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Abstract
We present Fleet, a framework that offers a massively par-
allel streaming model for FPGAs and is effective in a num-
ber of domains well-suited for FPGA acceleration, including
parsing, compression, and machine learning. Fleet requires
the user to specify RTL for a processing unit that serially
processes every input token in a stream, a far simpler task
than writing a parallel processing unit. It then takes the
user’s processing unit and generates a hardware design with
many copies of the unit as well as memory controllers to
feed the units with separate streams and drain their outputs.
Fleet includes a Chisel-based processing unit language. The
language maintains Chisel’s low-level performance control
while adding a few productivity features, including auto-
matic handling of ready-valid signaling and a native and
automatically pipelined BRAM type. We evaluate Fleet on
six different applications, including JSON parsing and inte-
ger compression, fitting hundreds of Fleet processing units
on the Amazon F1 FPGA and outperforming CPU implemen-
tations by over 400× and GPU implementations by over 9×
in performance per watt while requiring a similar number
of lines of code.
CCS Concepts. • Hardware → Reconfigurable logic ap-
plications; Hardware description languages and com-
pilation; Application specific processors.
Keywords. FPGAs, HDLs, streaming, identical processors
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1 Introduction
As FPGAs have become available in datacenters [9] and pub-
lic clouds [1, 2], the question of how to easily program and
use them has become increasingly important. Over a decade
ago, the same question arose for distributed networks of
multicore CPUs, and in the intervening years a number of
distributed computing frameworks have become popular, in-
cluding Spark [21] and MapReduce [11]. The key insight of
these systems is to have the user only write serial code to pro-
cess a single stream of inputs, with the system automatically
running copies of this code on many streams across many
cores in a cluster. This approach spares the user the challenge
of writing multicore or distributed code. Unfortunately, such
a computation model has not yet been developed for FPGAs.
Even high-level frameworks like C-based HLS [10] and oth-
ers that expose a functional programming model [14, 16]
expect users to parallelize the processing of a single stream.
There is a need for an FPGA programming framework

where users write a serial processing unit to process a single
stream of data, and the framework then replicates the unit
many times and generates memory controllers to feed each
unit with its own stream of data and store its output. Writing
serial hardware should be easier for users than writing paral-
lel hardware, which often requires algorithmic changes and
complex logic to distribute inputs to different computational
units. We believe that such a framework, designed for what
we call multi-stream parallelism or massively parallel stream-
ing, can be applied to a wide variety of big data problems,
including parsing, compression, string search, and machine
learning.

This paper presents Fleet, a framework designed for multi-
stream applications on FPGAs. Fleet requires users to provide
RTL with a ready-valid interface that serially processes a
single stream of tokens. This RTL can be generated by higher-
level tools, and Fleet provides a Scala-embedded language
that is an extension of Chisel [8] with a few productivity-
ehancing features for writing these processing units. In par-
ticular, the Fleet language automatically handles ready-valid
signaling and provides an automatically pipelined BRAM
type. These features eliminate rote tasks for the developer
without compromising the low-level performance control
offered by Chisel. Once a processing unit is written, the Fleet
framework provides high developer productivity by auto-
matically generating as many copies of the unit as the user
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wants and a soft memory controller to feed and drain the pro-
cessing units. This productivity does not come at the cost of
performance: multi-stream applications written in Fleet for a
modern FPGA outperform CPU and GPU implementations in
performance per watt and have better memory performance
and processing unit throughput than HLS implementations.
The Fleet language requires that there are no dependent

BRAM reads and each BRAM is read at most once and writ-
ten at most once in each processing step, or virtual cycle.
Since accesses to BRAMs are restricted in this way, the Fleet
compiler can always generate a two-stage pipeline for vir-
tual cycles, with one stage for BRAM reads and one stage
for writes. In contrast, the performance of code generated by
C-based HLS systems is far less predictable, as the compiler
is required to perform fickle analyses to determine whether
different BRAM accesses in a program conflict and whether
extra pipeline stages must be inserted.

The Fleet compiler generates many copies of the specified
processing unit and a high-performance memory controller
that would be challenging for users to write manually. Our
round-robin input and output controllers take advantage of
the predictable, sequential memory access patterns of the
individual processing units. Our input controller requests
the next block of data for each processing unit well before
it is required to avoid memory latency-induced delays, and
feeds input blocks in parallel to multiple processing units to
overcome the limited input read throughput of individual
units. Our output controller behaves in a symmetric manner.

We conduct an extensive evaluation of Fleet using six ap-
plications, including a JSON parser, a compressor for integers,
a Bloom filter constructor, and a regex matcher, all written
in the Fleet language. To demonstrate that FPGAs can be
an excellent platform for multi-stream applications with the
right programming framework, we compare our Fleet ap-
plications running on the Amazon F1 platform to CPU and
GPU implementations. We are able to fit hundreds of stream
processing units on the F1 FPGA and show over 400× and 9×
improvements in performance per watt compared to the CPU
and GPU, respectively. The improvements in performance
over CPU and GPU are due primarily to fusion of multiple
CPU/GPU instructions into one cycle and the high cost of
control flow divergence across streams on the CPU/GPU.
Further, the total number of lines of Fleet code required to
achieve this performance for each application is comparable
to that for the CPU/GPU implementations. We show that
our input memory controller can read data from the four
DDR3 memory channels on the Amazon F1 and feed it to the
processing units at a rate of 27.24 GB/s, which is 91% of the
peak memory throughput at 125 MHz. Finally, we perform
an evaluation of a commercial HLS system, showing that it
generates a memory controller with 10× lower performance
than ours, drastically limiting its maximum throughput, and
that its OpenCL language abstraction often results in long
and inefficient processing unit pipelines.
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Figure 1. Fleet framework overview

