
Solving Large-Scale Granular Resource Allocation
Problems Efficiently with POP

Deepak Narayanan
★
, Fiodar Kazhamiaka

★
, Firas Abuzaid

★
, Peter Kraft

★
, Akshay Agrawal

★
,

Srikanth Kandula
†
, Stephen Boyd

★
, Matei Zaharia

★

★Stanford University †Microsoft Research

Abstract
Resource allocation problems in many computer systems

can be formulated as mathematical optimization problems.

However, finding exact solutions to these problems using off-

the-shelf solvers is often intractable for large problem sizes

with tight SLAs, leading system designers to rely on cheap,

heuristic algorithms. We observe, however, that many allo-

cation problems are granular : they consist of a large number

of clients and resources, each client requests a small fraction

of the total number of resources, and clients can interchange-

ably use different resources. For these problems, we propose

an alternative approach that reuses the original optimization

problem formulation and leads to better allocations than

domain-specific heuristics. Our technique, Partitioned Opti-

mization Problems (POP), randomly splits the problem into

smaller problems (with a subset of the clients and resources

in the system) and coalesces the resulting sub-allocations

into a global allocation for all clients. We provide theoretical

and empirical evidence as to why random partitioning works

well. In our experiments, POP achieves allocations within

1.5% of the optimal with orders-of-magnitude improvements

in runtime compared to existing systems for cluster schedul-

ing, traffic engineering, and load balancing.

CCS Concepts. • Networks → Traffic engineering algo-
rithms; Network resources allocation; • Computer systems
organization → Cloud computing; • Theory of compu-
tation → Scheduling algorithms.

Keywords. Resource scheduling, optimization problems in

computer systems, cluster scheduling, traffic engineering,

load balancing.
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Figure 1. Tradeoff space between allocation quality (objective-

dependent) and runtime. Our proposed technique (POP) is faster

than directly solving mathematical programs, and computes better

allocations than existing heuristic algorithms.

1 Introduction
As workloads become more computationally expensive and

computer systems become larger, it has become common

for systems to be shared among multiple users. As a result,

deciding how resources (e.g., GPUs, links, servers) should be

shared amongst various clients while optimizing for many

macro-objectives is important across a number of domains

(e.g., cluster scheduling, traffic engineering, load balancing).

Resource allocation problems can often be formulated as

mathematical optimization programs [5, 19, 27, 29, 32, 33, 38,

40, 45]; the output of these programs is the allocation of re-

sources (e.g., accelerators, servers, or network links) to each

client (e.g., jobs, data shards, or traffic commodities). Unfortu-

nately, solving thesemathematical programs can be computa-

tionally expensive (Figure 1). The worst-case complexity for

linear programs is approximately 𝑂 (𝑛2.373) [11, 28], where
𝑛 is the number of problem variables (even though LPs can

often be solved faster depending on problem structure), and

integer-linear programs are even more expensive. Mathe-

matical programs for resource allocation can have millions

of variables (e.g., one variable for every <client, resource>

pair) for large-scale systems, leading to long solution times

depending on the numerical solver used (e.g., 8 minutes for a

cluster with 1000 jobs using SCS [34, 35]). Moreover, alloca-

tions often need to be recomputed frequently to keep up with

dynamic changes in the system. Consequently, production

systems such as B4 and BwE [23, 27] for traffic engineering,

the Accordion load balancer [42] for distributed databases,

and the Gavel job scheduler [32], hit performance bottle-

necks when the numbers of clients and resources increase.

https://doi.org/10.1145/3477132.3483588


Figure 2. Comparison of Gavel's fair-sharing policy compared to
its POP variants and Gandiva [49] on a GPU cluster. The scatterplot
shows runtimes and mean allocation quality across 2048 jobs on a
cluster with 1536 GPUs. POP-: uses: sub-problems.

Thus, the conventional wisdom in the systems community
is that solving these programsdirectlyoften takes too long.
Instead, production systems and researchers frequently use
heuristics that are cheaper to compute. It is common to see
some version of the following statement in a paper:

�Since these algorithms take a long time, they
are not practical for real-world deployments. In-
stead, they provide a baseline with which to com-
pare faster approximation algorithms.� � Taft [45].

The partition-placement algorithm in E-Store [45], the space-
sharing-aware policy in Gandiva [49], and cluster manage-
ment policies to allocate resources to containers in systems
like Kubernetes [2], DRS [22], and OpenShift [3] all rely on
heuristics. However, prior work shows that these heuristics
are hard to maintain as problems scale and inputs change [44],
are far from optimal (Figures 2, 9, and 13), and often do not
extend to slightly modi�ed objectives.

Although it seems that large optimization problems are
too expensive to solve directly, we observe that many alloca-
tion problems in computer systems share several exploitable
properties: the number of clients and resources is large, each
client requests a small fraction of the total number of re-
sources, and resources are fungible or substitutable (i.e., a job
can make similar progress usingdi�erent resources). For any
suchgranularallocation problem, we propose POP, which
stands for Partitioned Optimization Problems: a method for
quickly computing allocations byreusingthe original opti-
mization problem formulation on subsets of the input. On
several granular optimization problems, we found that POP
can give close-to-optimal results with orders-of-magnitude
faster runtimes than the full formulations. Importantly, since
POP reuses the original problem formulations, it can be im-
plemented in only a few lines of code.

The simplest way to apply POP is to divide clients and
resources among: identical copies of the given optimization
problem (each with a subset of the clients and resources).
Each sub-problem has fewer equations and variables, lead-
ing to a super-linear runtime speedup. The sub-problems
can also be executed in parallel. The overall allocation is a
union of the allocations from the individual sub-problems.
Our results show that randomly and evenly dividing clients

and resources among sub-problems works well when clients
are numerous and individually use only a small fraction of
all resources. Empirically, we show that POP's resource allo-
cations are nearly optimal on several optimization problems,
including using real-world inputs. We also prove that the
probability of a large optimality gap is small given an al-
location problem with certain simple properties. POP has
structural similarity with the �rst step of �primal decompo-
sition� in convex optimization [10], but can be applied to a
broader set of problems than those amenable to primal de-
composition (separable objective, coupled constraints). We
note that there can be other ways to POP an optimization
problem, but these are beyond the scope of this paper.

