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Abstract

Multi-hop reasoning (i.e., reasoning across two or more documents) is a key
ingredient for NLP models that leverage large corpora to exhibit broad knowledge.
To retrieve evidence passages, multi-hop models must contend with a fast-growing
search space across the hops, represent complex queries that combine multiple
information needs, and resolve ambiguity about the best order in which to hop
between training passages. We tackle these problems via Baleen, a system that
improves the accuracy of multi-hop retrieval while learning robustly from weak
training signals in the many-hop setting. To tame the search space, we propose
condensed retrieval, a pipeline that summarizes the retrieved passages after each
hop into a single compact context. To model complex queries, we introduce a
focused late interaction retriever that allows different parts of the same query
representation to match disparate relevant passages. Lastly, to infer the hopping
dependencies among unordered training passages, we devise latent hop ordering, a
weak-supervision strategy in which the trained retriever itself selects the sequence
of hops. We evaluate Baleen on retrieval for two-hop question answering and
many-hop claim verification, establishing state-of-the-art performance.

1 Introduction

In open-domain reasoning, a model is tasked with retrieving evidence from a large corpus to answer
questions, verify claims, or otherwise exhibit broad knowledge. In practice, such open-domain tasks
often further require multi-hop reasoning, where the evidence must be extracted from two or more
documents. To do this effectively, a model must learn to use partial evidence it retrieves to bridge its
way to additional documents leading to an answer. In this vein, HotPotQA [31] contains complex
questions answerable by retrieving two passages from Wikipedia, while HoVer [13] contains claims
that can only be verified (or disproven) by combining facts from up to four Wikipedia passages.

Table 1 illustrates this using the claim “The MVP of [a] game Red Flaherty umpired was elected
to the Baseball Hall of Fame” from the HoVer validation set. To verify this claim, a HoVer model
must identify facts spread across three Wikipedia pages: Red Flaherty umpired in the World Series in
1955, 1958, 1965, and 1970. The MVP of the 1965 World Series was Sandy Koufax. Koufax was
later elected to the Baseball Hall of Fame.

This three-hop claim illustrates three major challenges in multi-hop retrieval. First, multi-hop queries
encompass multiple information needs; the claim above referenced facts from three disparate passages.
Second, retrieval errors in each hop propagate to subsequent hops. This can happen if the model
directly retrieves information about the Baseball Hall of Fame, confuses Red Flaherty with, say,
Robert Flaherty, or singles out the MVP of, say, the 1958 World Series, which Flaherty also umpired.
Third, due to the dependency between hops, retrievers must learn an effective sequence of hops,
where previously-retrieved clues lead to other relevant passages. These inter-passage dependencies
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Table 1: An example (multi-hop) claim Q0 to verify and an illustration of condensed retrieval queries
Qt after each hop t ≥ 1. Page titles are in bold. We shorten the Wikipedia sentences for presentation.

Q0 The MVP of [a] game Red Flaherty umpired was elected to the Baseball Hall of Fame.

Q1 The MVP of [a] game Red Flaherty umpired was elected to the Baseball Hall of Fame. Red Flaherty:
He umpired in World Series 1955, 1958, 1965, and 1970.

Q2 The MVP of [a] game Red Flaherty umpired was elected to the Baseball Hall of Fame. Red Flaherty:
He umpired in World Series 1955, 1958, 1965, and 1970. 1965 World Series: It is remembered for
MVP Sandy Koufax.

Q3 The MVP of [a] game Red Flaherty umpired was elected to the Baseball Hall of Fame. Red Flaherty:
He umpired in World Series 1955, 1958, 1965, and 1970. 1965 World Series: It is remembered for
MVP Sandy Koufax. Sandy Koufax: He was elected to the Baseball Hall of Fame.

can be non-obvious for many-hop problems with three or more passages, and are often left unlabeled,
as it can be expensive to annotate one (or every) sequence in which facts could be retrieved.

These challenges call for highly expressive query representations, robustness to retrieval errors, and
scalability to many hops over massive document collections. Existing systems fall short on one
or more of these criteria. For instance, many state-of-the-art systems rely on bag-of-words [23] or
single-vector dot-product [29] retrievers, whose capacity to model an open-domain question is limited
[17], let alone complex multi-hop queries. Furthermore, existing systems embed trade-offs when it
comes to “hopping”: they employ brittle greedy search, which limits recall per hop; or they employ
beam search over an exponential space, which reduces scalability to many hops; or they assume
explicit links that connect every passage with related entities, which ties them to link-structured
corpora. Lastly, to order the hops, many systems use fragile supervision heuristics (e.g., finding
passages whose page titles appear in other passages) tailored for particular datasets like HotPotQA.