In summary, our contributions are the following:
1. The design of a framework for multi-stream applica-

tions that allows developers to process tens of giga-
bytes of data per second on modern FPGAs

2. A Chisel-based language for stream processing units
that provides a convenient token-based processing ab-
straction, automatic handling of ready-valid signaling,
and an automatically pipelined BRAM type (Sections 3
& 4),

3. A high-performance memory controller to drive the
processing units (Section 5)

4. An evaluation on several important applications on
the Amazon F1 platform, demonstrating significant
performance-per-watt improvements over CPU and
GPU implementations at little cost to developer pro-
ductivity, and better memory system and processing
unit performance than a commercial HLS system (Sec-
tion 7)

2 System and API Overview
Fleet provides a language for users to specify the process-
ing of a single stream of data. Programs in the language
describe the “virtual cycles,” consisting of state updates and
output emissions, to be executed for every input token. High
performance is achieved by synthesizing many copies of
this processing unit on the target FPGA, along with a mem-
ory controller that supplies input tokens and drains output
tokens from the units. Each processing unit operates on a
separate stream. Figure 1 shows an overview of the Fleet
framework.

To use a generated Fleet design that has been loaded onto
an FPGA, the user must fill a contiguous buffer with the
streams for each processing unit in software. The Fleet soft-
ware runtime transfers the buffer to FPGA DRAM. It then
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Chisel-like registers, binary/unary operators, and conditional blocks
Native BRAM type with restricted read/write per virtual cycle
input keyword to access current input token
emit operator to produce output token
while loop to take multiple virtual cycles for current input token

Figure 2. Fleet language features

kicks off the processing units, with each processing unit di-
rected to process a different stream. Each processing unit
writes its output to its own region of a contiguous buffer.
Once all of the processing units have finished processing
their input streams, the output buffer is transferred back to
host DRAM.
To use Fleet, users must have a way to split up a large

input into many smaller streams that can be processed in
parallel. This is a reasonable expectation: Spark and MapRe-
duce have the same requirement on their inputs. There are
often fast routines to split a single large input. For example,
in files containing JSON records, individual records are often
separated by newlines [18], so files can be split easily by a
fast, vectorized newline finder on the CPU. In some cases,
such as in string search applications, a single input file can
be split at arbitrary points, with a small amount of extra pro-
cessing performed on the CPU to find matches at boundaries.
The input streams to the different processing units should
be roughly similar in size to ensure high throughput, as the
system cannot load balance across processing units since
each unit may have state specific to its own stream.

3 The Fleet Language
Fleet allows users to specify a single serial stream processing
unit in any standard RTL language (Verilog, VHDL, etc.) ac-
cepted by the target FPGA’s synthesis tools, as long it has the
ready-valid IO interface described at the start of Section 4.
However, we have observed that manually managing ready-
valid signaling (discussed more in Section 4) and pipelining
accesses to BRAMs is quite tedious and error-prone, so we
provide a processing unit language that automatically han-
dles these rote tasks. The language takes care not to sacri-
fice the low-level performance control offered by RTL. In
particular, the Fleet language does not offer more powerful
HLS-style optimizations like automatic logic pipelining and
resource multiplexing, which may not behave exactly as the
user wants.
The Fleet language is a Scala-embedded DSL for specify-

ing the behavior of a single serial stream processing unit.
It is an extension of Chisel [8] for token-based streaming,
with the user’s Chisel executed repeatedly for each input
token. Our knowledge that the logic is repeatedly executed
allows us to introduce a native BRAM type and automatically
pipeline reads and writes to it, as long as the logic does not

1 unit BlockFrequencies(inputTokenSize =8,

outputTokenSize =8) {

2 itemCounter := reg(bits=7, init =0)

3 frequencies := bram(elements =256,

bitsPerElmt =8)

4 frequenciesIdx := reg(bits=9, init =0) // 9

bits to store largest value 256

5
6 if (itemCounter == 100) { // emit

frequencies

7 while (frequenciesIdx < 256) {

8 emit(frequencies[frequenciesIdx ])

9 frequencies[frequenciesIdx] = 0

10 frequenciesIdx += 1

11 }

12 frequenciesIdx = 0

13 }

14 // process current input token

15 frequencies[input] += 1

16 itemCounter = itemCounter == 100 ? 1 :

itemCounter + 1

17 }

Figure 3. Frequency-counting Fleet processing unit

perform more BRAM accesses per cycle than supported by
the underlying technology.
The state elements in the Fleet language are registers,

vector registers with random access support, and BRAMs,
all with user-specified bitwidths. A wire type is available
to hold temporary values. The statements in the language
include assignments to state elements and emits of output
tokens, and statements can be contained in if, else if,
and else blocks. As in Chisel, all statements are evaluated
concurrently. Basic integer arithmetic, Boolean, and bitwise
operators are provided, and an expression called input pro-
vides access to the current input token. The bitwidths of
input and output tokens are fixed and must be defined at
compile time. After all input tokens have been processed, the
user’s logic is run with a dummy input token to perform any
necessary cleanup, with the stream_finished identifier set
to true. There is no way to access DRAM outside of the in-
coming and outgoing streams of tokens; this simplifies our
memory controller design without hurting the expressibility
of our applications.

A very simple Fleet language processing unit is as follows:

unit Identity(inputTokenSize =8, outputTokenSize =8)

{

if (! stream_finished) emit(input)

}

The processing unit declaration specifies that the input bit-
stream should be broken up into 8-bit tokens and that the
logic should be fired once for every 8-bit token. It also speci-
fies that any output tokens produced by the logic will be 8
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bits in size. The processing unit logic simply emits the input
stream back to the output unmodified.
Figure 2 summarizes the features of the Fleet language.

