®

Check for
updates

A Polystore Based Database Operating
System (DBOS)

Michael Cafarella!, David DeWitt?, Vijay Gadepally®®™), Jeremy Kepner?,
Christos Kozyrakis*, Tim Kraska?, Michael Stonebraker?, and Matei Zaharia®

! University of Michigan, Ann Arbor, USA
2 MIT, Cambridge, USA
3 MIT Lincoln Laboratory, Lexington, USA
vijayg@mit.edu
4 Stanford University, Stanford, USA
5 Stanford and Databricks, Berkeley, USA

Abstract. Current operating systems are complex systems that were
designed before today’s computing environments. This makes it difficult
for them to meet the scalability, heterogeneity, availability, and secu-
rity challenges in current cloud and parallel computing environments.
To address these problems, we propose a radically new OS design based
on data-centric architecture: all operating system state should be repre-
sented uniformly as database tables, and operations on this state should
be made via queries from otherwise stateless tasks. This design makes
it easy to scale and evolve the OS without whole-system refactoring,
inspect and debug system state, upgrade components without downtime,
manage decisions using machine learning, and implement sophisticated
security features. We discuss how a database OS (DBOS) can improve
the programmability and performance of many of today’s most impor-
tant applications and propose a plan for the development of a DBOS
proof of concept.

1 Introduction

Current operating systems have evolved over the last forty years into complex
overlapping code bases [4,52,58,71], which were architected for very different
environments than exist today. The cloud has become a preferred platform,
for both decision support and online serving applications. Serverless computing
supports the concept of elastic provision of resources, which is very attractive
in many environments. Machine learning (ML) is causing many applications
to be redesigned, and future operating systems must intimately support such
applications. Hardware is becoming massively parallel and heterogeneous. These
“sea changes” make it imperative to rethink the architecture of system software,
which is the topic of this paper.

DBOS committee members in alphabetical order. The DBOS Committee, dbos-
project@googlegroups.com.
© Springer Nature Switzerland AG 2021

V. Gadepally et al. (Eds.): Poly 2020/DMAH 2020, LNCS 12633, pp. 3-24, 2021.
https://doi.org/10.1007/978-3-030-71055-2_1


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71055-2_1&domain=pdf
https://doi.org/10.1007/978-3-030-71055-2_1

4 M. Cafarella et al.

Mainstream operating systems (OSs) date from the 1980s and were designed
for the hardware platforms of 40 years ago, consisting of a single processor,
limited main memory and a small set of runnable tasks. Today’s cloud platforms
contain hundreds of thousands of processors, heterogeneous computing resources
(including CPUs, GPUs, FPGAs, TPUs, SmartNICs, and so on) and multiple
levels of memory and storage. These platforms support millions of active users
that access thousands of services. Hence, the OS must deal with a scale problem
of 10° or 10% more resources to manage and schedule. Managing OS state is
a much bigger problem than 40 years ago in terms of both throughput and
latency, as thousands of services must communicate to respond in near real-time
to a user’s click [5,22].

Forty years ago, there was little thought about parallelism. After all, there
was only one processor. Now it is not unusual to run Map-Reduce or Apache
Spark jobs with thousands of processes using millions of threads [13]. Stragglers
creating long-tails inevitably result from substantial parallelism and are the bane
of modern systems: incredibly costly and nearly impossible to debug [22].

Forty years ago programmers typically wrote monolithic programs that ran
to completion and exited. Now, programs may be coded in multiple languages,
make use of libraries of services (like search, communications, databases, ML,
and others), and may run continuously with varying load. As a result, debugging
has become much more complex and involves a flow of control in multiple envi-
ronments. Debugging such a network of tasks is a real challenge, not considered
forty years ago.

Forty years ago there was little-to-no-thought about privacy and fraud. Now,
GDPR [74] dictates system behavior for Personally Identifiable Information (PII)
on systems that are under continuous attack. Future systems should build in sup-
port for such constructs. Moreover, there are many cases of bad actors doctoring
photos or videos, and there is no chain of provenance to automatically record
and facilitate exposure of such activity.

Machine learning (ML) is quickly becoming central to all large software sys-
tems. However, ML is typically bolted onto the top of most systems as an after
thought. Application and system developers struggle to identify the right data
for ML analysis and to manage synchronization, ordering, freshness, privacy,
provenance, and performance concerns. Future systems should directly support
and enable AI applications and Al introspection, including first-order support
for declarative semantics for Al operations on system data.

In our opinion, serverless computing will become the dominant cloud archi-
tecture. One does not need to spin up a virtual machine (VM), which will sit
idle when there is no work to do. Instead, one should use an execution environ-
ment like Amazon Lambda, Google Cloud Functions, Apache OpenWhisk, IBM
Cloud Functions, etc. [18]. As an example, Lambda is an efficient task manager
that encourages one to divide up a user task into a pipeline of several-to-many
subtasks!. Resources are allocated to a task when it is running, and no resources

! In this paper, we will use Lambda as an exemplar of any resource allocation system
that supports “pay only for what you use.”.



A Polystore Based Database Operating System (DBOS) 5

are consumed at other times. In this way, there are no dedicated VMs; instead
there is a collection of short-running subtasks. As such, users only pay for the
resources that they consume and their applications can scale to thousands of
functions when needed. We expect that Lambda will become the dominant cloud
environment unless the cloud vendors radically modify their pricing algorithms.
Lambda will cause many more tasks to exist, creating a more expansive task
management problem.

Lastly, “bloat” has wrecked havoc on elderly OSs, and the pathlength of com-
mon operations such as sending a message and reading bytes from a file are now
uncompetitively expensive. One key reason for the bloat is the uncontrolled lay-
ering of abstractions. Having a clean, declarative way of capturing and operating
on operating system state can help reduce that layering.

These changed circumstances dictate that system software should be recon-
sidered. In this proposal, we explore a radically different design for operating
systems that we believe will scale to support the performance, management and
security challenges of modern computing workloads: a data-centric architecture
for operating systems built around clean separation of all state into database
tables, and leveraging the extensive work in DBMS engine technology to provide
scalability, high performance, ease of management and security. We sketch why
this design could eliminate many of the difficult software engineering challenges
in current OSes and how it could aid important applications such as HPC and
Internet service workloads. In the next seven sections, we describe the main
tenets of this data-centric architecture. Then, in Sect.9, we sketch a proposal
concerning how to move forward.

2 Data-Centric Architecture

One of the main reasons that current operating systems are so hard to scale
and secure is the lack of a single, centralized data model for OS state. For
example, the Linux kernel contains dozens of different data structures to manage
the different parts of the OS state, including a process table, scheduler, page
cache, network packet queues, namespaces, filesystems, and many permissions
tables. Moreover, each of the kernel components offers different interfaces for
management, such as the dozens of APIs to monitor system state (/proc, perf,
iostat, netstat, etc.). This design means that any efforts to add capabilities to
the system as a whole must be Herculean in scope. For example, there has
been more than a decade of effort to make the Linux kernel more scalable on
multicores by improving the scalability of one component at a time [10,11,51,
52], which is still not complete. Likewise, it took years to add uniform security
management interfaces to Linux — AppArmor [6] and SELinux [65] — that have
to be kept in sync with changes to the other kernel components. It similarly
took years to enable DTrace [16], a heavily engineered and custom language for
querying system state developed in Solaris, to run on other OSs. The OS research
community has also proposed numerous extensions to add powerful capabilities
to OSs, such as tracing facilities [24,36], tools for undoing changes made by



6 M. Cafarella et al.

bad actors [46], and new security models [67,79], but these remain academic
prototypes due to the engineering cost of integrating them into a full OS.

To improve the scalability, security and operability of OSes, we propose a
data-centric architecture: designing the OS to explicitly separate data from com-
putation, and centralize all state in the OS into a uniform data model. In par-
ticular, we propose using database tables, a simple data model that has been
used and optimized for decades, to represent OS state. With the data-centric
approach, the process table, scheduler state, flow tables, permissions tables, etc.
all become database tables in the OS kernel, allowing the system to offer a uni-
form interface for querying this state. Moreover, the work to scale or modify OS
behavior can now be shared among components. For example, if the OS compo-
nents access their state via table queries, then instead of reimplementing dozens
of data structures to make them scalable on multicores, it is enough to scale the
implementations of common table operations. Likewise, new debugging or secu-
rity features can be implemented against the tabular data model once, instead
of requiring separate integration work with each OS component. Finally, making
the OS state explicitly isolated also enables radical changes in OS functionality,
such as support for zero-downtime updates [3,60], distributed scale-out [7,64],
rich monitoring [2,16], and new security models [67,79].