We tackle these problems with Baleen,1 a scalable multi-hop reasoning system that improves accuracy
and robustness. We introduce a condensed retrieval architecture, where the retrieved facts from
each hop are summarized into a short context that becomes a part of the query for subsequent hops,
if any (Table 1). Unlike beam search, condensed retrieval allows effective scaling to many hops,
and we find that it complements greedy search (i.e., taking the best passage per hop) in improving
recall considerably. We then tackle the complexity of queries by proposing a focused late interaction
passage retriever (FLIPR), a robust learned search model that allow different parts of the same
query representation to match disparate relevant passages. FLIPR inherits the scalability of the
vanilla late interaction paradigm of ColBERT [16] but uniquely allows the same query to exhibit
tailored matching patterns against each target passage. Lastly, we devise latent hop ordering, a
weak-supervision strategy that uses the retriever itself to select effective hop paths.

We first test Baleen on the two-hop HotPotQA benchmark, finding evidence of saturation in retrieval:
we achieve 96.3% answer recall in the top-20 retrieved passages, up from 89.4% for existing work.
We then test Baleen’s ability to scale accurately to more hops, reporting our main results using the
recent many-hop HoVer task. We build a strong many-hop baseline model that combines recent
results from the open-domain question answering [17] and multi-hop [23] literatures. This baseline
combines ColBERT retrieval and standard greedy search with an ELECTRA [5] re-ranker, and
generalizes typical text-based heuristics to order the hops for training. After verifying its strong
results on HotPotQA, we show that it outperforms the official TF-IDF + BERT baseline of HoVer
by over 30 points in retrieval accuracy. Against this strong baseline itself, Baleen improves passage
retrieval accuracy by another 17 points, raising it to over 90% at k = 100 passages. Baleen also
improves the evidence extraction F1 score dramatically, outperforming even the oracle retrieval +
BERT results by Jiang et al. [13]. Our ablations (§5.4) show that Baleen’s FLIPR retriever, condenser
architecture, and latent supervision are essential to its strong performance.

1https://github.com/stanford-futuredata/Baleen
In marine biology, “baleen” refers to the filter-feeding system that baleen whales use to capture small organisms,
filtering out seawater. So too does our system seek to capture relevant facts from a sea of documents.
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2 Background and related work

Open-domain reasoning There is significant recent interest in NLP models that can solve tasks
by retrieving evidence from a large corpus. The most popular such task is arguably open-domain
question answering (OpenQA; Chen et al. [2]), which extends the well-studied machine reading
comprehension (MRC) problem over supplied question–passage pairs to answering questions given
only a large text corpus like Wikipedia. Other open-domain tasks span claim verification (e.g.,
FEVER; Thorne et al. [24]), question generation (e.g., with Jeopardy as in Lewis et al. [19]), and
open dialogue (e.g., Wizard of Wikipedia; Dinan et al. [8]), among others. Many of these datasets are
compiled in the recently-introduced KILT benchmark [21] for knowledge-intensive tasks. Among
models for these tasks, the most relevant to our work are OpenQA models that include learned
retrieval components. These include ORQA [18], REALM [10], and DPR [15]. Lewis et al. [19]
introduced RAG, which by virtue of a seq2seq architecture can tackle OpenQA as well as other
open-domain problems, including claim verification and question generation.

Multi-hop open-domain reasoning Most of the open-domain tasks from §2 can be solved by
finding one relevant passage in the corpus, often by design. In contrast, a number of recent works
explore multi-hop reasoning over multiple passages. These include QAngaroo [27] and 2WikiMulti-
HopQA [11], among others. While thus “multi-hop”, these tasks supply the relevant passages for
each example (possibly with small set of “distractor” candidates), and thus do not require retrieval
from a large corpus. To our knowledge, HotPotQA was the first large-scale open-domain multi-hop
task, particularly in its retrieval-oriented “fullwiki” setting. HotPotQA catalyzed much follow-up
research. However, it is limited to only two-hop questions, many of which may not require strong
multi-hop reasoning capabilities (see Chen and Durrett [3]; Wang et al. [26]), softening the retrieval
challenges discussed in §1. Very recently, Jiang et al. [13] introduced the HoVer many-hop verifica-
tion dataset, which contains two-, three-, and four-hop examples. HoVer contains just over 18,000
training examples, about 5× smaller than HotPotQA, adding to the challenge posed by HoVer.