Figure 3 shows an example processing unit for computing
and emitting a 256-element histogram (or frequency count)
for each block of 100 8-bit input tokens. We refer to it in
this section and the next. The example assumes that the
frequencies BRAM starts zero-initialized, which is the case
on most FPGAs. Due to the stream_finished execution of
the logic after the stream is complete, the histogram for the
final input block is correctly produced.
To preserve the low-level performance control of Chisel,

a Fleet user is guaranteed that each execution of their token
processing logic, including BRAM operations, will occur in
a single cycle. However, real FPGA BRAMs support limited
reads and writes per cycle and have one cycle of latency to
retrieve or store data after a read or write address is sup-
plied [3, 5, 6]. Since BRAMs cannot actually service reads and
writes in a single cycle, we call each execution of the user’s
token processing logic a virtual cycle. In order to ensure that
we can pipeline BRAM accesses and maintain our guarantee
of a throughput of one virtual cycle per real cycle, we restrict
the use of BRAMs in certain ways.

First, dependent BRAM reads are not allowed in a virtual
cycle, as these would take more than one real cycle to resolve
and cannot always be pipelined. Example expressions where
the output of BRAM a depends on the output of BRAM b
include a[b[0]] and if (b[0]) x = a[0] else x = a[1],
both of which require two real cycles to produce the output
of a.
Furthermore, Fleet programs can only read a BRAM at

one address and write it at one address in each virtual cycle,
which matches the capabilities of the underyling technol-
ogy. Technology BRAMs sometimes support performing two
reads or two writes in a single cycle; our current restrictions
on Fleet BRAM accesses prevent us from using this feature,
which was not important for our applications’ performance.

The final restriction in the language is on emit operations.
Only one token can be emitted per virtual cycle. If this were
not the case, the system would have no way to order the
multiple emitted tokens in the output stream, since Fleet
programs have concurrent semantics.

Adherence to the language restrictions can be checked by
our software simulator, which runs a Fleet program on an
input stream and detects dependent BRAM reads, multiple
BRAM reads or writes in a single virtual cycle, and multiple
emits in a single virtual cycle. Although we have not im-
plemented one, a static analyzer could also guarantee that
certain well-structured programs do not violate the restric-
tions, or we could insert logic to perform runtime checks.
Due to the restrictions on BRAM reads and writes and

emits, it may not always be possible to perform all necessary
processing for an input token in a single virtual cycle. As a
result, the Fleet language features a while loop construct.

A while loop has a condition, and virtual cycles executing
the loop body will run until the condition is false, without
advancing the input token. After the while loop is complete,
a final virtual cycle will execute statements outside of the
loop, and then the input token will be advanced. In the ex-
ample in Figure 3, if the while loop is active (itemCounter
== 100), 256 virtual cycles running lines 8-10 are executed
to emit the 256 entries in the frequency array and clear them
to zero. At the end of the loop (when frequenciesIdx ==
256), a final virtual cycle is run that executes lines 12 and
15-16, consuming the current input token. If the while loop
is not active, the input token is consumed in a single virtual
cycle that executes lines 15-16.
If multiple while loops appear in an Fleet program, loop

virtual cycles are executed until all while conditions become
false. Nesting of loops is not currently supported; nested
loops can be transformed into a single unnested loop with
additional state machine states. Our example programs were
all fairly easy to express without nested loops.

As in Chisel, it is possible to implement multi-stage token
processing pipelines in the Fleet language. The user must
explicitly define the register state and control logic for each
pipeline stage, and implement optimizations such as result
forwarding across stages. while loops can be used to imple-
ment bubbles where multiple cycles are required before a
new input token can enter the pipeline.
As in Chisel, embedding the Fleet language in Scala im-

proves productivity by allowing users to write Scala code
that generates Fleet statements. This is particularly useful
for parameterized stream processing units whose size or
behavior is defined by compile-time parameters.
In summary, the Fleet language allows users to define

stream processing units, providing a token-at-a-time pro-
cessing abstraction and automatically pipelined BRAM ac-
cess. Despite its productivity features, Fleet gives the user
full control over and understanding of performance, and is
general enough to express arbitrary streaming pipelines.

4 Compiling the Fleet Language
In this section we describe the compilation of a single Fleet
language processing unit to RTL. The compiler spares the
programmer the challenge of generating ready-valid IO sig-
nals. It also automatically pipelines BRAMs while guarantee-
ing high throughput. In particular, because of the restrictions
the Fleet language imposes on BRAM use in a virtual cycle,
the compiler can always generate a virtual cycle pipeline that
runs at a throughput of one virtual cycle per real cycle in the
absence of input and output stalls. In contrast, compilers for
HLS C and other languages without these restrictions can
generate arbitrarily slow pipelines if pragmas are not care-
fully used, reducing performance predictability and control
for users.
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1 input input_token [7:0], input_valid , output_ready , input_finished;

2 output input_ready , output_token [7:0], output_valid , output_finished;

3
4 reg [7:0] i; // stores current input token

5 reg v = 0; // whether the virtual cycle is currently executing

6 reg f = 0; // whether we have started the stream_finished virtual cycle

7
8 reg [6:0] itemCounter = 0;

9 bram frequencies; // 8 data bits , 8 address bits

10 reg [8:0] frequencies_lastAddr = -1; // extra bit for sentinel value

11 reg [7:0] frequencies_lastData;

12 reg [8:0] frequenciesIdx = 0;

13
14 wire v_done = v && (! output_valid || output_ready); // whether current virtual cycle is finishing

15 wire while_done = !( itemCounter == 100 && frequenciesIdx < 256);

16
17 wire frequenciesIdx_n = (itemCounter == 100 && frequenciesIdx < 256) ? frequenciesIdx + 1 : ((

itemCounter == 100 && while_done) ? 0 : frequenciesIdx);