To manage the state in a data-centric operating system, we will require a
scalable and reliable implementation of database tables. For this purpose, we
simply recommend building the OS over a scale-out DBMS engine, leveraging
the decades of engineering and operational experience running mission-critical
applications. In other words, we suggest to build a database operating system
(DBOS). While the DBMS engine will need some basic resource management
functionality to bootstrap its execution, this could be done over a cluster of
servers running current OSs, and eventually bootstrapped over the new DBOS.
Today, DBMS engines already manage the most critical information in some of
the largest computer systems on the planet (e.g. cloud provider control planes).
Thus, we believe that they can handle the challenges in a next-generation OS.
Moreover, recent trends such as support for polystores [54,69] that combine mul-
tiple storage engines will enable the DBMS to use appropriate storage strategies
for each of the wide range of data types in an OS, from process tables all the
way to file systems.

In more detail, this DBOS approach results in several prescriptive suggestions
as discussed in the next section.

2.1 Prescriptive Suggestions

All OS State Should be Stored in Tables in the DBMS. Unix was devel-
oped with the mantra that “everything is a file”. This mantra should be updated
to “everything is a table”, with first class support for high performance declar-
ative semantics for query and Al operations on dense, sparse, and hypersparse
tables [15,29,33,37,39,44]. For example, there should be a task table with the
state of every task known to the system, a flow table with ongoing network flows,
a set of tables to represent the file system, etc. [38]



A Polystore Based Database Operating System (DBOS) 7

All Changes to OS State Should be Through DBMS Transactions.
The OS will need to include multiple routines in complex imperative code to
implement APIs or complex resource management logic, but when these rou-
tines need to access OS state, we will require them to do so through DBMS
transactions. This choice offers several benefits. First, parallelism and concur-
rency become easier to reason about because there is a transaction manager to
identify conflicts. Second, computation threads in the OS can safely fail without
corrupting system state, enabling a wide range of features including geographic
distribution, improved reliability, and hot-swapping OS code. Third, transac-
tions provide a natural point to enforce security and integrity constraints as is
standard in DBMSs today.

The DBMS Should be Leveraged to Perform all Functions of Which
It Is Capable. For example, files should be supported as blobs and tables in
the DBMS. As a result, file operations are simply queries or updates to the
DBMS. File protection should be implemented using DBMS security features
such as view-based access controls for complex security policies. In other words,
there should only be ONE extensible security system, which will hopefully be
better at avoiding configuration errors and leaks than the sprawl of configuration
tools today. Authentication should similarly be done only once using DBMS
facilities. Finally, virtualization and containerization features can elegantly be
implemented using database views: each container simply acts on a view of the
OS state tables restricted to objects in that container.

As a result, ALL system data should reside in the DBMS. To achieve very
high performance, the DBMS must leverage sophisticated caching and paral-
lelization strategies and compile repetitive queries into machine code [2], as is
being done by multiple SQL DBMSs, including Redshift [3]. A DBMS supports
transactions, so ALL OS objects should be transactional. As a result, transac-
tions are implemented just once, and used by everybody.

Decision Support Capabilities Are Facilitated. OSs currently perform
many decision support and monitoring tasks. These include:

— Choosing the next task to run

Discovering stragglers in a parallel computation
— Finding over(under) loaded resources

— Discovering utilization for the various resources
Predicting bottlenecks in real-time systems

All of these can be queries to the DBMS.

2.2 Tangible Benefits

Performance Optimization: OS kernel subsystems have often undergone
extensive refactoring to improve performance by changing the data structures
used to manage various state [32,53,70,76]. If the OS had been designed around
a DBMS instead, many of these updates would amount to changing indexes or



8 M. Cafarella et al.

changing operator implementations in the DBMS (e.g., adding parallel versions
of operators). Moreover, the DBMS approach would enable further methods to
improve performance that are not implemented in OSes today, such as cost-based
optimization (switching access paths for an operation based on the current data
statistics and expected size of the operation) or adaptive mid-query reoptimiza-
tion.

Security: DBMS access control tools such as view, attribute and role based
ACLs [19,75] can elegantly implement many of the security policies in SELinux,
AppArmor and other OS security modules. Moreover, if these rules are imple-
mented as view definitions or SQL statements within the DBMS, the security
checking code can be compiled into the queries that regular OS operations run,
instead of being isolated in a separate module that adds overhead to OS opera-
tions [49].

Virtualization and Containerization: Tremendous engineering effort has
gone into enabling virtualization and containerization in OSes over the past
decade, i.e., enabling a single instance of the OS to host multiple applications
that each get the abstraction of an isolated system environment. These changes
have generally required modifying all data structures and a large amount of logic
in the kernel to support different “namespaces” of objects for each container.
With DBOS, virtualization and containerization can elegantly be achieved using
DBMS views: each container’s DBMS queries only have access to a view that
restricts to objects with that container ID, whereas a root user can have access
to all objects. We believe that many queries and logic in OS components would
not have had to be modified at all to add virtualization with this approach, other
than being made to run on these views instead of on the raw OS state tables.

Geographic Distributability: After all, nodes in a cloud vendor’s offering are
geographically distributed. Transactional replication is a desired service of cloud
offerings. This can be trivially provided by a geographically dispersed DBMS.
This is in keeping with “implement any function only once; in the interest of
simplicity”.

More Sophisticated File Management: Since files are stored in the DBMS,
as blobs and tables, and the directory structure is a collection of tables, and SQL
access control is used for protection, the large amount of code that implements
current file systems, essentially disappears. Also, we claim that current DBMSs
which use aggressive compilation query and caching have gotten a great deal
faster than the DBMSs of yesteryears. Also, multinode main memory DBMSs
such as VoltDB and MemSQL are capable of tens of millions of simple trans-
actions per second. Since a file read/write is just such a simple transaction, we
believe that our proposed implementation can be performance competitive. In
addition, more sophisticated file search becomes trivial to implement. For exam-
ple, finding all files underneath a specific directory accessed in the last 24 h that
are more than 1GByte in size is merely a SQL query. The net result is additional
features, much less code and (hopefully) competitive performance.



A Polystore Based Database Operating System (DBOS) 9

Better Scheduling: There will be task and resource tables in the DBMS captur-
ing what tasks runs on cores, chips, nodes, and datacenters and what resources
are available. Scheduling thousands of parallel tasks in such environments as
Map-Reduce and Spark is mainly an exercise in finding available resources and
stragglers, because running time is the time of the slowest parallel task. Finding
outliers in a large task table is merely a decision support query that can be coded
in SQL. Again, we believe that the additional functionality can be provided at
a net savings in code.

Enhanced State Management: Using this approach it is straight-forward to
divide application state into two portions. The first is transient and can be stored
in data structures external to the DBMS. The second is persistent and must be
stored in the DBMS transactionally. Since replication will be provided for all
DBMS objects, application failures can merely failover to a new instance. This
instance reads the persistent state from the DBMS and resumes the computation.
This failover architecture was pioneered by Tandem Computers in the 1980’s and
can be provided nearly for free using our architecture.

Additional benefits accrue to this architecture by using a modern “server-
less” application architecture, a topic which we defer to Sect. 8.

3 Task Communication

Data communications can be readily expressed as operations on a geographically
distributed DBMS. A pull-based system can be supported by the sender writ-
ing a record into the DBMS and the receiver reading it. A push-based system
can be supported by the sender writing to the DBMS and setting a trigger to
alert the receiver when he becomes active. This can be readily extended to mul-
tiple senders and recipients. In addition, DBMS transactions support exactly-
once messages. Such an approach significantly simplifies programming allow-
ing the programmer to easily implement non-blocking send programs that have
been demonstrated comparable bandwidth to more complex messaging systems
[12,41].

The CPU overhead of conventional TCP/IP communication is considered
onerous by most, and new lighter-weight mechanisms, such as RDMA and kernel-
bypass systems, are an order of magnitude faster [9,57]. Hence, it seems reason-
able to build special purpose lightweight communication systems whose only
customer is the DBMS. This has already been shown to accelerate DBMS trans-
actions by an order of magnitude, relative to TCP/IP in a local area network-
ing environment [78], and it is possible that appropriate hardware could offer
advantages of this approach in a wide area networking world. As such, it is an
interesting exercise to see if a competitive messaging system can be done through
the DBMS. It should also be noted that Amazon Lambda uses a storage-based
communication system [73]. Of course, a performant implementation would use
something much faster than S3, such as a multi-node main memory DBMS.

If this approach is successful, this will lower the complexity of future system
software by replacing a heavyweight general purpose system with a lightweight



10 M. Cafarella et al.

and optimized, special purpose one. It seems highly likely that the approach
will work well in a hardware-assisted LAN environment. WAN utilization seems
more speculative.

4 GDPR and Privacy Standards

It is clear that privacy will be a future requirement of all system software.
GDPR [74] is the European law that mandates “the right to be forgotten”.
In other words, Personally Identifiable Information (PII) that a service holds on
an individual must be permanently removed upon a user request. In addition,
data access must be based on the notion of “purposes”. Purposes are intended
to capture the idea that performing aggregation for reporting purposes is a very
different use case than performing targeted advertising based on PII data. In
SQL DBMSs access control is based on the notion of individuals and their roles.
These constructs have nothing to do with purposes, and a separate mechanism
is required. Obviously, this is a DBMS service.