In the wild, allocation problems do not always �t the de�ni-
tion of granular as presented above, e.g., a tra�c engineering
problem could have �large� clients (commodities) with sub-
stantial bandwidth demand, or a client might have to use a
particular resource (e.g., link between two sites). Fortunately,
in some such cases, we can transform the problem into a gran-
ular problem using twogranularizationtechniques:client
splitting andresource splitting. The �large� clients, which in-
dividually require a sizable fraction of total resources, can
be split into multiple virtual clients who each receive partial
allocations from multiple sub-problems. Since the number
of �large� clients is small, by de�nition, POP's sub-problems
remain small and still achieve a sizable runtime speedup. Sim-
ilarly, resources can be split into multiple virtual resources,
each with a fraction of the full resource's capacity.

POP cannot be applied to every allocation problem in
systems because some problems are not granular or require
a non-trivial partitioning into sub-problems (e.g., due to
constraints). We discuss examples of such problems in Ÿ4.4.

Nevertheless, we found that POP is e�ective on a wide
range of important problems in recent computer systems re-
search. We evaluated POP on 6 di�erent allocation objectives
across three domains (cluster scheduling, tra�c engineer-
ing, and load balancing). POP achieves empirical runtime
improvements of up to100� compared to the original op-
timization problem formulations while staying within 1.5%
of optimal, and even up to20� faster and1”9� higher qual-
ity than heuristics. We integrated POP into real systems
like Gavel, and found that downstream metrics like average
job completion time and makespan are una�ected by using
POP. We also found granularization useful in using POP to
compute high-quality allocations for initially non-granular
problems, like tra�c engineering problems with a few large
�ows and links between speci�c sites. Our implementation
is available ath�ps://github.com/stanford-futuredata/POP.

2 Granular Allocation Problems
Computer systems are often shared amongclientsfrom mul-
tiple users (e.g., jobs in a cluster scheduler, commodities in
a Wide Area Network). These clients might then request



resources(e.g., GPUs or link capacity) from a central resource
allocator, which determines how to map resources to clients.
Resource allocation problems have three main components:

� Search Space of Allocations:Allocations specify how
resources should be shared between clients. In cluster
scheduling, an allocation can specify the fraction of
wall-clock time each active job should spend on dif-
ferent types of resources (e.g., types of GPUs like K80,
P100, V100, A100). In tra�c engineering, an allocation
can specify the �ow each commodity should receive
on di�erent links. Allocations can also reason through
the interactions between clients on di�erent resources
(e.g., the time fractionspairsof jobs should spend on
various resources [32, 49]).

� Objectives: The objective that an optimization prob-
lem maximizes or minimizes is a function over the
allocation, and speci�es the metric (e.g., dollar cost,
total �ow) that needs to be optimized in solving the
allocation problem. We observe that these functions
are typically amaxor sum over functions of per-client
allocations, but can be other arbitrary functions as well.
Convex functions are generally easier to optimize.

� Constraints: Most allocation problems also specify
constraints to ensure that both clients and resources
are not over-allocated (e.g., the total time fraction
given to a single job across resource types cannot ex-
ceed 1.0) and that various invariants are maintained.
These are speci�ed as functions over the allocation� .

The goal of a resource allocation problem is to �nd the
allocation value that is feasible (respects the provided con-
straints) and optimizes the provided objective.

We can then say an allocation problem isgranular if:

� Condition 1: The number of clients and resources is
large (on the order of 100s or more).

� Condition 2: Each client requests an insigni�cant
fraction (e.g.,Ÿ 1%) of the total available resources.

� Condition 3: Resources are fungible or substitutable.
In other words, if a client2 is given resourceAas part
of an allocation� , there are multiple other resources
A0 < Asuch that switching2 to A0 gives an allocation
� 0 with similar objective value (5¹� º � 5¹� 0º).

� Condition 4: If the resource allocation problem con-
siders interactions between multiple clients (e.g., two
jobs on the same server), then client combinations
should be fungible or substitutable too.

As we show in Ÿ4, resource allocation problems in a num-
ber of di�erent domains like cluster scheduling, tra�c engi-
neering, and load balancing, are granular. Furthermore, in
certain cases, problems that violate some of these conditions
can be made granular through granularization transforma-
tions (client and resource splitting in Ÿ3.3).

For example, in Gavel [32], a cluster scheduler for machine
learning training workloads on clusters of GPUs, each job
(client) requests a prescribed number of a resource (e.g., a spe-
ci�c kind of GPU) to make progress. Each job requests a small
fraction of the total number of GPUs available in the cluster,
and can be run on di�erent types of GPUs with varying e�-
ciencies. Additionally, when used with space sharing [32, 49],
each job can be run with many other jobs (again with varying
e�ciencies). We assume that dependencies that specify when
jobs are runnable are handled by a separate DAG scheduler.
This is standard in systems such as Spark and Hadoop [50].
Such cross-job �when can job- run� dependencies are not
under the purview of the resource schedulers considered in
this paper, which try to determine how resources should be
shared among alreadyrunnablejobs only.

In tra�c engineering setups such as those considered in
NCFlow [5], the clients are commodities, each resource is a
network link between two sites in the Wide Area Network,
and each commodity typically requests a small fraction of
the total available capacity.

In load balancing, the clients are data shards, the resources
are servers, and each shard can be handled by a small fraction
of the total number of servers available in the system.

3 Partitioned Optimization Problems
Granular resource allocation problems can be split into sub-
problems, where each sub-problem has a subset of the clients
and resources in the full allocation problem. We leverage
the large number of clients and resources to randomly par-
tition clients and resources into sub-problems; this proce-
dure yields high-quality allocations due to the law of large
numbers. We call this technique Partitioned Optimization
Problems (or POP for short). In the rest of this section, we
describe the intuition, procedure, and bene�ts of POP.