Multi-hop open-domain models To conduct the “hops”, many prior multi-hop systems (e.g., Asai
et al. [1]; Zhao et al. [32]) assume explicit links that connect every passage with related entities. We
argue that this risks tying systems to link-structured knowledge bases (like Wikipedia) or producing
brittle architectures tailored for datasets constructed by following hyperlinks (like HotPotQA).
Recently, Xiong et al. [29] and Qi et al. [23] introduce MDR and IRRR, state-of-the-art systems
that assume no explicit link structure. Instead, they use an iterative retrieval paradigm—akin to that
introduced by Das et al. [6] and Feldman and El-Yaniv [9]—that retrieves passages relevant to the
question, reads these passages, and then formulates a new query for another hop if necessary. We
adopt this iterative formulation and tackle three major challenges for multi-hop retrieval.

ColBERT: late interaction paradigm Most learned-retrieval systems for OpenQA (§2) encode
every query and passage into a single dense vector. Khattab and Zaharia [16] argue that such single-
vector representations are not sufficiently expressive for retrieval in many scenarios and introduce late
interaction, a paradigm that represents every query and every document at a finer granularity: it uses
a vector for each constituent token. Within this paradigm, they propose ColBERT, a state-of-the-art
retriever wherein a BERT encoder embeds the query into a matrix of N vectors (given N tokens) and
encodes every passage in the corpus as matrix of M vectors (for M tokens per passage). The passage
representations are query-independent and thus are computed offline and indexed for fast retrieval.

During retrieval with query q, ColBERT assigns a score to a passage d by finding the maximum-
similarity (MaxSim) score between each vector in q’s representation and all the vectors of d and then
summing these MaxSim scores. This MaxSim-decomposed interaction enables scaling to massive
collections with millions of passages, as the token-level passage vectors can all be indexed for fast
nearest-neighbor search. Khattab and Zaharia [16] find this fine-grained matching to outperform
single-vector representations, a finding extended to open-domain question answering by Khattab et al.
[17]. In this work, we propose FLIPR (§3.1), a retriever with an improved late interaction mechanism
for complex multi-hop queries. Whereas existing retrievers, whether traditional (e.g., TF-IDF) or
neural [18; 15; 16], seek passages that match all of the query, multi-hop queries can be long and noisy
and need to match disparate contexts. FLIPR handles this explicitly with focused late interaction.
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Figure 1: The architecture of Baleen with iterative retrieval and condensing. The model begins with
iteration t = 1, provided initial user input Q0. For every t, FLIPR takes in Qt−1 and retrieves the
top-K passages, the condenser summarizes the relevant facts, and an updated query Qt is produced.
When t = T , QT is fed to the reader, which outputs a final prediction.

Relevance-guided supervision Khattab et al. [17] propose an iterative strategy for weakly-
supervising retrievers called relevance-guided supervision (RGS). RGS assumes that no labeled
passages are supplied for training the retriever. Instead, every training question is associated with a
short answer string whose presence in a passage is taken as a weak signal for relevance. RGS starts
with an off-the-shelf retriever and uses it to collect the top-k passages for each training question,
dividing these passages into positive and negative examples based on inclusion of the short answer
string. These examples are used to train a stronger retriever, which is then used to repeat this process
one or two times. We draw inspiration from RGS when designing latent hop ordering: unlike RGS,
we do have gold-labeled passages for training but we crucially have multiple hops, whose order is
not given. Lastly, our supervision for the first hop shares inspiration with GoldEn [22]. GoldEn uses
a bag-of-words model—and thus effectively term overlap—to identify the “more easily retrieved”
passage among just two for the two-hop task HotPotQA.

3 Baleen

We now introduce Baleen, which uses an iterative retrieval paradigm to find relevant facts in T ≥ 1
successive hops. On HotPotQA (§4) and HoVer (§5), we use Baleen with T = 2 and T = 4,
respectively. As illustrated in Table 1, the input to Baleen is a textual query Q0 like a question to
answer or a claim to verify. The goal of hop t is to take in query Qt−1 and output an updated query
Qt containing the initial input query and pertinent facts extracted from the t hops.