As noted in [30], a clean DBMS design can facilitate locating and deleting
PII data inside the DBMS. However, one must also deal with the case where
data is copied to an application and then sent to a second application. Since
all communication between applications goes through the DBMS, this message
can be recorded by the DBMS, allowing the DBMS to track PII data even when
it goes out to applications. Of course, this will not prevent a malicious human
from writing PII data to the screen and copying it outside of the system. To deal
with these kinds of leaks, applications must be “sandboxed” either virtually or
cryptographically which can be readily incorporated into the database [26,28,
40,59,61,77].

5 Strong Provenance Guarantees

Data provenance is key to addressing many of the ills of modern data-centric
life. Consider the following problems:

Data Forging: Detecting whether a photograph is doctored has become impos-
sible for the typical news consumer. Even if a news service wants to provide
trustworthy authorship information about its articles and photos, it has no trust-
worthy way to do so. Simply signing a photograph at the time it was taken is
not sufficient, since there are some data-mutating operations (such as cropping
or color adjustment) that news organizations must perform before publication.

Data Debugging: Modern machine learning projects involve huge data
pipelines, incorporating datasets and models from many different sources.
Debugging pipeline output requires closely examining and testing these different
inputs. Unfortunately, these inputs can come from partners with opaque engi-
neering pipelines, or are incorporated in an entirely untracked manner, such as
via a downloaded email attachment. As a result, simply enumerating the inputs



A Polystore Based Database Operating System (DBOS) 11

to a data pipeline can be challenging, and fixing “root cause data problems” is
frequently impossible.

Data Spills: Today, an inadvertent data revelation is an irreversible mistake.
There is no such thing as cleaning up after a database of social security numbers
is mistakenly posted online. Although data handling practices must and can
be improved, ensuring total data privacy today is a very difficult and brittle
problem.

Data Consumption and Understanding: Much of modern life (as a profes-
sional, a consumer, and a citizen) consists of consuming and acting on data. The
data processes that produce human-comprehensible outputs, such as the plots in
a scientific article, are so complicated that it is quite easy for there to be errors
that are undetectable even to the producer. Consider the case of economists
Carmen Reinhart and Kenneth Rogoff, who in 2010 wrote an enormously influ-
ential article on public finance, cited by Representative Paul Ryan to defend a
2013 budget proposal, that was later found to be based on simplistic errors in
an Excel spreadsheet [72]. The authors did not acknowledge the error until three
years after the paper was first written. Responsible data use means people must
be able to quickly examine and understand the processes that yield the data
artifacts all around us.

Data Policy Compliance: Datasets and models often carry policies about how
they can be used. For example, a predictive medical model might be appropriate
for some age populations, but not others. Unfortunately, it is impossible for
anyone, whether a data artifact producer or consumer, to have confidence about
how data is being used.

A strong data provenance system would help address all of the above prob-
lems. All data operations by a modern operating system, such as copying, mutat-
ing, transmitting, etc., should be tracked and stored for possible later examina-
tion. It should be impossible to perform operations on a modern OS that sidestep
responsible data provenance tracking. Our proposed DBOS architecture effec-
tively logs all such operations, allowing an authoritative chain of provenance to
be recorded. (As with all the data the system collects, it will be stored in a
DBMS.) This will support solutions to all of the above issues, requiring only log
processing applications. Furthermore, first-class support for provenance through-
out OS data structures will also simplify many system administration tasks, such
as recovering from user errors or security breaches [20].

6 Self-adaptive via Modern ML

Designing an operating system requires making assumptions about its future
workload and data. These assumptions then materialize themselves as default
parameters, heuristics, and various compromises. Unfortunately, all these deci-
sions can significantly impact performance, especially if the assumptions turn
out to be wrong. For example, if we assume that the OS mainly runs very short



12 M. Cafarella et al.

Lambda-like functions, then reducing the overhead of starting a Lambda func-
tion may be more critical than optimal scheduling. However, if we assume the
workload is dominated by long-running memory intensive services, we require a
very different scheduling algorithm, fair resource allocation strategies, and ser-
vice migration techniques, whereas the startup time will matter very little.

Moreover, operating systems offer a variety of knobs to tune the system for a
particular workload or hardware. While providing flexibility, all the options put
a burden on the administrator to set the knobs correctly and to adjust them in
the case the workload, data, or hardware changes.

To overcome those challenges, we suggest that DBOS should be introspective,
adaptable, and self-tuning through two design principles:

Knob-Free Design: We believe that all parameters of the system should be
designed to be self-tuning from the beginning. That is, DBOS will deploy tech-
niques similar to SmartChoices [17] for all parameters and constants to make
them automatically tuneable. The key challenge in globally optimizing all these
parameters is then to gather and analyzing the state of the OS and the different
components. Storing all this information in the OS database will significantly
simplify the process and make true self-tuning possible.

Learned Components: To address a wide range of use cases, the system devel-
oper often has to make algorithmic compromises. For instance, every operating
system requires a scheduling algorithm, but the chosen scheduling algorithm
might not be optimal under all workloads or hardware types. In order to pro-
vide the best performance, we envision that the system is able to automatically
switch the algorithm used, based on the workload and data. This would apply
to scheduling, memory management, etc. [21,23].

In some cases it might be even possible to learn the entire component or parts
of it. For example, recent results have shown that it is sometimes possible to
learn a scheduling algorithm, which performs better than traditional more static
heuristics [55,56]. This learning of components would allow the system to more
readily adapt to the workload and data, and perhaps provide unprecedented
performance.

To achieve a knob-free design and learned components, we suggest that the
DBOS needs to be designed from the beginning to be Reinforcement Learning
(RL)-enabled. RL is the leading technique to tune knobs and build components
based on the observed behaviour in an online fashion. Today, RL is usually added
as an afterthought. This leads to several problems including difficulty in finding
the right award function or supporting the required RL exploration phase. In
many cases this requires the extra work of building a simulator or a light-weight
execution environment to try out new approaches. By making RL a first-class
citizen in the system design, we believe that we can overcome these challenges.
Moreover, managing all state data in a database and making it analyzable, will
again be a key enabler for this effort.

If successful, the resulting system would be able to quickly adapt itself to
changing conditions and provide unprecedented performance for a wide range of
workloads while making the administration of the system considerably easier.



A Polystore Based Database Operating System (DBOS) 13

7 Diverse Heterogenous Hardware

Managing compute, storage, and communication hardware is a primary function
for an operating system. The key abstractions in existing operating systems were
developed for the homogeneous hardware landscape of the last century. Kernel
threads (processes), virtual memory, files, and sockets were sufficient to abstract
and manage single-core computers with limited main memory backed by a slow
hard disk, connected with low-bandwidth, high latency networking.

Present-day hardware looks radically different. A single server machine con-
tains tens to hundreds of cores in one or more chips, terabytes of main memory
across a dozen channels, and multiple storage devices (SSDs and HDDs). The
end of Dennard scaling [50] and the ascent of machine learning applications has
led to the introduction of domain-specific accelerators like GPUs and TPUs, each
with its own primitives for massively parallel computation and high-bandwidth
memory [34]. The end of scaling for DRAM technology is motivating multi-level
main memory systems using storage-class memories (SCM) [35]. Network inter-
faces allow direct access to remote memory at speeds faster than local storage.
Beyond the single node, concepts such as multi-cloud, edge cloud, globally repli-
cated clouds, and hardware disaggregation introduce heterogeneity in the type
and scale of hardware resources. Existing operating systems were not designed
for such scales or heterogeneity. This shortcoming is a primary culprit for the
software bloat in applications and operating systems, including kernel bypass
subsystems. Solutions have limited portability and are difficult to understand,
debug, and reuse.

Placing the operating system state in a DBMS introduces two properties
that are useful in managing heterogeneous hardware. First, it clearly separates
compute from data access. The operating system can manage data placement,
caching, replication, and synchronization separately from the accelerated func-
tions that operate on it. Second, it clearly separates control-plane from data-
plane actions. One can improve or customize control-plane operations, such as
scheduling, independently of the compute implementation using the best avail-
able accelerators.

To run efficiently on heterogeneous hardware, DBOS will be designed around
two key principles.

Accelerated Interfaces to DBMS: DBOS will implement the interfaces that
allow heterogeneous hardware to interact with the DBMS, hiding the overall sys-
tem scale and complexity. For example, the interface to a compute accelerator
like a TPU can be a query that applies a user-defined function (UDF). The accel-
erator implements the UDF, while DBOS implements the query that involves
preparing inputs and outputs. This interface remains constant regardless if the
accelerator is local, disaggregated, or in a remote datacenter. The accelerator
state is stored in the DBMS to facilitate scheduling and introspection. DBOS
will directly manage memory and storage layers, as part of the DBMS resources
available for data sharing, replication, or caching. DBOS interfaces will lever-
age existing hardware mechanisms, such as virtual memory, as well as emerging



14 M. Cafarella et al.

mechanisms such as zero-copy/direct memory access networking interfaces or
coherent fabrics (CXL). Over the time, hardware mechanisms will evolve to fur-
ther accelerate the interactions between the DBMS and heterogeneous hardware.
For example, SmartNICs will be optimized to accelerate DBMS interfaces, not
just RDMA protocols, while GPUs and TPUs will directly support DBMS data
operations.