3.1 Intuition

Optimization problems for large systems take a long time to
solve in part because they have many variables. For example,
consider an optimization problem that involves scheduling
= jobs on< cloud VMs. Each VM has varying amounts of
resources (e.g., CPU cores, GPUs, and RAM). To express the
possibility of any job being assigned to any VM, an= � <
matrix of variables would be needed; for104 jobs and104

VMs, the problem has108 variables. Contemporary solvers
often take hours to solve such problems, although the exact
runtime depends on problem properties such as sparsity [48].

We can achieve much faster allocation computation times
by decomposing the problem; for example, the problem of
scheduling103 jobs on103 VMs (100� fewer variables) is
much more tractable. This procedure of breaking up the
larger problem into sub-problemsreduces the search space
explored by the solver, since interactions between all com-
binations of clients and resources are no longer considered.



Algorithm 1 POP Procedure.

Input: Clients and their attributes- = »G1• G2• ” ” ” • G=¼, re-
sources and their attributes. = »~1•~2• ” ” ” •~< ¼, function
to compute allocationsget_allocation : ¹-• . º ! � ,
number of partitions: , (optional) splitting attributeB, (op-
tional) ratio of extra virtual clients allowedC.
Return: Allocation for all= clients,� .

// Optional: make the problem granular if it is not already.
- 0 = split_clients ¹-•B• Cº, . 0 = split_resources ¹. º

// This is thepartition step.
»- 0

1• - 0
2• ” ” ” • -0: ¼•». 0

1• . 0
2• ” ” ” • .0: ¼= partition ¹- 0• . 0• : º

// This is themap step, can be performed in parallel.
for 8in range ¹: º do

� 8 = get_allocation ¹- 0
8• . 0

8º
end for

// This is thereduce step; allocations� 8 are combined.
� = coalesce¹»� 1• � 2• ” ” ” • �: ¼º

Instead, only combinations ofsubsetsof clients and resources
are considered, which reduces runtime but also can reduce
the quality of the allocation. In light of this, the interaction
between clients and resources needs to be considered care-
fully to take into account the many global constraints in
the original problem, as well as the objective (e.g., fairness).
We �nd that on large granular resource allocation problems,
splitting clientsrandomlyand assigning an equal number
of resources among sub-problems reduces the search space
of feasible solutions that needs to be considered by solvers,
while still ensuring thatsomehigh-quality feasible points are
in the explored search space. This is the main intuition that
allows POP to be e�ective, returning allocations of similar
quality as the original formulation but faster.

3.2 Procedure for Granular Problems

The �rst step of POP is topartition larger allocation
problems into smaller allocation sub-problems. The type of
partitioning allowed is dependent on the objective and con-
straints of the allocation problem, and has implications on the
runtime speedups and quality of the returned allocation. We
can then re-use the map-reduce API [14, 50] (or divide-and-
conquer): each of these sub-problems can be solved in parallel
(map step), and then allocations from the sub-problems can
be reconciled into a larger allocation for the entire problem
(reduce step). We show pseudocode for this in Algorithm 1.

The partitioning step a�ects the runtime, the reconcil-
iation complexity, and ultimately the quality of the �nal
allocation. One straightforward approach that we explore in
this paper is to dividebothclients (e.g., jobs, shards, �ows)
and resources (e.g., servers, links) randomly intosub-systems,

Figure 3. POP partitions the system to reduce the number of opti-
mization problem variables. For a problem where the number of
variables is the number of clients times the number of resources, di-
viding clients and resources evenly among: sub-problems reduces
the number of variables in each sub-problem by: 2.

as shown in the top half of Figure 3. We �nd that this parti-
tioning scheme is e�ective even when clients have attributes
with skew (e.g., jobs in a shared cluster with various priority
levels, or data shards in query load balancing with di�erent
loads). Low-quality allocations can also result from clients
having vastly di�erent utilities with di�erent resources. For
example, a resource could be a network link between two
sites in a Wide Area Network (WAN). A commodity might
haveto use this link to send tra�c between these two sites.
This paper shows how client and resource splitting (Ÿ3.3)
can be used to transform some of these �hard� problems into
a form that is then amenable torandom partitioning. Other
broad partitioning strategies can also be used depending
on problem structure (e.g., assign all �geographically close�
clients and resources to the same sub-problem), but these are
out of the scope of this paper. With random partitioning, the
reduce step is cheap, as simply concatenating sub-system al-
locations yields a feasible allocation to the original problem.

3.3 Transformations to Granularize Problems

In some cases, it might not be possible to either return an
allocation that is feasible or high quality by merely assigning
each client and resource to sub-problems at random when
using the POP procedure. Skewed workloads with heavy
tails are common in practice [46]. As an example, consider a
query load balancing problem where we try to assign shards
containing various keys to compute servers: our goal is to
spread load evenly amongst the available servers, which
can be formulated as a mixed-integer linear program (Ÿ4.3).
In such a setting, it is common for single shards to behot:
for example, Taylor Swift's Twitter account receives much
more request tra�c compared to the average Twitter user.
In light of these hot shards, it might not be possible to assign
shards to individual sub-problems and obtain sub-problems
with input distributions similar to the original problem (and
consequently leading to either an infeasible or poor-quality
allocation). Similarly, in the tra�c engineering problem, it is
common for a small number of commodities to have large



Figure 4. Client splitting, where wegranularizenon-granular prob-
lems by splitting clients based on a splitting attributeB.

Algorithm 2 Client Splitting Algorithm.

Input: Inputs - = »G1• G2• ” ” ” • G=¼, splitting attributesB,
ratio of extra virtual clientsCallowed.
Return: Mapping from real to virtual clientsfG8 ! » G0

9¼g.

Initialize queue max_heap¹º, mapping fg .
For all82 f1•2• ” ” ” •=g, queue”push¹G8”B• G8º.

while len¹queueº � ¹ 1 ¸ Cº � = do
Gmax = queue”pop¹º
SplitGmax by attributeBinto two copiesG1

max andG2
max

(G1
max”B• G2max”B= Gmax”B•2).

update_mapping¹Gmax•»G1
max• G2

max¼º
queue”push¹G1

max”B• G1maxº, queue”push¹G2
max”B• G2maxº

end while

demands [5]. Multiple such commodities in a sub-problem
would lead to sub-optimal total �ow. To transform these into
granular problems, we propose an algorithm tosplit variables
for clients and resources across several sub-problems.