18 wire itemCounter_n = while_done ? (itemCounter == 100 ? 1 : itemCounter + 1) : itemCounter;

19 if (v_done) {

20 frequenciesIdx <= frequenciesIdx_n;

21 itemCounter <= itemCounter_n;

22 if (frequencies.wr_en) {

23 frequencies_lastAddr <= frequencies.wr_addr;

24 frequencies_lastData <= frequencies.wr_data;

25 }

26 }

27
28 wire frequencies_cur_rd_addr = (itemCounter == 100 && frequenciesIdx < 256) ? frequenciesIdx : i;

29 wire frequencies_next_rd_addr = (itemCounter_n == 100 && frequenciesIdx_n < 256) ? frequenciesIdx_n :

input_token;

30 frequencies.rd_addr = v_done ? frequencies_next_rd_addr : frequencies_cur_rd_addr;

31 wire frequencies_rd_data = (frequencies_cur_rd_addr == frequenciesLastAddr) ? frequencies_lastData :

frequencies.rd_data;

32
33 frequencies.wr_en = v_done && (( itemCounter == 100 && frequenciesIdx < 256) || while_done);

34 frequencies.wr_addr = (itemCounter == 100 && frequenciesIdx < 256) ? frequenciesIdx : i;

35 frequencies.wr_data = (itemCounter == 100 && frequenciesIdx < 256) ? 0 : frequencies_rd_data;

36
37 input_ready = !v || (while_done && (! output_valid || output_ready));

38 output_token = frequencies_rd_data;

39 output_valid = v && (itemCounter == 100 && frequenciesIdx < 256);

40 if (input_ready) {

41 v <= input_valid || (!f && input_finished);

42 f <= f || input_finished;

43 i <= input_token;

44 }

45 output_finished = !v && f;

Figure 4. Generated RTL for the Fleet processing unit in Figure 3, handling BRAM pipelining and IO/while stalls for the user

Figure 4 shows the RTL output produced by the compiler
on the histogram example in Figure 3, and we refer to it
throughout this section. Each processing unit has the follow-
ing IO interface to the memory controller, which is described
in more detail in Section 5:
input input_token // multiple bits

input input_valid

output input_ready

output output_token // multiple bits

output output_valid

input output_ready

input input_finished

Session 7B: Streaming computational models — In the flow!  ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

643



output output_finished

A ready-valid handshake interface is used for both input
and output to support arbitrary delays in the processing
unit (caused by while loops) and in the input source and
output sink. The input_finished signal is asserted contin-
uously starting on the cycle immediately following the last
input token handshake. The output_finished signal must
be asserted continuously by the processing unit starting on
the cycle immediately following the last output token hand-
shake.
Two of our three state elements – registers and vector

registers – are already present in RTL and are easy to compile.
Our RTL BRAM module has write address, write enable,
write data, and read address inputs, and a read data output.
It is implemented with a standard pattern that FPGA vendor
tools will generally synthesize to technology BRAMs. We
rely on the tools to create BRAMs of arbitrary size out of one
or more technology BRAMs. wire references are replaced
with their full expansions in a preprocessing pass over a
Fleet program, so our compiler does not need to deal with
them; we rely on the underlying RTL compiler to perform
common subexpression elimination and logic minimization
for us.
We first describe the compilation process assuming that

there are no while loops or stalls in the input source or out-
put sink (i.e. the input_valid and output_ready IO signals
are always true), and then describe how we handle these
complications. At a high level, the compiler generates a two-
stage virtual cycle pipeline, with the first stage performing
BRAM reads and the second stage performing BRAM and
register writes. Figure 5 shows an overview of the pipeline.
The Fleet language contains only two fundamental state-

ments: assignment to any state element, and emit. The con-
ditional operators – if, else, and else if – merely provide
conditions that gate the execution of assignments or emits.
For each register r, the compiler gathers all assignments
to it in the program, along with their conditions. If an as-
signment has no condition, its condition is set to true. If an
assignment is nested within multiple conditional blocks, its
condition is simply the conjunction of all of the containing
conditions. If one of the nesting blocks is a while loop, the
while condition is treated as an if condition, since a while
loop is simply an if block that our control logic executes
multiple times. The next value r_n for a register r is selected
from among the assigned values and the current value of the
register, assuming at most one assignment condition is true.
Next values for the registers in our histogram example are
shown in lines 17-18 of Figure 4. A similar procedure is used
for vector register assignments, BRAM writes, and emits.

BRAM Reads. The main difference in the compilation
process for BRAM reads is the expression generation for the
conditions and addresses, which performs result forwarding

(1)	BRAM	Read	Stage	

BRAM	1	
rd	 wr	

(2)	BRAM	&	Reg.	Write	Stage	

User	logic	
for	rd.	
addrs.	

User	logic	
for	writes	

out	
…	 …	

forwarding	

Reg	1	

Figure 5. Two-stage virtual cycle pipeline

by using the next values instead of the current values to
replace register references (example on line 29).
One issue is that the current virtual cycle may write the

same address in a BRAM that the next virtual cycle reads.
The read and write in this case are issued in the same real
cycle, and the semantics of BRAMs for such conflicts are to
return the old value for the read, which is not what we want.
Our solution to this problem is to again use result forwarding,
achieved with a register holding the last (address, data) pair
written to each BRAM (definition on lines 10-11, use on line
31). If the user asserts, for a particular BRAM, that a virtual
cycle never reads an address written by the previous virtual
cycle (and this property can be checked by our software
simulator on example input streams), then this extra register
and logic can be elided.

while Loops. To handle while loops, we define a signal
called while_done (line 15) that is set to true if there are no
while loops in the program and to the negation of the dis-
junction of all loop conditions otherwise. The input_ready
signal should only be true when while_done is true, as we
only want to consume a new input token once the loop is
complete and we are executing the post-loop virtual cycle.
Finally, when generating the conditions for statements out-
side of while loops, we add the clause while_done to the
conditions to prevent them from executing until the loop is
complete (examples on lines 17-18 and 33).