Accelerating the DBMS Itself: The performance and scalability of DBOS
itself relies heavily on the speed of DBMS operations. In addition to distributed
execution and extensive caching, the DBMS will build upon modern hardware
— accelerators, storage class memory, and fast SmartNICs. Since all communi-
cation, dataplane, and control plane operations interface with the DBMS, the
deployment of specialized accelerators for common DB operations like joins, fil-
ters, and aggregations will likely become essential [1].

8 Programming Model

Historically, the programming model of choice was a single-threaded computa-
tion with execution interspersed with stalls for I/O or screen communication.
This model effectively requires multi-tasking to fill in for the stalls. In turn, this
requires interprocess protection and other complexity.

Instead, we would recommend that everybody adopt the Lambda model,
popularized by AWS [73]. In other words, computation is done in highly parallel
“bursts”, and resources are relinquished between periods of computation [25].
This model allows one to give the CPU to one task at a time, eschewing multi-
threading and multiprogramming. In addition, parallel processing can be done
with a collection of short-lived, stateless tasks that communicate through the
DBMS. The DBMS optimizes the communication by locally caching and co-
scheduling communicating tasks when possible. In effect, this is “server-less com-
puting”, whereby one only pays for resources that are used and not for long-lived
tasks. Hence, under current cloud billing practices, this will save significant dol-
lars.

That means DBOS should adopt the Lambda model as well. One should
divide up a query plan into “steps” (operators). Each operator is executed (in
parallel) and then dies. State is recorded in the DBMS. Sharding of the data
allows operator parallelism.

Each Lambda task is given a exclusive set of resources, i.e., one or more
cores until it dies. In the interest of simplicity and security, multi-tenancy and
multi-threading may be turned off.

There is a sharded scheduling table in the DBMS. A task is runnable or wait-
ing. The scheduler picks a runnable task—via a query—and executes it. When
the task quits, the scheduler loops. This will work well as long as applications
utilize the Lambda model.

Dynamic optimization in the OS is gated by the time it takes stop, check-
point, migrate, and restart applications/processes/threads. In the cloud, this



A Polystore Based Database Operating System (DBOS) 15

is often minutes, which means that very little dynamic optimization is possi-
ble. Recent work has demonstrated that hand-coded fast launch (thousands of
applications per second) is possible [62,63]. This is all human-controlled static
optimization [14]. The optimizing scheduler in DBOS should be able to do this
dynamically and launch millions of applications per second [38].

9 Plans for a Proof of Concept

Obviously, DBOS is a huge undertaking. An actual commercial implementation
will take tens of person-years. As such, we need to quickly validate the ideas in
this document. Hence, we discuss demonstrating the validity of the ideas and
then discuss convincing the systems community that DBOS is worth the effort
involved (Fig.1).

Search on
Accelerators

Lambda-like Lambda-like
Apps Apps
] CPU CPU CPU
1 OS kernel OS kernel

Accelerator

Log Any
Files 10
7 A e Y
DB-FS

CPU

OS kernel

CPU

Validation 1 Validation 2 Validation 3

Fig. 1. The three stages of our intended proof of concept. Phase 1 comprises a proof of
concept to demonstrate database performance. Phase 2 includes work necessary for log
processing. Phase 3 shows how we can manage accelerators and implement end-to-end
microservice applications.

9.1 Key Characteristics

A key challenge is to show a DBMS capable of acceptable performance and
scalability to form the foundation of DBOS. We believe that such a system
should have the following characteristics:

Multi-core, Multi-node Executor: Many DBMSs support this today.

Server-Less Architecture: Commercial DBMSs are moving toward allocating
CPU resources on a per-query basis. Snowflake has moved aggressively in this



16 M. Cafarella et al.

direction, based on a distributed file system (S3) aggressive caching and sharding
only for CPU resources [66].

Polystore Architecture: Clearly, DBOS will need to manage data from het-
erogenous sources such as process tables, schedulers, network tables, namespaces,
and many permissions tables. It is likely that any single data management sys-
tem will be able to efficiently manage the diversity and scale of the associated
data structures. Different OS functionality will naturally fit into different types of
storage engines and a polystore architecture [54,69] can provide a single interface
to these disparate and federated systems. A critical system characteristic would
be to avoid developing a “one size fits all” [27,45,68] solution that is incapable
of adapting as new types of data are collected and managed by DBOS.

Open Source Code: Obviously any code in a DBOS prototype should be
readily available.

Lambda-Style, Serverless Runtime System: This will facilitate optimizing
resource allocation.

Possible choices include SciDB, Presto, Accumulo, etc. We think the best
option is to start with a prototype that comprises a DBMS built on an MIT
Lambda-style system.

We view the key design choices of AWS Lambda as reservation-free, fixed-
resource service for short-lived functions and will embody those in our own
system. Other choices in today’s commercial version of Lambda, such as S3
as the exclusive storage system, or the lack of direct communication between
functions, seem like they should be rethought. It is unclear whether uniform
resource constraints on the Lambda functions is a key design choice, or whether
the system should offer heterogeneous resource constraints to enable a more
flexible development environment.

We would expect to replace S3 as the storage system with something much
faster [47,48], based on the discussion earlier. We expect in one person year, we
could demonstrate a LAN-based system along these lines. We would then expect
to test the performance of this prototype in two contexts. The first goal is to
provide file system performance comparable to today’s systems. In addition, we
expect to show our communication implementation can be comparable or faster
to traditional TCP/IP networking.

To bootstrap running the DBMS itself, we plan to rely on minimal oper-
ating systems that have already been designed for cloud environments, such as
unikernels, Dune or IX [8,9], which are designed to run one application at a time
and to give it high-performance access to the hardware. We will also make sure
that the DBMS runs on Linux systems for easy development. The main facil-
ities that the DBMS needs to bootstrap are a boot and configuration process,
network access (which can also be used for logging), threads, and an interface to
access storage. In the latter case, because the DBMS will manage all large data
structures, raw block access may be sufficient. Today’s minimal OSes already
support these facilities for hosting server applications as efficiently as possible
in virtualized datacenters.



A Polystore Based Database Operating System (DBOS) 17

9.2 Demonstration of Utility: Log Processing

As a first example of using DBOS to improve current OS functionality, we will
implement a data-centric log processing and monitoring infrastructure in DBOS
that can monitor applications using existing OSes such as Linux. OSes, Networks,
Schedulers, and File Systems generate enormous amounts of logs and metadata
which are mostly kept in raw files. Attempts to put these in databases (OS logs
to Splunk; Network logs to NetAPP; Scheduler logs to MySQL; File System
metadata to MySQL) barely meet minimal auditing requirements.

A DBMS-based OS that organically stored these data in a high-performance
database with first class support for dense, sparse, and hypersparse tables would
be a huge win as it would make these data readily analyzable and actionable. It
would also be able to execute streaming queries to compute complicated monitor-
ing views in real time in order so simplify system management; simple metrics
such as “how many files has each user created” can sometimes take hours to
run with today’s file systems and OSes. Our team has conducted experiments
showing the high-performance databases such as Apache Accumulo, SciDB, and
RedisGraph can easily absorb this data while enabling analysis that are not cur-
rently possible [15,38,42,43]. For example, “All files touched by a user during
a time window”, “Largest 10 folders owned by a user”, “Computing cycles con-
sumed by an application during a time window”, “Network traffic caused by a
specific application”, ... These are very important questions for Cloud operators
and very difficult to answer and require custom built tools to do so. A DBMS
OS should be able to answer these questions by design.

9.3 Demonstration of Utility: Managing Accelerators

In Sect. 7, we discussed DBMS support for heterogeneous hardware, GPUs and
FPGAs, based on user-defined DBMS functions. Our plan is to implement a
prototype of this functionality to demonstrate its feasibility and performance.

One of the defining features of modern datacenters is hardware heterogene-
ity. Far from being a uniform pool of machines, datacenters offer machines with
different memory, storage, processing, and other capacities. Most notably, dif-
ferent machines offer vastly different accelerator capacities. Although GPUs for
machine learning tasks comprise the most common class of accelerator, dat-
acenters also contain FPGAs and other accelerators for video processing and
encryption applications. These accelerators can be expensive: it is not feasible
to outfit every machine in a large system with a top-flight GPU. Matching a
heterogeneous workload to a heterogeneous pool of resources is a complicated
and important task that is tailor-made for machine- rather than human-driven
optimization.

