is locally cached on database servers during
query execution [34]. Hence, warehouse and lakehouse systems
are converging, as both rely on low-cost object storage. However,
unlike lakehouse storage formats, data warehouses do not provide
directly accessible storage through an open data format.

5 CONCLUSION AND OPEN QUESTIONS

The design of lakehouse systems involves important tradeoffs
around transaction coordination, metadata storage, and data inges-
tion strategies that significantly effect performance. Intelligently
navigating these tradeoffs is critical to efficiently executing diverse
real-world workloads. In this paper, we discussed these tradeoffs
in detail and proposed and evaluated an open-source benchmark
suite, LHBench, for future researchers to use to study lakehouse
systems. We close with several suggestions for future research:

e How can lakehouse systems best balance ingest latency and
query latency? Can data merges be pushed off of the critical
path and done asynchronously without impacting query la-
tency? And can systems automatically implement an optimal
compaction strategy for a given workload?

e Can we use a cost model to intelligently choose between query
planning strategies, using an indexed search to plan small or
highly selective queries on a single node but a distributed meta-
data query to plan larger queries?

e Can lakehouse systems efficiently support high write QPS un-
der concurrency? Currently, this is challenging because lake-
house systems must write to the underlying object store to
update some metadata on every write query, and these systems
have high latency (often >50 ms), which limits overall QPS.
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