Client Spli�ing. We require the user to specify the client
attribute that speci�es resource demand and can be split
across several sub-problems; all other attributes are copied
over without change. In the load balancing example, where
clients are data shards and attributes include shard load and
memory size, thesplitting attributeis the shard load. In the
tra�c engineering example, the splitting attribute is the com-
modity's tra�c demand. Given this splitting attribute, we
then construct a priority queue (heap) of the correspond-
ing attribute values for all clients. Given a thresholdC(Cis
typically a number less than 1) on the maximum number of
extravirtual clients allowed, we pop and split variables o�
the queue, and then push the new variables back into the
queue. Each split reduces the value of the splitting attribute
of the popped variable by a factor of 2. Importantly, each split
maintains the feasibility invariant: the coalesced allocation
across virtual clients will still be feasible (since the total sum
of splitting attribute values remains the same). By reducing
the value of the splitting attribute, client splitting breaks

down large clients into a collection of smaller clients with
equivalenttotal demand. The runtime of this algorithm is
$ ¹= log=º, where= is the number of clients, which is cheap
compared to the runtime of allocation computation in each
sub-problem. Algorithm 2 shows pseudocode, and the pro-
cedure is illustrated in Figure 4. Empirically, we found that
most problems are granular enough for POP to work well
with 0 split clients. Client splitting does not adversely im-
pact allocation quality, but can increase runtime. The hardest
problems in our experiments requiredC= 0”75. The optimal
value ofCis problem-speci�c and it is possible that users
may have to dynamically adaptCto get the best performance
from POP; however, in all of the considered production use-
cases in our experiments, we found that small values ofC
that worked well for historical problem instances continue
to work well on future problem instances.

Resource Spli�ing. If a client has to use a particular re-
source to make progress, POP will not work out of the box,
since randomly partitioning clients and resources into sub-
problems might result in a partitioning where the client is
not matched with its preferred resource. In such cases, each
resource can be split into: �virtual� resources (where: is
the number of sub-problems). Each virtual resource has: �
lower capacity, and is assigned to a di�erent sub-problem.
By ensuring that each virtual resource has lower capacity,
we ensure that the �nal coalesced allocation is still feasible.

Client and resource splitting are not always applicable. For
example, resource splitting cannot be used easily if the allo-
cation problem's objective depends on whether a resource
is used or not (e.g., an allocation problem that tries to mini-
mize the number of resources used). Similarly, client splitting
cannot be used easily for problems which take into account
interactions between multiple clients sharing a resource.

The resulting allocation problem after these transforma-
tion steps can be granular; if so, we can use POP to solve
it. After the partition step, we obtain allocations for each
virtual variable in the problem. Allocations assigned to vir-
tual variables corresponding to a single client need to be
summed to obtain the �nal allocation. We show how this can
be incorporated into the full POP procedure in Algorithm 1.

3.4 Bene�ts of POP

POP has several desirable properties:

� Simplicity: Users do not need to design new heuris-
tics from scratch to scale up to larger problem sizes,
and can reuse their original problem formulations.

� Generality across domains and solvers: POP can
be used to accelerate allocation computations for many
di�erent types of problem formulations across do-
mains. POP also easily integrates with di�erent solvers.

� Applicability to di�erent types of objectives: POP
can be applied for a broad class of objectives, such as



total �ow and maximum concurrent �ow in tra�c en-
gineering. These objectives have traditionally required
very di�erent approximation algorithms [16, 25].

� Composability: POP can be used for any granular
allocation problem in an outer loop as a simplifying
step; existing heuristics or approximation algorithms
can then be used to solve the resulting sub-problems.

� Tunability: The number of sub-problems is a knob
for trading o� between allocation quality and runtime.

4 Case Studies of Applying POP
In this section, we describe various resource allocation prob-
lems that are formulated as optimization problems: sched-
uling of jobs on clusters with possibly heterogeneous re-
sources [32], WAN tra�c engineering [ 5], and query load
balancing [12, 42, 45]. We show the fullexactproblem for-
mulations presented in the corresponding papers, and then
explain how POP can be used to compute high-quality allo-
cations faster. We also present some examples of problems
which are not granular and out of scope for POP.

4.1 Resource Allocation for Heterogeneous Clusters

We �rst discuss the optimization problem formulations used
in Gavel, which supports a range of complex objectives.
These can be accelerated using POP since these problems
are granular, i.e., meet the conditions in Ÿ2.

Gavel [32] is a cluster scheduler that assigns cluster re-
sources to jobs while optimizing various multi-job objectives
(e.g., fairness, makespan, cost). Gavel assumes that jobs can
be time sliced onto the available heterogeneous resources,
and decides what fractions of time each job should spend on
each resource type by solving an optimization problem. Op-
timizing these objectives can be computationally expensive
when scaled to 1000s of jobs, especially with �space sharing�
(jobs execute concurrently on the same resource), which
requires variables for everypair of runnable jobs.

Allocation problems in Gavel are expressed as optimiza-
tion problems in terms of a quantity callede�ective through-
put: the throughput a job observes when given a resource
mix according to an allocation� , computed as:

throughput¹job 9•allocation� º =
Õ

8

) 98� � 98”

) 98is the raw throughput of job9on resource type8. In Gavel,
vanilla heterogeneity-aware allocations� 98are assigned to
each combination of job9and GPU type8. � 98represents the
fraction of wall-clock time that a job9should spend on the
GPU type8. We now show formulations for three objectives.

Max-Min Fairness. The Least Attained Service policy [20]
tries to give each job an equal resource share of the cluster.
The heterogeneity-aware version of this policy can be ex-
pressed as a max-min optimization problem over all active
jobs in the cluster. We assume that each job9has fair-share

weightF 9 and requestsI 9 GPUs. Then, to take into account
the impact of moving a job between GPU types, we �nd the
max-min allocation of normalized e�ective throughputs:

Maximize� min
9

1
F 9

throughput¹9• �º
throughput¹9• �equalº

� I 9”

� equal is the allocation given to job9assuming it receives
equal time share on each worker type in the cluster. We also
need to specify constraints to ensure that jobs and the cluster
are not over-provisioned (e.g., total GPU allocation time does
not exceed the total number of GPUs):

0 � � 98� 1 8¹ 9•8º
Í

8� 98� 1 89
Í

9� 98� I 9 � num_workers8 88

The above formulation can be extended to consider space
sharing [32, 49], where multiple jobs execute concurrently
on the GPU to improve GPU utilization, by only changing
the way e�ective throughput is computed; see the Gavel
paper [32] for details.