To address this challenge, we need to first design the DBMS-based API in
DBOS to allow for portability. The same user code can drive execution on a local
or remote GPU. Next, we need to exploit the flexibility of Lambda-style task
allocation and the visibility into system state through the DBMS in order to
implement scheduling algorithms that better utilize the datacenter resources of



18 M. Cafarella et al.

naive server-centric allocation schemes. We will demonstrate this functionality
by running a range of workloads on small clusters and by simulating larger,
datacenter environments.

9.4 Demonstration of Utility: End-to-end Microservice Applications

Since DBOS is designed around a distributed DBMS, it is a natural fit for data
mining applications like the log processing discussed in Sect.9.2. However, it is
not as obvious a match for online-serving applications, such as social networks,
e-commerce sites, and media services, that consume large fractions on cloud
systems. These applications consist of tens to thousands of microservices that
must quickly communicate and respond to user actions within tight service level
objectives (SLOs) [31]. Some microservices are simple tasks, such as looking up
session information, while others are complicated functions such as recommen-
dation systems based on neural networks or search functions using distributed
indices. Microservice applications form the bulk of software-as-a-service products
today and are the most critical operational applications for many organizations.

We will prototype an end-to-end microservices workload, such as a Twitter-
like social network, in order to evaluate DBOS’s feasibility for these applications.
During this process, we will answer two key questions. First, can DBOS support
the computation and communication patterns of such latency-critical applica-
tions in a performant manner? Second, can DBOS help address the challenges
in developing, scaling, and evolving such applications over time?

With DBOS, a social network will be implemented as a collection of serverless
functions operating on multiple database tables. This presents multiple oppor-
tunities for performance optimization. For example, DBOS can colocate commu-
nication functions to avoid remote communication, or selectively introduce new
caching layers and indexes. Accelerators are also now used in many components
of microservice applications, such as recommendation engines for social network
content and search result re-ranking, so we will use the accelerator management
capabilities in Sect. 9.3 to automatically offload and optimize these tasks.

Finally, because DBOS uses a serverless model, data management decisions
such as sharding and replicating datasets or evolving schemas are separated from
the application code. This makes it significantly easier for application developers
to implement architectural changes that are very difficult in microservice appli-
cations today. We will show how to use DBOS to easily implement several such
architectural changes:

1. Changing the partitioning and schema of data in the application to improve
performance (a common type of change that requires large engineering efforts
in today’s services).

2. Changing the partitioning of compute logic, e.g., moving from a “monolith”
of co-located functions to separately scaling instances for different parts of
the application logic.

3. Making the application GDPR-compliant, by storing each user’s data in their
geographic region and using the data provenance features of DBOS to track
which data was derived from each user or delete it on-demand.



A Polystore Based Database Operating System (DBOS) 19

4. Changing the security model (e.g., which users can see data from minors or
from European citizens) without having to refactor the majority of application
code.

10 Conclusions

We have presented a dramatically simpler view of systems software which avoids
implementing the same functions in multiple components. Instead, the architec-
ture bets on a sophisticated DBMS to implement most functionality. Section 9
suggested initial experiments to demonstrate feasibility. Obviously, these steps
should be carried out first.

Following that, there are still many unanswered questions. The most notable
one is “Can this scale to a million nodes?”. To the best of our knowledge, nobody
has built a distributed DBMS at this scale. Clearly, there will be unforeseen
bottlenecks and inefficiencies to contend with. Managing storage for a 1M node
DBMS will be a challenge. A second question is “Can this be built to function
efficiently?” Section 9 discussed the file system and IPC. However, memory man-
agement, caching, scheduling, and outlier processing are still issues. Obviously,
the next step is to build a full-function prototype to answer these questions.

Acknowledgments. This work was partially supported by National Science Foun-
dation CCF-1533644 and United States Air Force Research Laboratory Cooperative
Agreement Number FA8750-19-2-1000. Any opinions, findings, conclusions or recom-
mendations expressed in this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation or the United States Air Force.
The U.S. Government is authorized to reproduce and distribute reprints for Govern-
ment purposes notwithstanding any copyright notation herein. The authors would also
like to thank Charles Leiserson, Peter Michaleas, Albert Reuther, Michael Jones, and
the MIT Supercloud Team.

References

1. Agrawal, S.R., et al.: A many-core architecture for in-memory data processing. In:
Proceedings of the 50th Annual IEEE/ACM International Symposium on Microar-
chitecture, MICRO-50 2017, pp. 245-258. Association for Computing Machinery,
New York (2017). https://doi.org/10.1145/3123939.3123985

2. Ardelean, D., Diwan, A., Erdman, C.: Performance analysis of cloud applications.
In: 15th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 2018), pp. 405-417. USENIX Association, Renton (2018). https://www.
usenix.org/conference/nsdil8/presentation/ardelean

3. Arnold, J., Kaashoek, M.F.: Ksplice: Automatic rebootless kernel updates. In: Pro-
ceedings of the 4th ACM European Conference on Computer Systems, EuroSys
2009, pp. 187-198. Association for Computing Machinery, New York (2009).
https://doi.org/10.1145/1519065.1519085

4. Atlidakis, V., Andrus, J., Geambasu, R., Mitropoulos, D., Nieh, J.: POSIX abstrac-
tions in modern operating systems: the old, the new, and the missing. In: Proceed-
ings of the Eleventh European Conference on Computer Systems, EuroSys 2016.


https://doi.org/10.1145/3123939.3123985
https://www.usenix.org/conference/nsdi18/presentation/ardelean
https://www.usenix.org/conference/nsdi18/presentation/ardelean
https://doi.org/10.1145/1519065.1519085

20

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

M. Cafarella et al.

Association for Computing Machinery, New York (2016). https://doi.org/10.1145/
2901318.2901350

Barroso, L., Marty, M., Patterson, D., Ranganathan, P.: Attack of the killer
microseconds. Commun. ACM 60(4), 48-54 (2017). https://doi.org/10.1145/
3015146

. Bauer, M.: Paranoid penguin: an introduction to Novell AppArmor. Linux J.

2006(148), 13 (2006)

Baumann, A., et al.: The multikernel: a new OS architecture for scalable multicore
systems. In: Proceedings of the ACM SIGOPS 22nd Symposium on Operating
Systems Principles, SOSP 2009, pp. 29-44. Association for Computing Machinery,
New York (2009). https://doi.org/10.1145/1629575.1629579

Belay, A., Bittau, A., Mashtizadeh, A., Terei, D., Mazieres, D., Kozyrakis, C.:
Dune: Safe user-level access to privileged CPU features. In: Proceedings of the 10th
USENIX Conference on Operating Systems Design and Implementation, OSDI
2012, pp. 335-348. USENIX Association, USA (2012)

Belay, A., Prekas, G., Klimovic, A., Grossman, S., Kozyrakis, C., Bugnion, E.:
IX: A protected dataplane operating system for high throughput and low latency.
In: 11th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 2014), pp. 49-65. USENIX Association, Broomfield (2014). https://www.
usenix.org/conference/osdil4/technical-sessions/presentation/belay

Bhat, S.S., Egbal, R., Clements, A.T., Kaashoek, M.F., Zeldovich, N.: Scaling a file
system to many cores using an operation log. In: Proceedings of the 26th Sympo-
sium on Operating Systems Principles, SOSP 2017, pp. 69-86. Association for Com-
puting Machinery, New York (2017). https://doi.org/10.1145/3132747.3132779
Boyd-Wickizer, S., et al.: An analysis of linux scalability to many cores. In: Pro-
ceedings of the 9th USENIX Conference on Operating Systems Design and Imple-
mentation, OSDI 2010, pp. 1-16. USENIX Association, USA (2010)

Byun, C., et al.: Large scale parallelization using file-based communications. In:
2019 IEEE High Performance Extreme Computing Conference (HPEC), pp. 1-7
(2019)

Byun, C., et al.: LLMapReduce: multi-level map-reduce for high performance
data analysis. In: 2016 IEEE High Performance Extreme Computing Conference
(HPEC), pp. 1-8 (2016)

Byun, C., et al.: Optimizing Xeon phi for interactive data analysis. In: 2019 IEEE
High Performance Extreme Computing Conference (HPEC) (2019). https://doi.
org/10.1109/hpec.2019.8916300

Cailliau, P., Davis, T., Gadepally, V., Kepner, J., Lipman, R., Lovitz, J., Ouaknine,
K.: RedisGraph graphBLAS enabled graph database. IEEE (2019). https://doi.
org/10.1109/ipdpsw.2019.00054

Cantrill, B.M., Shapiro, M.W., Leventhal, A.H.: Dynamic instrumentation of pro-
duction systems. In: Proceedings of the Annual Conference on USENIX Annual
Technical Conference, ATEC 2004, p. 2. USENIX Association, USA (2004)
Carbune, V., Coppey, T., Daryin, A., Deselaers, T., Sarda, N., Yagnik, J.:
SmartChoices: hybridizing programming and machine learning. In: Reinforcement
Learning for Real Life (RL4RealLife) Workshop in the 36th International Confer-
ence on Machine Learning (ICML) (2019). https://arxiv.org/abs/1810.00619
Castro, P., Ishakian, V., Muthusamy, V., Slominski, A.: The rise of serverless com-
puting. Commun. ACM 62(12), 44-54 (2019)