The Baleen architecture is depicted in Figure 1. In every hop, FLIPR (§3.1) uses Qt−1 to retrieve
K passages from the full corpus. These passages are fed into a two-stage condenser (§3.3), which
reads these passages and extracts the most relevant facts, which we model as individual sentences.
The facts are collected into a single sequence and added to Qt for the subsequent hop, if any. Once
all hops are complete, Baleen’s task-specific reader processes QT , which now contains the query
and all condensed facts, to solve the downstream task. If desired, the top-k passages from each hop
can also be collected and fed to a downstream model after retrieval is complete. Baleen’s retriever,
condenser, and reader are implemented as Transformer encoders [25] and are trained individually. We
use BERT-base [7] for FLIPR and, like Qi et al. [23] and Xiong et al. [29], use ELECTRA-large [5]
for the other components. For supervision, we introduce the latent hop ordering scheme (§3.2).

3.1 FLIPR: focused late interaction

The FLIPR encoders and interaction mechanism are shown in Figure 2. Our query encoder reads
Qt−1 and outputs a vector representation of every token in the input. Each query embedding interacts
with all passage embeddings via a MaxSim operator, permitting us to inherit the efficiency and
scalability of ColBERT [16]. While vanilla ColBERT sums all the MaxSim outputs indiscriminately,
FLIPR considers only the strongest-matching query embeddings for evaluating each passage: it sums
only the top-N̂ partial scores from N scores, with N̂ < N .

We refer to this top-k filter as a “focused” interaction. Intuitively, it allows the same query to
match multiple relevant passages that are contextually unrelated, by aligning—during training and
inference—a different subset of the query embeddings with different relevant passages. These
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Figure 2: The proposed FLIPR retriever. Sub-figure (a) depicts our encoders, which represent every
query and every passage as a set of embeddings. Given query q and document d, sub-figure (b)
illustrates our focused late-interaction mechanism. It finds the maximum-similarity score of each
query embedding qi and then focuses on the top-k matches only. This is analogously applied to the
fact embeddings fj (in orange), and both scores are finally added.

important subsets of the query are not always clear in advance. For instance, Q1 in Table 1 should
find the page about the 1965 World Series. This requires ignoring many distractions (e.g., World
Series 1970 and Baseball Hall of Fame) that seem important in isolation while focusing on other
phrases, namely a prominent “MVP” and the World Series 1965, a distinction evident only after
finding the document and attempting to match it against the query.

FLIPR applies this mechanism over the representation of the query and the facts separately, keeping
the top-N̂ and top-L̂ from N and L embeddings, respectively. More formally, the FLIPR score Sq,d

of a passage d given a query q is the summation Sq,d = SQ
q,d + SF

q,d over the scores corresponding to
the original query and to the facts. Define MQ

i = maxmj=1 Eqi · ET
dj

, that is, the maximum similarity

of the ith query embedding against the passage embeddings. The partial score SQ
q,d is computed as

SQ
q,d =

N̂∑
i=1

topN̂
{
MQ

i : i ∈ [N ]
}

(1)

where topN̂ is an operator that keeps the largest N̂ values in a set. We define SF
q,d similarly, using the

fact matches MF
i instead of MQ

i .

We confirm the gains of FLIPR against the state-of-the-art ColBERT retriever in §5.4. By decom-
posing retrieval into token-level maximum similarities and pre-computing document representations,
FLIPR maintains the scalability of the late interaction paradigm of ColBERT, reducing the candidate
generation stage of retrieval into highly-efficient approximate k-nearest neighbor searches. See
Appendix §B.1 for the implementation details of FLIPR.

3.2 Supervision: latent hop ordering

For every training example, our datasets supply unordered gold passages. However, dependencies
often exist in retrieval as Table 1 illustrates: a system needs to retrieve and read the page of Red
Flaherty to deduce that it needs information about 1965 World Series. Such dependencies can be
complex for 3- and 4-hop examples, as in HoVer, especially as multiple passages may be appropriate
to retrieve together in the same hop.

We propose a generic mechanism for identifying the best gold passage(s) to learn to retrieve next.
The key insight is that among the gold passages, a weakly-supervised retriever with strong inductive
biases would reliably “prefer” those passages it can more naturally retrieve, given the hops so far.
Thus, given Qt−1, we train the retriever with every remaining gold passage and, among those,
label as positives (for Qt−1) only those ranked highly by the model. We subsequently use these
weakly-labeled positives to train another retriever for all the hops.