Input and Output Stalls. To handle stalls in the input
source or output sink, we make use of a register v (line 5)
that indicates whether a virtual cycle is in progress. Register
and BRAM writes cannot be committed unless we are ready
to finish the current virtual cycle (lines 19-26). Stalls also
require us to change the read input of BRAMs to depend on
the current values of registers and vector registers instead of
the next values (line 30) so that the BRAM read output does
not change until the next virtual cycle. Lines 39-43 show
the logic for accepting a new input token in the presence of
stalls.
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5 The Fleet Memory Controller
The previous section described the compilation of a single
processing unit written in the Fleet language to RTL. The
complete RTL that is synthesized to an FPGA bitstream for
an Fleet application includes many identical copies of the
processing unit as well as a soft memory controller that
feeds and drains them. Our memory controller is designed
differently from those of other FPGA programming frame-
works, which are designed for the case of a single processing
unit. These frameworks’ memory controllers rely on their
processing units having high-throughput input and output
buffers composed of many individual BRAMs. We could take
this approach, which would allow a simple strategy of per-
forming a large sequential transfer for one processing unit
at a time to saturate memory bandwidth. Unfortunately, it
would almost certainly exhaust BRAM resources with even
a moderate number of processing units on any real FPGA
platform. To save BRAM resources, each of our processing
units has only low-throughput input and output buffers, so
our memory controller must feed multiple processing units
in parallel to saturate memory bandwidth, requiring a new
design.

Our current memory controller implementation targets an
AXI4 memory interface with a 512-bit data bus. Our system
could easily be ported to other memory interfaces with differ-
ent bus widths, as long they support a ready-valid handshake
protocol. We support an arbitrary number of AXI4 channels;
the processing units are simply divided among the channels,
and a separate input and output controller is instantiated
for each of the channels. No further coordination is needed
among the separate channels.

At a high level, the input and output controller for a chan-
nel operate in round robin fashion, checking with each pro-
cessing unit in turn to see whether it is ready for new input
or has output available. The controllers make DRAM re-
quests at the granularity of multiples of the data bus width;
larger multiples (a larger burst size) lead to better DRAM
performance. Each processing unit has BRAM-based input
and output buffers that have capacity equal to the burst size
being used, so that communication with the input and out-
put controllers can occur at the granularity of the burst size
even though the core processing unit deals with individual
tokens. Input and output stalls occur in the processing unit
when the input buffer is empty or the output buffer is full. As
noted above, the input and output buffers’ data port widths
must be small multiples of the native BRAM data port width
(36 on the Amazon F1) to avoid excessive BRAM usage.

There are two key optimizations required to drive the
memory system at its full rate.

AsynchronousAddress Supply. First, due to highDRAM
latencies, input and output addresses must be supplied well
in advance of when their corresponding data packets are to
be received or sent. Conceptually, this is easy for us to do

AXI4	Data	Out	

PU	1	
Input	BRAM	

Output	BRAM	
PU	2	

Input	BRAM	

Output	BRAM	
PU	3	

Input	BRAM	

Output	BRAM	

512	

32	 32	

burst	reg.	 burst	reg.	 burst	reg.	 …	

…	

x	16	

Figure 6. Burst registers for input controller

because our processing units operate in streaming fashion,
reading and writing DRAM locations only sequentially, so
their upcoming input and output addresses are completely
predictable. Both the input and output controller have a sepa-
rate addressing unit that also operates in round robin fashion
across the processing units but is several steps ahead of the
data transfer unit, submitting addresses to the AXI4 inter-
face. The input addressing unit skips over processing units
that have already finished consuming input, and the output
addressing unit skips processing units that have produced
their last output.
The AXI4 interface will return input data blocks in the

same order that input addresses are supplied, and expects
the output controller to supply data blocks in the same order
that output addresses are supplied. We tell the interface that
it can commit output blocks to memory in any order, which
can increase performance. The input and output addressing
units can be blocking or nonblocking; blocking units wait for
each processing unit to supply its next input or output ad-
dress, while nonblocking units skip processing units that are
not ready for new input or output. Our default behavior is
to make the input addressing unit blocking, since processing
units generally process input at roughly the same rate, while
the output addressing unit is nonblocking, since processing
units that perform filters can produce output at dramatically
different rates. A nonblocking addressing unit requires ex-
tra register storage to inform the data transfer unit which
processing units were skipped; this register storage can be
reduced by limiting how far ahead of the data transfer unit
the addressing unit can get.

Burst Registers for Parallel Data Transfers. One issue
is that the processing units’ input and output BRAM buffers
have data port widths much smaller than 512 bits, so wemust
feed and drain data from multiple processing units at once
to keep up with the maximum AXI4 bandwidth of 512 bits of
input and output per cycle. To do this, we define r = 512/w
registers of size equal to the AXI4 burst size for both the
input and output controller, wherew is the data port width
of the input and output buffers. (w and r can be different for
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the input and output controller, but we assume that they are
the same in the following discussion.) Figure 6 illustrates the
function of these burst registers.
The registers for the input controller store the last r re-

ceived input bursts, and they are drained in parallel to the
corresponding processing units that requested them. Simi-
larly, the registers for the output controller store the next r
output bursts to be sent to the AXI interface; they are filled
in parallel by the corresponding processing units and sent
to the AXI interface in order. There is a tradeoff between
burst size and logic resources used for the input and output
controllers: a larger burst size improves memory bandwidth
but requires more burst register resources and therefore re-
duces the logic resources available for the processing units.
In our experiments we use a burst size of 1024 bits (two 512-
bit transfers), which allows us to reach near peak memory
bandwidth on the Amazon F1 while leading to input and
output controllers that together take up about a tenth of the
logic resources available on the F1.w = 32 and r = 16 in our
F1 designs.