Chamberlin, D.D., et al.: A history and evaluation of system R. Commun. ACM
24(10), 632-646 (1981). https://doi.org/10.1145/358769.358784


https://doi.org/10.1145/2901318.2901350
https://doi.org/10.1145/2901318.2901350
https://doi.org/10.1145/3015146
https://doi.org/10.1145/3015146
https://doi.org/10.1145/1629575.1629579
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/belay
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/belay
https://doi.org/10.1145/3132747.3132779
https://doi.org/10.1109/hpec.2019.8916300
https://doi.org/10.1109/hpec.2019.8916300
https://doi.org/10.1109/ipdpsw.2019.00054
https://doi.org/10.1109/ipdpsw.2019.00054
https://arxiv.org/abs/1810.00619
https://doi.org/10.1145/358769.358784

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

A Polystore Based Database Operating System (DBOS) 21

Chandra, R., Kim, T., Zeldovich, N.: Asynchronous intrusion recovery for intercon-
nected web services, pp. 213-227 (2013). https://doi.org/10.1145/2517349.2522725
Cortez, E., Bonde, A., Muzio, A., Russinovich, M., Fontoura, M., Bianchini, R.:
Resource central: understanding and predicting workloads for improved resource
management in large cloud platforms. In: Proceedings of the 26th Symposium on
Operating Systems Principles, SOSP 2017, pp. 153-167. Association for Computing
Machinery, New York (2017). https://doi.org/10.1145/3132747.3132772

Dean, J., Barroso, L.A.: The tail at scale. Commun. ACM 56(2), 74-80 (2013).
https://doi.org/10.1145/2408776.2408794

Delimitrou, C., Kozyrakis, C.: Paragon: QoS-aware scheduling for heterogeneous
datacenters. In: Proceedings of the Eighteenth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, ASPLOS
2013, pp. 77-88. Association for Computing Machinery, New York (2013). https://
doi.org/10.1145/2451116.2451125

Feiner, P., Brown, A.D., Goel, A.: Comprehensive kernel instrumentation via
dynamic binary translation. In: Proceedings of the Seventeenth International Con-
ference on Architectural Support for Programming Languages and Operating Sys-
tems, ASPLOS XVII, pp. 135-146. Association for Computing Machinery, New
York (2012). https://doi.org/10.1145/2150976.2150992

Fouladi, S., et al.: From laptop to lambda: outsourcing everyday jobs to thousands
of transient functional containers. In: 2019 USENIX Annual Technical Conference
(USENIX ATC 2019), pp. 475-488. USENIX Association, Renton (2019). https://
www.usenix.org/conference/atc19/presentation /fouladi

Fuller, B., et al.: SoK: cryptographically protected database search, pp. 172-191
(2017)

Gadepally, V., et al.: The bigDAWG polystore system and architecture, pp. 1-6
(2016)

Gadepally, V., et al.: Computing on masked data to improve the security of big
data, pp. 1-6 (2015)

Gadepally, V., et al.: D4M: Bringing associative arrays to database engines, pp.
1-6 (2015)

Gadepally, V., et al.: Heterogeneous Data Management, Polystores, and Analytics
for Healthcare: VLDB 2019 Workshops, Poly and DMAH, Revised Selected Papers,
vol. 11721. Springer Nature (2019)

Gan, Y., et al.: An open-source benchmark suite for microservices and their
hardware-software implications for cloud & edge systems. In: Proceedings of the
Twenty-Fourth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS 2019, pp. 3-18. Association
for Computing Machinery, New York (2019). https://doi.org/10.1145/3297858.
3304013

Gleixner, T.: Refactoring the Linux kernel (2017). https://kernel-recipes.org/en/
2017 /talks/refactoring-the-linux-kernel /

Hutchison, D., Kepner, J., Gadepally, V., Fuchs, A.: Graphulo implementation of
server-side sparse matrix multiply in the accumulo database. In: 2015 IEEE High
Performance Extreme Computing Conference (HPEC), pp. 1-7 (2015)

Jouppi, N.P., et al.: A domain-specific supercomputer for training deep neural
networks. Commun. ACM 63(7), 67-78 (2020). https://doi.org/10.1145/3360307
Kamath, A.K., Monis, L., Karthik, A.T., Talawar, B.: Storage class memory: prin-
ciples, problems, and possibilities (2019)


https://doi.org/10.1145/2517349.2522725
https://doi.org/10.1145/3132747.3132772
https://doi.org/10.1145/2408776.2408794
https://doi.org/10.1145/2451116.2451125
https://doi.org/10.1145/2451116.2451125
https://doi.org/10.1145/2150976.2150992
https://www.usenix.org/conference/atc19/presentation/fouladi
https://www.usenix.org/conference/atc19/presentation/fouladi
https://doi.org/10.1145/3297858.3304013
https://doi.org/10.1145/3297858.3304013
https://kernel-recipes.org/en/2017/talks/refactoring-the-linux-kernel/
https://kernel-recipes.org/en/2017/talks/refactoring-the-linux-kernel/
https://doi.org/10.1145/3360307

22

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

M. Cafarella et al.

Kedia, P., Bansal, S.: Fast dynamic binary translation for the kernel. In: Proceed-
ings of the Twenty-Fourth ACM Symposium on Operating Systems Principles,
SOSP 2013, pp. 101-115. Association for Computing Machinery, New York (2013).
https://doi.org/10.1145/2517349.2522718

Kepner, J., et al.: Mathematical foundations of the graphBLAS, pp. 1-9 (2016)
Kepner, J., et al.: TabulaROSA: tabular operating system architecture for mas-
sively parallel heterogeneous compute engines. In: 2018 IEEE High Performance
extreme Computing Conference (HPEC), pp. 1-8 (2018)

Kepner, J., et al.: Associative array model of SQL, NoSQL, and NewSQL databases,
pp- 1-9 (2016)

Kepner, J., et al.: Computing on masked data: a high performance method for
improving big data veracity, pp. 1-6 (2014)

Kepner, J.: Parallel MATLAB for multicore and multinode computers. SIAM
(2009)

Kepner, J., Cho, K., Claffy, K., Gadepally, V., Michaleas, P., Milechin, L.: Hyper-
sparse neural network analysis of large-scale internet traffic. IEEE (2019). https://
doi.org/10.1109/hpec.2019.8916263

Kepner, J., et al.: 75,000,000,000 streaming inserts/second using hierarchical hyper-
sparse graphblas matrices (2020)

Kepner, J., Jananthan, H.: Mathematics of Big Data: Spreadsheets, Databases,
Matrices, and Graphs. MIT Press, Massachusetts (2018)

Khan, Y., Zimmermann, A., Jha, A., Gadepally, V., D’Aquin, M., Sahay, R.: One
size does not fit all: Querying web polystores. IEEE Access 7, 9598-9617 (2019)
Kim, T., Wang, X., Zeldovich, N., Kaashoek, M.F.: Intrusion recovery using selec-
tive re-execution. In: Proceedings of the 9th USENIX Conference on Operating
Systems Design and Implementation, OSDI 2010, pp. 89-104. USENIX Associa-
tion, USA (2010)

Klimovic, A., Litz, H., Kozyrakis, C.: Reflex: Remote flash = local flash. In: Pro-
ceedings of the Twenty-Second International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS 2017, pp. 345-359.
Association for Computing Machinery, New York (2017). https://doi.org/10.1145/
3037697.3037732

Klimovic, A., Wang, Y., Stuedi, P., Trivedi, A., Pfefferle, J., Kozyrakis, C.:
Pocket: elastic ephemeral storage for serverless analytics. In: 13th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 2018), pp. 427—
444. USENIX Association, Carlsbad (2018). https://www.usenix.org/conference/
0sdi18/presentation/klimovic

Larabel, M.: The performance cost to selinux on fedora 31 (2020). https://www.
phoronix.com/scan.php?page=article&item=fedora-31-selinux&num=1

Leiserson, C.E., et al.: There’s plenty of room at the top: what will drive computer
performance after Moore’s law? Science 368(6495) (2020)

Scaling in the Linux networking stack. https://www.kernel.org/doc/html/latest/
networking/scaling.html

Lozi, J.P., Lepers, B., Funston, J., Gaud, F., Quéma, V., Fedorova, A.: The Linux
scheduler: a decade of wasted cores. In: Proceedings of the Eleventh European Con-
ference on Computer Systems, EuroSys 2016. Association for Computing Machin-
ery, New York (2016). https://doi.org/10.1145/2901318.2901326

Lozi, J.P., Lepers, B., Funston, J., Gaud, F., Quéma, V., Fedorova, A.: The Linux
scheduler: a decade of wasted cores. In: Proceedings of the Eleventh European Con-
ference on Computer Systems, EuroSys 2016. Association for Computing Machin-
ery, New York (2016). https://doi.org/10.1145/2901318.2901326


https://doi.org/10.1145/2517349.2522718
https://doi.org/10.1109/hpec.2019.8916263
https://doi.org/10.1109/hpec.2019.8916263
https://doi.org/10.1145/3037697.3037732
https://doi.org/10.1145/3037697.3037732
https://www.usenix.org/conference/osdi18/presentation/klimovic
https://www.usenix.org/conference/osdi18/presentation/klimovic
https://www.phoronix.com/scan.php?page=article&item=fedora-31-selinux&num=1
https://www.phoronix.com/scan.php?page=article&item=fedora-31-selinux&num=1
https://www.kernel.org/doc/html/latest/networking/scaling.html
https://www.kernel.org/doc/html/latest/networking/scaling.html
https://doi.org/10.1145/2901318.2901326
https://doi.org/10.1145/2901318.2901326

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.
67.