Latent hop ordering is summarized in Algorithm 1, which assumes we have already trained a single-
hop (i.e., first-hop) retriever R1 in the manner of relevance-guided supervision (see §2). To start, we
use R1 to retrieve the top-k (e.g., k = 1000) passages for each training question (Line 2). We then
divide these passages into positives P1 and negatives N1 (Line 3). Positives are the highly-ranked
gold passages (i.e., the intersection of gold passages and the top-k̂ passages with, e.g., k̂ = 10) and
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Algorithm 1: Latent Hop Ordering, a simplified procedure
Input: Training queries & unordered gold passages; Corpus of all passages; A single-hop retriever, R1

Output: A multi-hop retriever, R̂

1 Q0 ← the original training queries;
2 Ranking1 ← R1.retrieve(Q0);
3 P1, N1 ← ExtractPositives(Ranking1);
4 Q1 ← Q0.expand(OracleFacts(P1));
5 for hop t← 2 to T do
6 Train a new retriever Rt using queries Qt−1 and negatives Nt−1. For positives, use gold passages not

part of any Ps for s < t.
7 Rankingt ← Rt.retrieve(Qt−1);
8 Pt, Nt ← ExtractPositives(Rankingt); Qt ← Qt−1.expand(OracleFacts(Pt));
9 end

10 For every hop t ∈ [T ], designate Qt−1 as queries, Pt as positives, and Pt as negatives.
11 Train a final retriever R̂ using this combined training data for all hops.
12 return R̂

negatives are the non-gold passages. Subsequently, we expand first-hop queries with the oracle facts
from P1 to obtain the queries for the second hop (Line 4).

We train a second-hop retriever R2 using the aforementioned queries and negatives (Line 6). As we
do not have second-hop positives, as a form of weak supervision, we train the retriever with all gold
passages (per query) besides those already in P1. Once trained, we use R2 to discover the second-hop
positives P2, to collect negatives N2, and to expand the queries (Lines 7 and 8). We repeat this
procedure for the third hop onward. Once this iterative procedure is complete, we have bootstrapped
positives (and negatives) corresponding to every retrieval hop for each query. We combine these
sets to train a single multi-hop retriever (Lines 10 and 11), which takes a query Qt−1 and learns to
discriminate the positives in Pt from the negatives in Nt for every t ∈ [T ]. In §5.4, we indeed find
that this generic latent procedure outperforms a typical hand-crafted heuristic that relies on trying to
match titles against the text.

3.3 Condenser: per-hop fact extraction

After each hop, the condenser proceeds in two stages. In the first stage, it reads Qt−1 and each
of the top-K passages retrieved by FLIPR. The input passages are divided into their constituent
sentences and every sentence is prepended with a special token. The output embedding corresponding
to these sentence markers are scored via a linear layer, assigning a score to each sentence in every
retrieved passage. We train the first-stage condenser with a cross-entropy loss over the sentences of
two passages, a positive and a negative.

Across the K passages, the top-k facts are identified and concatenated into the second-stage condenser
model. As above, we include special tokens between the sentences, and the second-stage condenser
assigns a score to every fact while attending jointly over all of the top-k facts, allowing a direct
comparison within the encoder. Every fact whose score is positive is selected to proceed, and the
other facts are discarded. We train the second-hop condenser over a set of 7–9 facts, some positive
and others (sampled) negative, using a linear combination of cross-entropy loss for each positive fact
(against all negatives) and binary cross-entropy loss for each individual fact.

In practice, this condensed architecture offers novel tradeoffs against a re-ranking pipeline. On
one hand, condensed retrieval scales better to more hops, as it represents the facts from K long
passages using only a few sentences. This may provide stronger interpretability, as the inputs to the
retriever (e.g., the example in Table 1) become more focused. On the other hand, re-ranking requires
only passage-level labels, which can be cheaper to collect, and provides the retriever with broader
context, which can help resolve ambiguous references. Empirically, we find the two approaches
to be complementary. In §5.4, we show that condensing is competitive with re-ranking (despite
much shorter context; Appendix §C) and that a single retriever that combines both pipelines together
substantially outperforms a standard rerank-only pipeline.
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Table 2: Retrieval results on HotPotQA-fullwiki (dev) showing saturation in finding the gold pair of
passages and passages with the answer string. Baleen and its ablation baseline ColBERT-Hop exceed
90–93% P-R@20 and 94–96% Ans-R@20, largely reducing the problem to reading the retrieved
passages. We obtain P-EM for MDR from Xiong et al. [29] and for IRRR [23] from the authors.