Proportional Fairness. Proportional fairness [6] tries to
maximize total utilization while still maintaining some mini-
mum level of service for each user (in this case, job). Propor-
tional fairness for GPU cluster scheduling can be formulated
as the following convex optimization problem:

Maximize�
Õ

9

log¹throughput¹9• �ºº”

Constraints are the same as before. Per-job weights and
other extensions are also possible (the above objective can be
interpreted as a sum of utilities, i.e., Maximize�

Í
8* 8¹� 8º).

Minimize Makespan. We can also minimize makespan (the
time taken by a collection of jobs to complete) using a similar
optimization problem framework. Letnum_steps9 be the
number of iterations remaining to train job9. The makespan
can then be computed as the maximum of the durations of all
active jobs; the duration of job9is just the ratio of the number
of iterations tothroughput¹9• �º. Mathematically, this can
be written as follows using the same above constraints:

Minimize� max
9

num_steps9
throughput¹9• �º

”

Using POP. We can use POP on these cluster scheduling
problems by partitioning the full set of jobs into job subsets,
and the cluster into sub-clusters. Each sub-cluster has an
equal number of resources (GPUs of each type), and jobs are
partitioned randomly into the job subsets. The POP solution
is feasible by construction. Since the cluster has multiple
resources of each type (e.g., GPU of speci�c generation),
the problem is granular by default, and does not require
additional transformations to be made granular. Additionally,
even when allowing job colocation (using space sharing),
jobs can make progress colocated with many other jobs.



4.2 Tra�c Engineering and Link Allocation

We next discuss optimization problem formulations that re-
quire both resource and client splitting to be solved accu-
rately and e�ciently by POP.

The problem of tra�c engineering for networks deter-
mines how �ows in a Wide Area Network (WAN) should be
allocated fractions of links of di�erent capacities to best sat-
isfy a set of demands. One might consider several objectives,
such as maximizing the total amount of satis�ed �ow, or
minimizing the extent to which any link is loaded to reserve
capacity for demand spikes.

Maximize Total Flow. The problem of maximizing the total
�ow, given a matrix of per-commodity demands� (each
commodity or �ow 9has a demand� 9), a pre-con�gured set
of paths%, and a list of edge capacities24, can be written as:

Maximize�
Õ

92�

� 9”

Subject to the constraints:

� 9 =
Í

? � ?
9 892 �

� 9 � � 9 892 �
Í

89•?2%9•42? � ?
9 � 24 84 2 �

� ?
9 � 0 8? 2 %• 92 �

� ?
9 is the �ow assigned to commodity9along path? (one

of the paths in%9). The constraints ensure that the total �ow
through an edge does not exceed the capacity of the edge,
that each commodity's �ow per path is positive, and each
commodity's �ow does not exceed its demand.

For every commodity, the set%consists of a pre-computed
set of paths between the source and target nodes [5].

Maximize Concurrent Flow. The objective only needs to
be changed to:

Maximize� min
92�

� 9”

The constraints are the same as above.

Using POP. To accelerate allocation computation using
POP, we need to granularize the original problems. In par-
ticular, we use resource splitting for all tra�c engineering
problems: we assign the entire network (all nodes and edges)
to each sub-problem (but each link with a fraction of the total
capacity), and distribute commodities across sub-problems.
We do not shard the network itself (i.e., assign each link to a
single sub-problem only) since tra�c can �ow between any
pair of nodes and the di�erence in utility for any commodity
when using a fraction of the available links in the network is
high (links between speci�c sites mayneedto be used to sus-
tain su�ciently high �ow). By assigning each sub-problem a
link with a fraction of the total capacity, we ensure that the
�nal allocation from POP is feasible. For speci�c problems
with large commodities, we also use client splitting.

4.3 Query Load Balancing

Systems like Accordion [42], E-Store [45], and Kairos [12]
need to determine how to place data items in a distributed
store to spread load across available servers.

We consider the problem of load balancing data shards
(collections of data items). This is similar to the single-tier
load balancer in E-Store, but acting on collections of data
items instead of individual tuples. The objective is to mini-
mize shard movement across servers as load changes, while
constraining the load on each server to be within a toler-
ancen of average system load! . Each shard8has load;8 and
memory footprint 58. Each server9has a memory capacity
of memory9 that restricts the number of shards it can host.
The initial placement of shards is given by a matrix) , where
) 8 9= 1 if partition 8is on server9. � is a shard-to-server map,
where� 8 9is the fraction of queries on partition8served by
9, and� 0

8 9= 1 if � 8 9¡ 0, 0 otherwise. Finding the balanced
shard-to-server map that minimizes data movement can then
be formulated as a mixed-integer linear program:

Minimize�

Õ

8

Õ

9

¹1 � ) 8 9º� 0
8 958”

Subject to the constraints:

! � n �
Í

8� 8 9;8 � ! ¸ n 89
Í

9� 8 9= 1 88
Í

8� 0
8 958 � memory9 89

� 8 9Ÿ � 0
8 9� � 8 9¸ 1 8¹8• 9º

Using POP. The load balancing problem can be accelerated
using POP by dividing the shard set and server cluster into
shard subsets and server sub-clusters, while ensuring that
each shard subset has the same total load.

4.4 When is POP Not Applicable?

Although POP can be used on a number of di�erent resource
allocation problems, it cannot be used forall possible prob-
lem formulations. Here, we present a few examples of re-
source allocation problems where POP with random parti-
tioning cannotbe used.