68.

69.

70.

A Polystore Based Database Operating System (DBOS) 23

Lu, J., Holubova, 1., Cautis, B.: Multi-model databases and tightly integrated
polystores: current practices, comparisons, and open challenges, pp. 2301-2302
(2018)

Mao, H., Schwarzkopf, M., Venkatakrishnan, S.B., Meng, Z., Alizadeh, M.: Learn-
ing scheduling algorithms for data processing clusters. In: Wu, J., Hall, W. (eds.)
Proceedings of the ACM Special Interest Group on Data Communication, SIG-
COMM 2019, Beijing, China, 19-23 August 2019, pp. 270-288. ACM (2019).
https://doi.org/10.1145/3341302.3342080

Mirhoseini, A., Goldie, A., Pham, H., Steiner, B., Le, Q.V., Dean, J.: Hierar-
chical planning for device placement (2018). https://openreview.net/pdf?id=Hkc-
TeZOW

Mitchell, C., Geng, Y., Li, J.: Using one-sidled RDMA reads to build a fast,
CPU-efficient key-value store. In: Proceedings of the 2013 USENIX Conference on
Annual Technical Conference, USENIX ATC 2013, pp. 103-114. USENIX Associ-
ation, USA (2013)

Padioleau, Y., Lawall, J.L., Muller, G.: Understanding collateral evolution in Linux
device drivers. SIGOPS Oper. Syst. Rev. 40(4), 59-71 (2006). https://doi.org/10.
1145/1218063.1217942

Poddar, R., Boelter, T., Popa, R.A.: Arx: an encrypted database using semantically
secure encryption. Proc. VLDB Endowment 12(11), 1664-1678 (2019)
Poimboeuf, J.: Introducing kpatch: dynamic kernel patching (2014). http://
rhelblog.redhat.com/2014/02/26 /kpatch/

Popa, R.A., Redfield, C.M., Zeldovich, N., Balakrishnan, H.: CryptDB: protecting
confidentiality with encrypted query processing. In: Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Principles, pp. 85-100 (2011)
Reuther, A., et al.: Scalable system scheduling for HPC and big data. J. Parallel
Distrib. Comput. 111, 76-92 (2018). https://doi.org/10.1016/j.jpdc.2017.06.009
Reuther, A., et al.: Interactive supercomputing on 40,000 cores for machine learning
and data analysis. In: 2018 IEEE High Performance extreme Computing Confer-
ence (HPEC) (2018). https://doi.org/10.1109/hpec.2018.8547629

Shan, Y., Huang, Y., Chen, Y., Zhang, Y.: LegoOS: a disseminated, distributed
OS for hardware resource disaggregation. In: Proceedings of the 13th USENIX
Conference on Operating Systems Design and Implementation, OSDI 2018, pp.
69-87. USENIX Association, USA (2018)

Smalley, S., Vance, C., Salamon, W.: Implementing SELinux as a Linux security
module. Technical report (2001)

The snowflake cloud data platform. https://www.snowflake.com/

Song, C., Lee, B., Lu, K., Harris, W., Kim, T., Lee, W.: Enforcing kernel security
invariants with data flow integrity. In: 23rd Annual Network and Distributed
System Security Symposium, NDSS 2016, San Diego, California, USA, 21-24
February 2016. The Internet Society (2016). http://wp.internetsociety.org/ndss/
wp-content /uploads/sites/25/2017/09/enforcing-kernal-security-invariants-data-
flow-integrity.pdf

Stonebraker, M., Cetintemel, U.: “One size fits all” an idea whose time has come
and gone. In: Making Databases Work: the Pragmatic Wisdom of Michael Stone-
braker, pp. 441-462 (2018)

Tan, R., Chirkova, R., Gadepally, V., Mattson, T.G.: Enabling query processing
across heterogeneous data models: a survey, pp. 3211-3220 (2017)

Thumshin, J.: Introduction to the Linux block I/O layer (2016). https://media.
ccc.de/v/784-introduction- to- the-linux-block-i-o-layer


https://doi.org/10.1145/3341302.3342080
https://openreview.net/pdf?id=Hkc-TeZ0W
https://openreview.net/pdf?id=Hkc-TeZ0W
https://doi.org/10.1145/1218063.1217942
https://doi.org/10.1145/1218063.1217942
http://rhelblog.redhat.com/2014/02/26/kpatch/
http://rhelblog.redhat.com/2014/02/26/kpatch/
https://doi.org/10.1016/j.jpdc.2017.06.009
https://doi.org/10.1109/hpec.2018.8547629
https://www.snowflake.com/
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/enforcing-kernal-security-invariants-data-flow-integrity.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/enforcing-kernal-security-invariants-data-flow-integrity.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/enforcing-kernal-security-invariants-data-flow-integrity.pdf
https://media.ccc.de/v/784-introduction-to-the-linux-block-i-o-layer
https://media.ccc.de/v/784-introduction-to-the-linux-block-i-o-layer

24

71.

72.

73.

74.

75.

76.

7.

78.

79.

M. Cafarella et al.

Tsai, C.C., Jain, B., Abdul, N.A., Porter, D.E.: A study of modern Linux API
usage and compatibility: what to support when you’re supporting. In: Proceed-
ings of the Eleventh European Conference on Computer Systems, EuroSys 2016.
Association for Computing Machinery, New York (2016). https://doi.org/10.1145/
2901318.2901341

Weisenthal, J.: Reinhart and Rogoff: ‘full stop’, we made a microsoft excel blunder
in our debt study, and it makes a difference (2013). https://www.businessinsider.
com/reinhart-and-rogoff-admit-excel-blunder-2013-4

Wikipedia: AWS Lambda (2020). https://en.wikipedia.org/wiki/AWS_Lambda
Wikipedia: General data protection regulation (2020). https://en.wikipedia.org/
wiki/General_Data_Protection_Regulation

Attribute-based access control — Wikipedia, the free encyclopedia (2020).
https://en.wikipedia.org/w/index.php?title=Attribute-based_access_control&
0ldid=967477902

Completely fair scheduler — Wikipedia, the free encyclopedia (2020). https://en.
wikipedia.org/w/index.php?title=Completely _Fair_Scheduler&oldid=959791832
Yakoubov, S., Gadepally, V., Schear, N., Shen, E., Yerukhimovich, A.: A survey
of cryptographic approaches to securing big-data analytics in the cloud, pp. 1-6
(2014)

Zamanian, E., Yu, X., Stonebraker, M., Kraska, T.: Rethinking database high
availability with RDMA networks. Proc. VLDB Endow. 12(11), 1637-1650 (2019).
https://doi.org/10.14778 /3342263.3342639

Zeldovich, N.; Boyd-Wickizer, S., Kohler, E., Mazieres, D.: Making information
flow explicit in HiStar. Commun. ACM 54(11), 93-101 (2011). https://doi.org/10.
1145/2018396.2018419


https://doi.org/10.1145/2901318.2901341
https://doi.org/10.1145/2901318.2901341
https://www.businessinsider.com/reinhart-and-rogoff-admit-excel-blunder-2013-4
https://www.businessinsider.com/reinhart-and-rogoff-admit-excel-blunder-2013-4
https://en.wikipedia.org/wiki/AWS_Lambda
https://en.wikipedia.org/wiki/General_Data_Protection_Regulation
https://en.wikipedia.org/wiki/General_Data_Protection_Regulation
https://en.wikipedia.org/w/index.php?title=Attribute-based_access_control&oldid=967477902
https://en.wikipedia.org/w/index.php?title=Attribute-based_access_control&oldid=967477902
https://en.wikipedia.org/w/index.php?title=Completely_Fair_Scheduler&oldid=959791832
https://en.wikipedia.org/w/index.php?title=Completely_Fair_Scheduler&oldid=959791832
https://doi.org/10.14778/3342263.3342639
https://doi.org/10.1145/2018396.2018419
https://doi.org/10.1145/2018396.2018419