Model Retriever Architect. Supervis. P-EM P-R@20 Ans-R@20

MDR DPR Beam Heuristic 81.2 82.9 89.4
IRRR ELECTRA/BM25 Rerank Heuristic 84.1 - -

ColBERT-Hop (ablation) ColBERT Rerank Heuristic 85.2 90.3 94.7
Baleen FLIPR Condense Latent 86.7 93.3 96.3

3.4 Reader: task-specific processing

After all hops are conducted, a reader is used to extract answers or verify the claim. We use a standard
Transformer encoder, in particular ELECTRA-large [5], which we feed the final output Qt of our
multi-hop retrieval and condensing pipeline. We train for question answering similar to Khattab et al.
[17] or claim verification similar to Jiang et al. [13].

4 Diagnosing retrieval saturation on HotPotQA

Before beginning our primary evaluation on the many-hop HoVer benchmark, we first investigate the
capacity of HotPotQA in reflecting the challenges on multi-hop retrieval (§1). We use HotPotQA’s
“fullwiki” setting, where the input to the model is a question whose answer requires retrieving two
passages from Wikipedia. Similar to related work [29], we report passage-level exact-match (EM) and
Recall@k (R@k) on the development set. These are the percentage of questions for which the model
correctly identifies the two gold passages and for which the model’s top-k retrieved passages contain
both gold passages, respectively.2 We also report Answer-Recall@k, the percentage of questions
whose short answer string is found in the top-k passages (excluding yes/no questions). Here, the
top-20 passages from Baleen are simply the union of the top-10 passages retrieved during the first
hop and the top-10 passages from the second hop, without duplicates.

We compare against the state-of-the-art models MDR and IRRR. We additionally compare with
ColBERT-Hop, a strong baseline that ablates Baleen’s retriever, condenser, and supervision: ColBERT-
Hop uses the state-of-the-art neural retriever ColBERT (see §2), employs a typical re-ranker architec-
ture, and uses heuristic supervision. The results are shown in Table 2. Baleen demonstrates strong
results, finding both gold passages in over 93% of all questions and finding passages that contain the
short answer string for over 96% of all questions in just the top k=20 passages. We argue that this
effectively reduces the open-retrieval task to a narrow distractor-setting one, in which reader models
are supplied with only a few passages (ones that are (nearly) guaranteed to contain the answer) and
are then expected to extract the answer from just those passages.

In other words, such high recall largely shifts the competition in downstream quality to the reader,
since it almost always has access to the answer in the top-k set and is thus responsible for the majority
of downstream failures. While reading the retrieved passages may still pose additional, important
challenges beyond retrieval that remain open, it should be just one of the many challenging aspects of
multi-hop reasoning at scale. This motivates our focus on the many-hop HoVer task.

5 Main evaluation on HoVer

We now conduct our primary evaluation, applying Baleen on the many-hop claim verification dataset
HoVer, following the evaluation protocol of Jiang et al. [13]. First, we study the retrieval performance
of Baleen in §5.2. Subsequently (§5.3), we investigate its sentence extraction and claim verification
performance, which constitutes a test of overall end-to-end system effectiveness. We compare a

2For MDR, we use the authors released retrieval to compute P-R@20. The authors originally report 80.2, but
we do not penalize the MDR retriever for finding both gold passages split across different pairs.
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Table 3: Our main passage retrieval results on HoVer. To compare with Jiang et al. [13], the
Retrieval@100 results are for supported claims. The other results are for all claims. ?Marked result
rows are from Jiang et al. The table reports fine-grained dev-set scores, and we submitted to the
organizers and obtained 64.6 Psg-EM and 88.9 Psg-F1 for Baleen on the held-out test set.

Retrieval@100 Passage EM Passage F1
Model / # Hops All 2 3 4 All 2 3 4 All 2 3 4
TF-IDF + BERT? 44.6 80.0 39.2 15.6 12.5 34.0 5.8 1.0 60.2 69.9 58.2 53.4

ColBERT-Hop 74.8 95.8 77.9 47.6 - - - - - - - -
Baleen 92.2 97.7 93.1 85.1 63.6 75.8 62.5 52.6 89.2 90.2 89.9 86.8
Oracle + BERT? - - - - 34.0 50.9 28.1 26.2 80.6 81.7 79.1 82.2
Human? - - - - 77.0 85.0 82.4 65.8 93.5 92.5 95.3 91.4

four-hop Baleen system against the official baseline and the strong ColBERT-Hop baseline from §4.3
See Appendix §B for implementation details and hyperparameters.

5.1 Task description

The input to the model is a claim, which is often one or a few sentences long. The model is to attempt
to verify this claim, outputting “Supported” if the corpus contains enough evidence to verify the claim,
or otherwise “Unsupported” if the corpus contradicts—or otherwise fails to support—this claim.
Alongside this binary label, the model must extract facts (i.e., sentences) that justify its prediction.
In particular, HoVer contains two-, three-, and four-hop claims that require facts from 2–4 different
Wikipedia pages, and the model must find and extract one or more supporting facts from each of
these pages for every claim. Models are not given the number of hops per claim.