6 Implementation
Our compiler for the Scala-embedded Fleet language gener-
ates code in the Chisel [8] Scala-embedded RTL language.
Having all of the language components in Scala simplified
the implementation. Scala’s support for operator overload-
ing and passing code blocks into functions made it easy to
provide a clean Scala-embedded syntax for Fleet. Its case
classes made it easy to define AST nodes for the language,
and its support for pattern matching simplified AST passes,
such as collecting all of the assignments to registers and
BRAMs. We were able to write our Chisel code generator
and software simulator in under 1000 lines of Scala code.
We took advantage of Chisel’s peek-poke testing inter-

face to build a full-system simulation infrastructure for our
stream processing applications. We can simulate stream pro-
cessing hardwarewith an arbitrary number of AXI4 channels,
processing units, input and output controller burst registers,
and other parameters. We wrote Scala code that simulates
an AXI4 controller, accepting address requests and pushing
and pulling data blocks from the simulated logic. Our testing
infrastructure cross-checks the results of full-system RTL
simulation against the Fleet language software simulator.

Our code is available at https://github.com/jjthomas/Fleet.

7 Evaluation
We compare the performance of Fleet applications (written
in the Fleet language) with CPU and GPU implementations
in terms of absolute performance and performance per watt.
We also compare them to implementations using a commer-
cial HLS system in terms of memory system performance,

processing unit area and performance, and lines of code
required.

7.1 Applications
We first describe our six Fleet applications.

JSON Parsing. Our JSON field extractor unit reads a list
of fields to extract (e.g. a.b, a.c) at the start of its input
stream and then emits the values of those fields encountered
in the potentially nested JSON records in the remainder of
the stream. The processing unit stores a transition table in a
BRAM with states representing the character in the target
field set that stream is currently on. For each state, there
are one or more expected next characters and a pointer to
the next states if those characters are encountered. Most of
the logic in the processing unit is for the state machine that
decides if a field match has been reached and handles JSON
control characters like {, :, and ".

Integer Coding. Our integer encoding unit compresses
blocks of consecutive 32-bit integers. The block size is four
integers in our experiments, and a BRAM buffer is used to
store the current block during processing. Our logic tries
sixteen different fixed width encodings for the block in par-
allel, storing integers that fit within the fixed width in a
main section and rest in an exception section that is coded
with variable-byte encoding or the best possible fixed width
encoding, whichever is cheaper. This scheme is inspired by
OptPFD and other expensive coding techniques described
in [17]. Fast integer-specific compression techniques can be
used for integer columns in columnar databases and data to
be sent over the network in distributed computing systems.

Decision Tree. Our gradient-boosted decision tree eval-
uator first loads the gradient-boosted decision tree nodes,
located at the start of the stream, into a BRAM. The remain-
der of the stream has datapoints consisting of a runtime-
configurable number of 32-bit integers. Each datapoint is
loaded into a BRAM and the gradient-boosted decision tree is
evaluated on it, with the result emitted to the output stream.

Smith-Waterman. Our Smith-Waterman fuzzy match-
ing unit takes a target string as input at runtime and com-
putes the edit distance matrix between the target and the
remainder of the stream. The distance matrix has dimension
n ×m, where n is the stream size in characters andm is the
target string size. The only storage required by our unit ism
registers for a single row of the matrix corresponding to the
current character in the input stream, since matrix values
only depend upon values in the same and previous row. The
unit emits the current index in the stream whenever any
cell in the row exceeds a runtime-provided score threshold.
Software reading the output stream can go back to the input
stream at the emitted locations and reconstruct the exact
matches. m = 16 in our experiments. Fuzzy matching is
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useful for DNA sequencing applications as well as search
applications such as ElasticSearch.

Regex. Our regex matching unit takes a compile-time
specification of a regex using character matches, concate-
nation, alternation (|), and repetition (*) and generates a
circuit that matches the regex. The circuit is constructed
according to the procedure described in [20], using primarily
single-bit register state and binary operations to simulate
an NFA for the regex. Whenever the unit detects a match,
it emits the index of the current character in the stream. In
our experiments we use an email regex taken from an online
regex benchmark [4].

Bloom Filter. A Bloom filter is a bitfield that can be used
to test membership in a set of items with no false negatives.
Our last processing unit computes and emits a Bloom filter
for each block of items. Each item in a block is hashed with
several different hash functions, and a bit in the BRAM-based
bitfield is set for each hash. Using an in-memory Bloom filter
to quickly test whether a key exists can save disk IOs and
improve throughput in key-value stores.

7.2 CPU/GPU Comparison
To demonstrate the efficacy of using Fleet to perform stream-
ing computations on FPGAs, we compare the performance
of our Fleet applications to hand-optimized CPU (C) and
GPU (CUDA) versions, which use the same token-based pro-
cessing model and algorithms as our Fleet versions. On the
CPU, each core processes a single stream, and on the GPU,
each thread processes a single stream. Our GPU implemen-
tations buffer input and output tokens in registers to avoid
repeated reads and writes to memory locations, which are
slow due to the lack of a fast automatic cache. For our CPU
experiments we use a c4.8xlarge instance on the Amazon
EC2 cloud, which has 36 Haswell hyperthreads. For our GPU
experiments we use a p3.2xlarge instance, which has a V100
GPU. The GPU experiments use 225,280 threads partitioned
into thread blocks of 256 threads each, which we found lead
to the highest throughput.
It was difficult to take advantage of CPU vector units