	Preface
	Poly’20 Overview:
	DMAH’20 Overview:

	Organization
	Using Demographic Pattern Analysis to Predict COVID-19 Fatalities on the US County Level (Abstract of DMAH 2020 Invited Talk)
	Contents
	Poly 2020: Privacy, Security and/or Policy Issues for Heterogenous Data
	A Polystore Based Database Operating System (DBOS)
	1 Introduction
	2 Data-Centric Architecture
	2.1 Prescriptive Suggestions
	2.2 Tangible Benefits

	3 Task Communication
	4 GDPR and Privacy Standards
	5 Strong Provenance Guarantees
	6 Self-adaptive via Modern ML
	7 Diverse Heterogenous Hardware
	8 Programming Model
	9 Plans for a Proof of Concept
	9.1 Key Characteristics
	9.2 Demonstration of Utility: Log Processing
	9.3 Demonstration of Utility: Managing Accelerators
	9.4 Demonstration of Utility: End-to-end Microservice Applications

	10 Conclusions
	References

	Polypheny-DB: Towards Bridging the Gap Between Polystores and HTAP Systems
	1 Introduction
	2 Related Work
	3 Polypheny-DB
	3.1 Architecture
	3.2 Schema Management
	3.3 Implementation

	4 The Modular Polystore
	4.1 Query Interfaces
	4.2 Query Routing
	4.3 Data Storage

	5 Conclusion and Future Work
	References

	Persona Model Transfer for User Activity Prediction Across Heterogeneous Domains
	1 Project Overview
	1.1 Topic 1: Persona Modeling from Various Data Sources
	1.2 Topic 2: Persona Mapping Without Exchanging User IDs and Raw Data
	1.3 Topic 3: Transferring Prediction Models Between Domains

	2 Cross-Domain Digital Marketing: Web Advertisement  E-Commerce
	2.1 Persona Modeling
	2.2 Cross-Domain Product Recommendation

	3 Future Plans
	References

	PolyMigrate: Dynamic Schema Evolution and Data Migration in a Distributed Polystore
	1 Introduction
	2 Background and Related Work
	2.1 Schema Evolution and Data Migration
	2.2 Polystore Databases

	3 Schema Evolution and Data Migration in Polypheny-DB
	3.1 Schema Evolution
	3.2 Data Migration

	4 Sample Scenarios and Recommendations
	4.1 Global Schema Changes
	4.2 Local Schema Changes
	4.3 Physical Level Schema Changes

	5 Conclusions and Outlook
	References

	An Architecture for the Development of Distributed Analytics Based on Polystore Events
	1 Introduction
	2 Background
	3 Proposed Architecture
	3.1 Data Event Structure
	3.2 Authorisation Tasks
	3.3 Analytics Tasks
	3.4 Deployment

	4 Scalability Evaluation
	4.1 Authorisation Chain Scalability Evaluation
	4.2 Analytics Scalability Evaluation

	5 Related Work
	6 Conclusions and Future Work
	References

	Towards Data Discovery by Example
	1 Introduction
	2 System Overview
	2.1 Knowledge Graphs

	3 Benefits of DICE
	4 Conclusion
	References

	The Transformers for Polystores - The Next Frontier for Polystore Research
	1 Introduction
	2 Challenges with Current Approaches
	3 Natural Language Processing with Transformers
	4 The Role for Transformers in Polystore Research
	5 Future Work
	References

	DMAH 2020: COVID-19 Data Analytics and Visualization
	Open-World COVID-19 Data Visualization [Extended Abstract]
	1 Introduction
	2 Research Challenges
	3 Case Studies
	4 Discussion
	References

	DMAH 2020: Deep Learning based Biomedical Data Analytics
	Privacy-Preserving Knowledge Transfer with Bootstrap Aggregation of Teacher Ensembles
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Datasets
	3.2 Multi-task Convolutional Neural Networks
	3.3 Bootstrap Aggregation of Teacher Ensembles Algorithm
	3.4 Study Design

	4 Results
	5 Discussion
	References

	An Intelligent and Efficient Rehabilitation Status Evaluation Method: A Case Study on Stroke Patients
	1 Introduction
	2 Human Rehabilitation Movement Recognition Algorithm
	2.1 Data Set
	2.2 Pose Estimate from Videos
	2.3 Classification Network

	3 Construction of Theoretical Model
	3.1 Technology Acceptance Model (TAM)
	3.2 Theory of Planned Behavior (TPB)
	3.3 Unified Theory of Acceptance and Use of Technology (UTAUT)
	3.4 Care Management Technology (CMT)
	3.5 Systems Engineering Initiative for Patient Safety (SEIPS) Model
	3.6 The Proposed Theoretical Research Model

	4 Methods
	4.1 Pose-AMGRU Algorithm Application
	4.2 Conducting a Questionnaire Survey

	5 Results
	5.1 Results on Pose-AMGRU Algorithm
	5.2 Theoretical Model Validation

	6 Discussion
	6.1 Principal Findings
	6.2 Limitations

	7 Conclusion
	References

	Multiple Interpretations Improve Deep Learning Transparency for Prostate Lesion Detection
	1 Introduction
	2 Related Work
	2.1 Classification of Prostate Cancer and Lesions
	2.2 Post-Hoc Interpretation for Deep Learning in Medicine

	3 Multiple Views of Interpretations for Deep Learning
	3.1 Deep Learning Model
	3.2 Interpretation Techniques for Prostate Lesion Detection

	4 Dataset
	5 Experimental Results
	5.1 Classification Result
	5.2 Evaluation of Grad-Cam Precision Results
	5.3 Interpretation Results for Clinical Data
	5.4 Multiple Views for Interpretation for Deep Learning Results

	6 Discussion and Future Work
	References

	DMAH 2020: NLP Based Learning from Unstructured Data
	Tracing State-Level Obesity Prevalence from Sentence Embeddings of Tweets: A Feasibility Study
	1 Introduction
	2 Data Acquisition and Pre-processing
	3 Methods
	3.1 Constructing Feature Space from Keywords
	3.2 Retrieving Relevant Tweets via Deep Learning
	3.3 Feature Engineering and Obesity Estimation by Elastic Net

	4 Results and Discussion
	4.1 Deep Learning Model Performance
	4.2 Estimating Obesity Prevalence by Tweet Embeddings
	4.3 Discovering Dietary Risk Factors with Obesity

	5 Conclusion
	References

	Enhancing Medical Word Sense Inventories Using Word Sense Induction: A Preliminary Study
	1 Introduction
	2 Method
	2.1 Data Sets
	2.2 Unsupervised Data-Driven Methods for WSI
	2.3 Evaluation Method
	2.4 Interpreting WSI-Discovered Senses

	3 Results
	3.1 Precision-Recall Curves
	3.2 Case Studies of the Word Senses Discovered by Sparse Coding

	4 Discussion
	5 Conclusion
	References

	DMAH 2020: Biomedical Data Modelling and Prediction
	Teaching Analytics Medical-Data Common Sense
	1 Introduction
	2 Dataset and Methods
	2.1 A Systematic Analysis of Anomalous Patterns in EMR Data
	2.2 Measuring the Impact of Data Anomalies on Medical Analytics

	3 The Impact of Data Quality on Analytics
	4 Teaching Analytics Common Sense
	4.1 Planning for Common Sense
	4.2 Anomalous Patterns in Medical Data
	4.3 Establishing Tenable Limits on Measured Clinical Parameters

	5 Related Work
	6 Conclusions
	References

	CDRGen: A Clinical Data Registry Generator (Formal and/or Technical Paper)
	1 Introduction
	2 Analysis of Existing CDRs
	2.1 Portuguese CDRs
	2.2 Collected and Stored Data
	2.3 Functionalities
	2.4 User Interface

	3 CDR Metamodel and Metadata
	3.1 CDR Metamodel
	3.2 A CDR Metadata Example

	4 Metadata Specification Language
	5 CDRGen
	5.1 Generated CDR User Interface

	6 Validation
	6.1 Metrics
	6.2 Results
	6.3 Discussion

	7 Conclusions
	References

	Prediction of lncRNA-Disease Associations from Tripartite Graphs
	1 Introduction
	2 Proposed Approach
	2.1 Scoring of Candidate LDAs
	2.2 Prediction of Significant LDAs

	3 Results
	4 Concluding Remarks
	References

	DMAH 2020: Invited Paper
	Parameter Sensitivity Analysis for the Progressive Sampling-Based Bayesian Optimization Method for Automated Machine Learning Model Selection
	1 Introduction
	2 Review of Our PSBO Method
	2.1 Overview of Our PSBO Method
	2.2 The First Round
	2.3 The Second to the Fourth Round
	2.4 The Fifth Round

	3 Experimental Setup and Procedure
	4 Results
	5 Conclusion
	References

	Short Paper
	Extended Abstract:: Programming Heterogeneous Data Applications with Knowledge Graphs
	Author Index