5.2 Evaluating retrieval effectiveness

Table 3 reports the retrieval and passage extraction quality of the systems. We report three metrics,
each sub-divided by the number of hops of each claim. The first is Retrieval@100, which is the
percentage of claims for which the system retrieves all of the relevant passages within the top-100
results. To compare with Jiang et al. [13], we report the Retrieval@100 results only for supported
claims. All other metrics are reported for all claims. The second metric is Passage EM, which is the
percentage of claims for which the system can provide the exact set of relevant passages. The third
metric is Passage F1, which uses the standard F1 measure to offer a relaxed version of EM.

At the top of the table, the TF-IDF baseline retrieves top-100 results in one round of retrieval. At
the bottom of the table, we include the results reported by Jiang et al. [13] for their BERT ranking
model when supplied with oracle retrieval, and also their reported human performance. We show
Baleen’s performance after four hops, where Baleen’s FLIPR retrieves 25 passages in each hop.
Note that we exclude passages retrieved in hop t from the retrieval in further hops t′ > t. As the
table shows, Baleen achieves strong results, outperforming the official baseline model by 47.6 points
in Retrieval@100, 51.1 points in Passage EM, and 29.0 points in Passage F1. In fact, Baleen’s
performance also consistently exceeds “Oracle + BERT” at passage extraction.

5.3 Evaluating end-to-end effectiveness

Next, we evaluate the performance of fact/sentence extraction and thereby the end-to-end claim
verification of Baleen. The results are in Table 4, where Sentence EM and Sentence F1 are defined
similar to the corresponding metrics in Table 3 but focus on sentence-level extraction. Moreover,
Verification Accuracy is the percentage of claims that are labelled correctly as “Supported” or
“Unsupported”. In Table 4, we see that Baleen’s sentence-level results mirror its document-level
results, with large performance gains across the board against the baseline model. Baleen also
outperforms the oracle-retrieval BERT model of Jiang et al. [13], emphasizing the strong retrieval

3At the time of writing, MDR’s open-source implementation only supports two-hop retrieval and the IRRR
implementation is not publicly available. Moreover, both Xiong et al. [29] and Qi et al. [23] explore training
only with two gold passages, though IRRR includes evaluation on a yet-unreleased 3-hop test set.
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Table 4: Our main sentence extraction results on HoVer. ?Marked results are from Jiang et al. [13].
The table reports fine-grained results on the dev set and, where available, includes “dev/test” scores
separated by a slash for the held-out test set score. In our test evaluation on the HoVer leaderboard,
Baleen increases the overall “HoVer Score” metric from 15.3 for the baseline to 57.5.

Sentence EM Sentence F1 Verification
AccuracyModel / # of Hops All 2 3 4 All 2 3 4

TF-IDF + BERT? 4.8/4.5 13.6 1.9 0.2 50.6/49.5 57.2 49.8 45.0 73.7

Baleen 1-hop 19.7 40.9 15.4 4.3 72.3 77.5 72.4 66.4 -
Baleen 2-hop 37.0 46.9 35.7 28.4 80.8 81.2 81.8 78.7 -
Baleen 3-hop 38.9 47.1 37.0 33.2 81.4 81.2 82.3 80.0 -
Baleen 4-hop 39.2/39.8 47.3 37.7 33.3 81.5/80.4 81.2 82.5 80.0 84.5/84.9

Oracle + BERT? 19.9 25.0 18.4 17.1 71.9 68.3 71.5 76.4 81.2
Human? 56.0 75.0 73.5 42.1 88.7 86.5 93.1 87.3 88.0

Table 5: Retrieval@100 comparison between Baleen and five ablation settings.

Model All 2 3 4
Architecture Ablations

A BaleenCONDENSE (main architecture) 92.2 97.7 93.1 85.1
B BaleenRERANK 91.2 98.7 93.0 80.0
C BaleenHYBRID 94.5 99.2 94.4 90.0

Retrieval Ablations (over arch. A)

D w/o FLIPR (uses ColBERT retrieval modeling) 87.4 97.3 89.5 73.4
E w/o LHO (uses a recursive title/passage-overlap heuristic for ordering) 84.8 97.1 88.3 65.6

Full Model Ablation (over arch. B)

F ColBERT-Hop
(w/o FLIPR, LHO) 74.8 95.8 77.9 47.6

and condensing performance of Baleen. In the leaderboard test-set evaluation (scores expected to be
posted soon), Baleen increases the overall “HoVer Score” metric from 15.3 for the baseline to 57.5.