Capacitated Facility Location. The capacitated facility lo-
cation problem tries to minimize the cost of satisfying users'
demand given a set of processing facilities. Each facility has
a processing capacity, and also a �leasing cost� if used at all
(if a facility is not processing any demand, it has a leasing
cost of 0). The cost of processing some demand by a facility
is proportional to the distance of the facility from the user.
Problems where a user is only close to a single facility are not
amenable to POP and violatecondition 3 in the de�nition
of granularity: partitionings of the problem where the user is
not placed into the same sub-problem with the facility closest
to them would lead to a low-quality allocation. Additionally,



resource splitting cannot be used to make the problem granu-
lar, since the objective explicitly takes into account whether
facilities are used or not, and creating multiple variables
for a single <client, resource> pair would require additional
constraintsacrosssub-problems. More generally, resource
allocation problems where clients prefer one resource over
all other available resources by a large amount are a poor �t
for POP unless resource splitting can be used.

Tra�c Engineering. A variant of the tra�c engineering
problem from Ÿ4.2 could include hard constraints like ��ows
A and B should / should not use the same link�. This violates
condition 4 in the de�nition of granularity. Randomly par-
titioning clients and resources into sub-problems would not
work all the time (e.g., random partitioning could drop �ows
A and B into di�erent sub-problems when �ows A and B
need to use the same link); smarter partitioning algorithms
can mitigate this by considering a�nity between �ows, but
supporting these is left to future work.

Global Rescheduling with Plan-Ahead. TetriSched [47]
is a scheduler that can take into account upcoming resource
reservations when deciding how to allocate resources to jobs.
TetriSched allows preferences to be speci�ed declaratively
(e.g., a job comes in at a speci�c start time and needs to be
completed by a speci�c end time). These preferences are then
compiled into a mixed-integer linear program (MILP). These
MILPs can be accelerated using POP by dividing the jobs and
resources into job and resource subsets, and solving each sub-
problem independently. However, TetriSched also supports
combinatorial constraints, such as �a particular set of: jobs
must use the same resource�, which cannot be supported by
POP without smarter partitioning algorithms.

5 Analysis
The e�ectiveness of POP is directly tied to how clients and
resources are partitioned across sub-problems. In this section,
we consider a simple resource allocation problem and prove
that the probability of a large optimality gap with the POP
procedure and random partitioning is low, discuss how POP
relates toprimal decomposition(a technique used in convex
optimization to decompose certain types of optimization
problems), and also note the expected runtime bene�ts.

5.1 Theoretical Analysis for a Simple Problem

In settings with large numbers of clients, POP with random
partitioning works well. In this section, we consider a simpli-
�ed allocation problem and compute an upper bound on the
probability that POP (using: sub-problems) with random
partitioning results in a low-quality allocation.

The allocation problem we consider assigns servers to jobs.
We assume that the problem has the following properties:

� = jobs and servers. Each job is allocated a single server.
� Adistinct server types (equal number of each type).

Figure 5. Simple partitioning problem where jobs are assigned
servers (or resources). Each job8derives utilityD8•1 from resource
1 andD8•2 from resource 2.

� Job8has utility D8•Bon resource typeB.
� The largest di�erence in utility for any job across any

two servers isDmaxgap.
A job is �type-B� if it achieves highest utility on a type-B
server. With two server types, we have type-1 and type-2
jobs (shown in Figure 5).

The objective of this problem is to maximize the overall
utility of the allocation, de�ned as the sum of every job's
utility on its assigned server.

Now, if we use POP to solve this problem, we would
equally partition servers of each type into sub-clusters, ran-
domly assign jobs to sub-clusters, and then solve assignment
problems separately for each sub-cluster. We wish to answer
the following questions in this regime:

1. What is the optimality gap of the solution using the
POP procedure (with respect to the optimal solution
for the full problem)?

2. How do the values of=, A, Dmaxgap, and: a�ect this
optimality gap?

One way to quantify the optimality gap is to count the
number of �misplaced" jobs in each sub-problem (e.g., type-1
jobs that are not assigned �resource 1� because there were too
many other type-1 jobs in the relevant sub-problem). De�ne
@B•Cto be the number of type-Bresources that are misplaced
in sub-problemC. The distance from optimal utility, i.e., opti-
mality gap, is bounded by the product of this number and
Dmaxgapadded across all resource types and sub-problems:

Optimality gap�
AÕ

B=1

:Õ

C=1

@B•CDmaxgap (1)

We note that this is a loose bound for the gap, since jobs
with large resource utility gaps would be allocated their
optimal resource even within a sub-problem.

To quantify the performance gap between POP and opti-
mal solutions, we now need a sense of how big@B•Ccan be
in practice. We walk through the full derivation of a bound
on the probability that the optimality gap exceeds a given
value in the Appendix, but brie�y sketch it here. The ran-
dom assignment of all type-Bjobs to sub-problems can be
interpreted as Bernoulli trials where the probability that
any given type-A job is placed in a given sub-problem is



1•: . We then use a classical Cherno� bound [31] to com-
pute the probability that each@B•Cexceeds a fractionX of
its expected value (=•A:). We can combine these across all
job types and sub-problems using the union bound to �nd
an upper limit on the probability that the total number of
misplaced jobs exceedsX=. This allows us to bound the dis-
tance of a randomly-partitioned POP allocation from optimal
utility by XDmaxgap=:

Pr
�
* ¹� � º � * ¹� POPº � XDmaxgap=

�
� A: exp

� � X2=
¹2 ¸ XºA:

�

(2)

where� � is an optimal allocation,� POPis the allocation re-
turned by the POP procedure, and* ¹º : � ! D is a function
that maps an allocation� to a scalar value (the utility).

Equation 2 de�nes the relationship between the problem
parameters (=, A,Dmaxgapand: ) and the probability that the
optimality gap exceeds a given fractionXof the worst-case
gap if every job is allocated its worst resource (Dmaxgap=).
Concretely, the probability decays exponentially with=; as
the problem gets larger, the probability of having a large op-
timality gap becomes very small. The probability also decays
exponentially withX2. On the other hand, the probability of
a large optimality gap increases asA, : , andDmaxgapincrease;
this is to be expected, as having many sub-problems and
many resource types increases problem heterogeneity and
makes it more likely for a random partitioning to lead to
misplaced jobs and a lower-quality allocation.