in our applications. Vectorization can be performed across
multiple streams or within the processing of a single stream.
The problem with vectorizing across streams is that different
streams may diverge in their control flow, which prevents
vectorization altogether, or perform accesses into stream-
local memory, which cannot be vectorized using the AVX2
instructions available on the c4.8xlarge. Vectorizing within
the processing of a single stream is difficult because the
processing is inherently serial, with each token affecting
the state for the next token. One case where single-stream
vectorization is easier is if the processing of a single token is
vectorizable, as is the case with the Bloom filter application,
which performs 8 identical hash computations for each token.
The Bloom filter is the only application we were able to

vectorize on the CPU. Vectorization on the GPU is handled
dynamically by the architecture – any stream processing
threads running in the same warp will be vectorized if they
are executing the same instruction.
We ran our Fleet experiments as follows. For each Fleet

application, we filled the Amazon F1 FPGA (Xilinx Ultra-
Scale+ vu9p) with as many processing units (PUs) as would
fit and used all four available DDR3 DRAM channels. Each
processing unit consumed 1 MB of data; the time to transfer
data from the host DRAM to FPGADRAMwas not measured.
The logic clock was 125 MHz for all applications, which re-
duced power and allowed the applications to easily meet
timing. Since the power measurements provided by Ama-
zon’s F1 tools included only package power, we assumed
a constant DRAM power of 12.5 W, which was the highest
DRAM power we observed for any of our applications on
the CPU. We also assumed a constant DRAM power of 12.5
W for the GPU, since power measurements from the Nvidia
tools included the sum of package and DRAM power but not
the individual components.
The results of our comparisons are shown in Figure 7.

Fleet outperforms the CPU in both absolute performance
and performance per watt in all cases and outperforms the
GPU in performance per watt in all but one case. Since the
integer coding application has variable runtime in Fleet and
on the CPU/GPU depending on how compressible its input is,
experimental results for the application are the average of 5
runs with input integers drawn uniformly from the ranges [0,
25), [0, 210), [0, 215), [0, 220), and [0, 225). With the exception
of integer coding, all of the applications produce substan-
tially less output than input, with JSON parsing reducing
its input by 80% and the rest reducing their input by more
than 90%. JSON parsing, Smith-Waterman, regex, and Bloom
filter were all bound on memory controller performance; if
the memory controller and underlying DRAM system were
arbitrarily fast these applications could have hit their theo-
retical computational throughputs of 64, 48, 88, and 40 GB/s,
respectively.
We identify two primary reasons for our improvements:

ability to handle divergence across streams and fusion of
multiple CPU/GPU instructions into a single clock cycle’s
worth of work on the FPGA. As discussed above, stream
divergence prevents the effective utilization of CPU and
GPU vector units. Most of our workloads exhibit sufficient
control flow andmemory access divergence across streams to
prevent vectorization with the AVX2 instruction set on CPUs,
and two of our workloads – JSON parsing and integer coding
– lose significant performance due to control flow divergence
on the GPU. In particular, when running the JSON parsing
experiment on the GPU with identical data for each stream,
performance improves by 2.33×, and when doing the same
for the integer coding experiment, performance improves by
1.25×. Similarly, when turning off AVX2 vectorization within
the processing of each stream for the Bloom filter experiment
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App Fleet
# PUs

Fleet
Perf GB/s

Fleet
Perf/W

(w/ DRAM)

CPU
Perf GB/s

CPU Perf/W
(w/ DRAM)

GPU
Perf GB/s

GPU Perf/W
(w/ DRAM)

Fleet
vs. CPU Perf/W
(w/ DRAM)

Fleet
vs. GPU Perf/W
(w/ DRAM)

JSON Parsing 512 21.39 1.19 (0.70) 6.11 0.03 (0.03) 25.23 0.14 (0.13) 42.03× (26.24×) 8.57× (5.41×)
Integer Coding 192 10.99 0.73 (0.40) 2.11 0.01 (0.01) 31.04 0.16 (0.15) 78.19× (44.84×) 4.60× (2.67×)
Decision Tree 384 3.77 0.24 (0.13) 2.01 0.01 (0.01) 102.17 0.40 (0.38) 23.77× (14.06×) 0.59× (0.35×)
Smith-Waterman 384 24.62 1.37 (0.81) 0.68 0.003 (0.003) 29.41 0.15 (0.14) 444.67× (274.95×) 9.28× (5.82×)
Regex 704 27.24 1.51 (0.89) 3.25 0.02 (0.02) 73.59 0.36 (0.34) 95.54× (59.47×) 4.18× (2.62×)
Bloom Filter 320 24.21 1.15 (0.72) 12.03 0.05 (0.05) 13.50 0.12 (0.11) 22.43× (14.81×) 9.55× (6.66×)

Figure 7. Fleet on Amazon F1 vs. CPU/GPU

App Fleet LoC CUDA LoC

JSON Parsing 201 165
Integer Coding 315 155
Decision Tree 74 63
Smith-Waterman 55 45
Regex 35 65
Bloom Filter 100 58

Figure 8. Lines of code for Fleet and CUDA

on the CPU, performance drops by 3.79×, suggesting that
the other applications that cannot take advantage of AVX2
are losing significant potential performance.

The second reason for improvement is the fusion of mul-
tiple CPU/GPU instructions into a single FPGA cycle. This
is particularly effective in cases where each virtual cycle has
high computational intensity, as is the case in JSON pars-
ing, integer coding, Bloom filter, Smith-Waterman, and regex
with their numerous parallel comparisons and arithmetic
operations for each input token. In contrast, while its com-
putational intensity per input token is high, the decision
tree application does only one comparison for each BRAM
read, meaning that its computational intensity per virtual
cycle is low and it is primarily bound on aggregate BRAM
throughput. GPUs have substantially higher local memory
and register throughput than the F1 FPGAs, explaining their
excellent performance on this workload. While Fleet is still
able to outperform the CPU on this workload, the speedup
is smaller than for the other applications.