5.4 Ablation studies

Lastly, Table 5 reports various settings and ablations of Baleen, corresponding to its contributions.
Here, models A and F are simply the four-hop Baleen and ColBERT-Hop in the previous experiments,
respectively. Models B and C test the effect of different architectural decisions on Baleen. In
particular, model B replaces our condensed retrieval architecture with a simpler re-ranking architecture
(Appendix §B.2), which reflects a common design choice for multi-hop systems. In this case, FLIPR
is given the top-ranked passage as context in each hop, helping expose the value of extracting facts in
condensed retrieval, which exhibits much shorter contexts as we show in Appendix §C. Second, model
C trains a FLIPR retriever that uses both a condenser pipeline and a reranking pipeline independently,
and then retains the overall top-100 unique passages retrieved (Appendix §B.2). The results suggest
that condensing offers complimentary gains, and the hybrid model attains the highest scores.

Moreover, models D and E test modifications to the retriever, while using the condenser of model
A. Specifically, model D replaces our FLIPR retriever with a simpler ColBERT retriever, while
retaining all other components of our architecture. This allows us to contrast our proposed focused
late interaction with the “vanilla” late interaction of ColBERT. Further, model E replaces our weak-
supervision strategy for inferring effective hop orders with a hand-crafted rule (Appendix §B.3) that
deliberately exploits a construction bias in HotPotQA and HoVer, namely that passage titles can offer
a strong signal for hop ordering.
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6 Discussion

Research limitations This work investigates multi-hop reasoning at a large scale by focusing
on the challenges presented by retrieval in this setting. While reading the retrieved (or supplied)
passages to solve a downstream task is another important aspect, one that has received more attention
in the literature, we do not attempt to advance the state of the art approaches for multi-hop reader
models. The majority of multi-hop retrieval work to date has focused on two-hop retrieval. We
leverage the recently-released HoVer dataset to scale our investigation to four retrieval hops, and
Baleen allows for an arbitrary number of hops in principle, but more evaluation is needed before
we can claim generality to an arbitrary number of hops. We propose a condenser architecture that
summarizes contexts extractively. This architectural decision allows us to scale easily to many hops
as it condenses the hop information into a short context, but doing so relies on the availability on
sentence-level training information (as in HotPotQA and HoVer) and extracting sentences might in
principle lose important context. We expect future work to be able to infer the sentence-level labels
in a latent manner and we are excited about work like decontextualization [4] that tries to retain
important context for standalone sentences. Lastly, considering that learning neural retrievers for
large-scale many-hop tasks is a recently-emerging topic, we had to design our own strong baseline to
strengthen our HoVer evaluation, after confirming that our baseline was very strong on HotPotQA.

Environmental and societal impact By turning to retrieval from text corpora (see §2) as a mecha-
nism to find and use knowledge, we seek to build scalable and efficient models that can reason and
solve downstream tasks with concrete, checkable provenance from text sources and without growing
the models’ number of trainable parameters dramatically. We use Wikipedia, which has favorable
licensing (generally under CC BY-SA 3.0), and publicly-released datasets HoVer and HotPotQA
(CC BY-SA 4.0 licenses). HotPotQA and HoVer are crowd-sourced, and we expect models trained
on them to reflect the biases of the underlying data. Moreover, automated systems for answering
questions or verifying claims can have misleading outputs or may even be abused. That said, we
believe that focusing on retrieval and extractive models as a way to help users find information can
offer net gains to society, especially in contrast with large generative models that may hallucinate or
make statements ungrounded in a human-written corpus.

7 Conclusion

In this paper, we propose Baleen, a system for multi-hop reasoning that tackles the complexity
of multi-hop queries with the focused late interaction mechanism for retrieval and mitigates the
exponential search space problem by employing an aggressive condensed retrieval pipeline in every
hop, which consolidates the pertinent information retrieved throughout the hops into a relatively short
context while preserving high recall. Moreover, Baleen deals with the difficulty of ordering passages
for many-hop supervision via latent hop ordering. By employing a strong retriever, incorporating a
condenser, and avoiding brittle heuristics, Baleen can robustly learn from limited training signal. We
evaluated Baleen’s retrieval on HotPotQA and the recent many-hop HoVer claim verification dataset
and found that it greatly outperforms the baseline models.
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