To put this bound into perspective, consider a large cluster
with 1 million jobs,: = 10 sub-problems, andA= 4 resource
types of equal amounts (=•A: = 25•000); the probability that
more than 3% of jobs are not allocated their optimal resource
is upper bounded by 0.000614.

To summarize, the bound given in Equation 2 for a simple
allocation problem gives insight as to why POP works well
empirically for more complex granular resource allocation
problems like those described in Ÿ4.

5.2 Relationship to Primal Decomposition

For many problems, such as when the objective function is
separable and convex (that is, the objective can be expressed
in the form �Maximize* ¹� º =

Í
8* 8¹� 8º� with per-job util-

ity functions* 8), POP can be interpreted as the �rst iteration
of primal decomposition, a well-known method from con-
vex optimization [10]. Primal decomposition is an iterative
technique; for a resource allocation problem, it works by
decomposing the large problem into several smaller alloca-
tion problems, each with a subset of clients and resources.
In each iteration, every sub-problem is solved individually,
and then the dual variables of each sub-problem are used to
determine how to shift resources between the sub-problems;
those found to be relatively resource-starved are given more
resources from other sub-problems for the next iteration.

Like many other techniques from the optimization litera-
ture, primal decomposition works for a restricted set of prob-
lems, namely those with separable objectives and certain
types of constraints (see Boyd et al. [10]). These restrictions
come into e�ect during the resource-shifting phase prior
to subsequent iterations. For a �well-partitioned� problem
with a separable objective (i.e., each sub-problem has suf-
�cient resources), one iteration of primal decomposition is
often su�cient and resource shifting is not required [10].
Primal decomposition and POP are thus equivalent for these
problems, explaining why POP can produce a high-quality
allocation e�ciently. However, this explanation does not
apply to other problems where primal decomposition cannot
be used (e.g., non-convex problems, such as the MILP used
in the load balancing problem from Ÿ4.3), even though we
found POP to still be e�ective in such regimes.

5.3 Expected Runtime Bene�ts

We can estimate the runtime bene�ts of POP when used with
linear programs. Solvers for linear programs have worst-case
time complexity of$ ¹5¹=•<º0º (0 � 2”373[11] in the worst
case) where5¹=•<º is the number of variables (= clients and
< resources) in the problem. If5¹=•<º = = � < and both
clients and resources are partitioned across: sub-problems,
each sub-problem will have: 2� fewer variables, as illus-
trated in Figure 3. The asymptotic runtime savings are then
proportional to: 20� 1 if each sub-problem is solved serially,
and proportional to: 20 if solved in parallel, assuming a cheap
reduce step. Some problems have an even larger potential
for runtime reduction. For example, if the allocation consid-
ers interactions between two jobs on the same resource, then
the problem would have=2< variables, and using POP would
lead to a larger runtime speedup (proportional to: 30� 1 if
each sub-problem is solved serially, and proportional to: 30

if solved in parallel).

6 Implementation
POP is easy to implement on top of a number of existing
solvers for a variety of di�erent granular allocation prob-
lems. The main method that needs to be implemented is
partition , which given a collection of clients and resources,
assigns them to sub-problems. The subsequentmapstep then
involves calling the existing solver routine for the already-
written problem formulation on the smaller sub-problem.
Thereduce step is similarly simple, and involves concatenat-
ing the allocations obtained from each of the sub-problems
and summing allocations across virtual clients and resources
(when using client and resource splitting).

We implemented POP on top of a number of di�erent
solvers (MOSEK usingcvxpy [7, 15], Gurobi [21], and a cus-
tom solver [6] that uses PyTorch [37]) for problems across
diverse domains, inŸ 20 lines of code in each case. We im-
plemented client splitting in about 100 lines of Python code.



7 Evaluation
In this section, we seek to answer the following questions:

1. What is the e�ect of POP on allocation quality and
execution time on granular allocation problems? How
does it compare to relevant heuristics?

2. Does POP work across a range of solvers and types of
optimization problems?

3. How e�ective are POP's client and resource splitting
optimizations in generating high-quality allocations?

4. How does random partitioning compare to other more
sophisticated problem partitioning strategies?

We evaluate POP on problems from three domains:
1. GPU cluster scheduling , where we apply POP to

solve the optimization problems used in Gavel (Ÿ4.1),
and compare with the greedy Gandiva policy [49].

2. Tra�c engineering across Wide Area Networks, where
we apply POP to solve the problem formulations in
Ÿ4.2, and compare to CSPF and NCFlow [5].

3. Shard load balancing in distributed storage systems,
where we apply POP on the problem formulation in
Ÿ4.3, and compare to a heuristic from E-Store [45].

Where relevant, we integrate POP into systems such as
Gavel [32] to measure the end-to-end impact of POP on appli-
cation performance. Our results span three di�erent cluster
scheduling policies (max-min fairness, minimize makespan,
and proportional fairness), two tra�c engineering policies
(maximize total �ow, and maximize concurrent �ow), and
one load balancing policy (minimize number of shard trans-
fers as load changes).

We �rst present end-to-end experiments, then present
some microbenchmarks that examine the impact of various
algorithmic contributions in POP.

7.1 End-to-End Results

We �rst demonstrate POP's end-to-end e�ectiveness on vari-
ous problems. We compare to approaches based on allocation
quality, and time needed to compute the allocation; the run-
time for POP includes the runtime for solving the optimiza-
tion problems for sub-problems. In all of our experiments,
�Exact sol.� is the original unpartitioned problem formula-
tion and solver used by the reference system (e.g., Gavel for
cluster scheduling). We believe this is a fair baseline since it
represents what people use today if using optimization prob-
lem formulations for resource allocation. We use the same
evaluation methodology as related work. The total number
of threads given to solvers for our baselines and POP are the
same. If : sub-problems are solved in parallel when using
POP, each sub-problem uses1•: of the number of threads.
We also present heuristics where relevant. Unfortunately, not
every problem has a state-of-the-art heuristic. For example,
it is not clear how to use a heuristic to solve for an approxi-
mate proportionally-fair allocation. We explicitly note when
we use client or resource splitting.

Figure 6. Results for the max-min fairness policy (with space shar-
ing) for cluster scheduling for the formulation shown in Ÿ4.1 (�Exact
sol.�) and its POP variants. POP-: uses: sub-problems.

7.1.1 Cluster Scheduling

We used POP to accelerate various cluster scheduling poli-
cies supported by Gavel [32]. We then used these POP-ped
policies in Gavel's full simulator1 to measure the impact of
POP on end-to-end metrics of interest, like average job com-
pletion time and makespan for real traces. The traces and
methodology used are identical to those used in Gavel.

Max-Min Fairness. We show the trade-o� between run-
time and allocation quality for the max-min fairness policy
with space sharing on a large problem (20482 job pairs on
a 1536-GPU cluster) in Figure 2 (in the introduction). POP
leads to an extremely small change in the average e�ective
throughputs across all jobs (Ÿ 1%), with a 22.7� improve-
ment in runtime. Gandiva [49], on the other hand, uses a
heuristic to assign resources to job pairs, resulting in1”9�
worse allocation quality.

We unfortunately could not run end-to-end simulations
for such large problem sizes: the simulation involves run-
ning thousands of allocation problems, since an allocation
problem needs to be solved every time a new job arrives at
the cluster or an old job completes. This would take months
to run at scale by virtue of the number of problems that need
to be solved and the time taken for each problem. Instead, we
show full simulation results on more moderate problem sizes.
These experiments involve dynamic changes: the full simu-
lation involves new jobs coming in and old jobs completing,
and consequently the set of jobs is not static.

We ran experiments with 96 GPUs (32 V100, P100, and
K80 GPUs). The original heterogeneity-aware Least Attained
Service policy without space sharing has a small number of
variables (on the order of hundreds). Even on such smaller
problem sizes, the quality of allocation with POP is high,
with only up to a 5%drop in average JCT (not pictured).

Figure 6 shows the average JCT of the original Least At-
tained Service policy from Ÿ4.1, with space sharing, along
with three POP-i�ed versions using 2, 4, and 8 sub-problems.
With space sharing, the number of variables scales quadrati-
cally with the number of jobs: this leads to a performance

1The Gavel paper [32] shows that its simulator demonstrates performance
very similar to behavior on the physical cluster.



Figure 7. Results for the proportional fairness policy for cluster
scheduling for the formulation shown in Ÿ4.1 (�Exact sol.�) and its
POP variants. POP-: uses: sub-problems.

Figure 8. Results for the minimize makespan policy for cluster
scheduling for the formulation shown in Ÿ4.1 (�Exact sol.�) and its
POP variants. POP-: uses: sub-problems.

speedup of 11� with : = 8 compared to the full problem
formulation, and similar average JCT.

We see similar behavior for max-min fairness policies
when clients have more attributes (e.g., di�erent priority
levels). Average JCTs are almost identical when jobs request
multiple GPUs, and increase by 5% for high-priority jobs in
workloads containing a mix of low- and high-priority jobs,
using the Gavel simulator as before.

Proportional Fairness. We ran a simple experiment with
the proportional fairness policy with106 jobs and a similar
number of resources. Figure 7 shows POP combined with
a proportional fairness policy. This allocation problem is a
general convex optimization problem (not a linear program),
with a sum-of-log objective. For this problem, we implement
POP on top of a custom solver [6] that runs an order of
magnitude faster than commercial solvers for this particular
problem formulation. We see strong scaling performance
as we increase the number of sub-problems (4.9� reduction
in runtime with 8 sub-problems), with an extremely small
optimality gap (7 � 10� 5).

Minimize Makespan. Figure 8 shows the makespan of vari-
ants of the �minimize makespan� policy. This policy again
is a simple linear program with number of variables linear
in the number of jobs and resource types. Consequently, the
runtime improvements are lower (1”6� ), but the end-to-end
makespan over the trace is nearly identical.

7.1.2 Tra�c Engineering

We tested POP on several large networks (shown in Table 1)
from the Topology Zoo repository [26], with similar results.

Topology # Nodes # Edges

Kdl 754 1790
Cogentco 197 486
UsCarrier 158 378
Colt 153 354
GtsCe 149 386
TataNld 145 372
DialtelecomCz 138 302
Deltacom 113 322

Table 1. The WAN topologies used to benchmark POP for tra�c
engineering problems, obtained from Internet Topology Zoo [26].

Figure 9. Results for the max-�ow problem for tra�c engineering
for a single topology and tra�c matrix. The scatterplot shows
runtimes and total allocated �ow for the formulation shown in Ÿ4.2
(�Exact sol.�) and its POP variants, as well as CSPF and NCFlow.

For each topology, we benchmarked POP on sets of synthetic
tra�c matrices, which were generated using several tra�c
models:Gravity [8, 41], Uniform, Bimodal[8], andPoisson.
These tra�c matrices were previously used in NCFlow2 [5].
Poissonrepresents a skewed workload, where a small per-
centage of commodities dominate the network demand. For
this workload, we use the client-splitting algorithm from
Ÿ3.3 to improve allocation quality. We do not use the client-
splitting algorithm for the other tra�c matrices.

Total Flow. Figure 9 shows the trade-o� between runtime
and allocated �ow on the Kentucky Data Link network (Kdl
in Table 1), which has 754 nodes and 1790 edges spanning
the Eastern half of continental USA. We instantiated over
5 � 105 demands to up to 4 paths in the network. The �ow
allocated by POP is within 1.5% of optimal when using 64 sub-
problems, yet100� faster than the original problem. We also
compare favourably to the Constrained Shortest Path First
(CSPF) heuristic [17] and the recently-published NCFlow [5].
Note that NCFlow isnot a heuristic, but a state-of-the-art
approach that uses a problem decomposition technique ex-
plicitly tuned for the max-�ow problem.

Figure 10 shows the improvement in allocation quality
and runtime compared to the original LP formulation pre-
sented in Ÿ4 with POP using 16 sub-problems. Each point
in the scatterplot represents a di�erent topology and tra�c
matrix. We see larger speedups for the largerKdl topology.
We used client splitting with a threshold (C) of 0.75 for the

2The full set of tra�c matrices can be found here:h�ps://github.com/
netcontract/ncflow.
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