Fleet Developer Productivity. Finally, in Figure 8, we
show the number of lines of Fleet code required for each
application compared to the amount of CUDA code (which
is similar to the amount of code for CPU and HLS). For Fleet,
GPU, CPU, and HLS stream programming, the main chal-
lenge for the programmer is determining the logic for each
stream; concerns like parallelization and DRAM access are
handled by the underlying framework or architecture. The
number of lines of code is similar between Fleet and CUDA,
with the integer coding example requiring substantially more

Memory Controller Optimizations Perf GB/s

None 0.98
Async. Addr. Supply 1.88
Async. Addr. Supply & Burst Regs. 27.24

Figure 9. Impact of memory controller optimizations

code because dynamic shifts are expensive in hardware, so
output tokens were 8 bits instead of 32 bits and managing
the division of output words into 8-bit chunks was fairly
complex. We hope to add library code to Fleet to simplify
this and other common patterns. The regex example takes
fewer lines of code in Fleet because we count the lines of
code in a Scala program that generates a circuit based on the
input regex, while in CUDA the state machine for the email
regex is fully elaborated.

7.3 Memory System Performance
To demonstrate the value of our memory controller opti-
mizations (Section 5), we synthesized versions of the input
controller without some of the optimizations and measured
their performance. The application we used was a simple
processing unit that drops all of the input tokens and pro-
duces no output. This application allowed us to isolate the
performance of the input controller, since output controller
performance should be symmetric. We first synthesized an
input controller with synchronous address supply and only
r = 1 burst registers. We then synthesized a controller with
asychronous address supply but still r = 1 burst registers.
Finally, we synthesized a full controller with asynchronous
address supply and the ideal r = 16 burst registers. Figure 9
shows the results, demonstrating that asynchronous address
supply provides a 1.9× performance benefit and burst regis-
ters provide an additional 14.5× performance benefit.
In terms of absolute performance, our input controller

achieves 85% of the theoretical maximum bandwidth of 32
GB/s (one 512-bit transfer each 8 ns cycle for each of the
four memory channels) and 91% of the 30.1 GB/s bandwidth
we measured by reading from each of the memory channels
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with the maximum burst size of 64 512-bit transfers. When
adding our output controller and producing the same amount
of output as input read, we achieve a performance of 11.38
GB/s, which is 69% of the peak measured bandwidth with
input and output burst sizes of 64. The output controller’s
performance is lower because we have not yet implemented
some optimizations relating to burst register utilization. The
output controller was less critical for our experimental per-
formance because most applications produced significantly
less output than input.

7.4 HLS Comparison
In addition to comparing against the streaming performance
of other hardware platforms, we consider other program-
ming frameworks for FPGAs that could provide similar stream-
ing performance to Fleet. The primary high-productivity
FPGA programming framework deployed today is high-level
synthesis (HLS), which takes OpenCL or C++ input along
with pragma directives for the compiler and generates RTL.
We consider a commercial HLS tool that takes OpenCL input
and targets Xilinx devices, including the Amazon F1 FPGAs,
and show that it has poor memory system and processing
unit performance for multi-stream applications like ours.

Memory Controller Performance. We first consider the
HLS system’s memory controller generation abilities. We
wrote a simple OpenCL application to compute the sum of
the integers in 16 separate streams in a manner similar to
Fleet. This application produces very little output, allowing
us to isolate input controller performance, since output per-
formance should be symmetric. We structured the OpenCL
code as follows. Using a loop over the 16 streams, we loaded
the next 1024-bit chunk of data (the same burst size we use
for Fleet on the F1) for each stream into a local array (BRAM)
for the stream. The local arrays had data port widths of 32
bits, which matches the port width we use for Fleet process-
ing unit input buffers on the F1. We tried to both unroll and
pipeline this loop, and used the special 512-bit uint16 type
for the global memory transfers as recommended by the
tool documentation. We then had a second loop over the 16
streams where we computed the sum of the integers in the
local array for each stream and added it to the running sum
for the stream, which was stored in a register. This loop was
unrolled.
Pipelining the first loop lead to a processing throughput

of 524.84 MB/s, and unrolling it lead to a throughput of
675.06 MB/s. The experiment used only one out of the four
available DRAM channels on the F1 platform. The pipelined
throughput is thus 13.0× less than our memory controller’s
single-channel input throughput of 6.8 GB/s, and the un-
rolled throughput is 10.1× less. Essentially, the HLS tool was
unable to figure out that it should fill multiple streams’ local
arrays simultaneously as our memory architecture does, in-
stead filling them serially. We tried to use a larger burst size

than 1024 bits to improve performance slightly, but even the
largest burst size of 32,768 bits did not help, in fact reduc-
ing performance slightly. Even if there are optimizations we
missed, there is a limit of 64 bits read from memory per cycle
with the serial transfer approach, or a throughput of 1 GB/s
(6.8× lower than ours) assuming a 125 MHz clock, since each
processing unit’s local array has only two 32-bit data ports.
Using port widths larger than 32 bits is infeasible since the
native BRAM port widths on the F1 platform are 36 bits, so
larger ports would simply use more BRAM resources and
limit the number of processing units that could fit on the
chip. All six of our applications have total throughputs on
the F1 well above this HLS system’s maximum 4-channel F1
memory throughput of 2.7 GB/s, which is an upper bound
on the performance of any HLS implementation of these
applications.

Processing Unit Performance. The other major problem
with the commercial HLS tool is that the OpenCL language
is not an effective representation for token-based stream-
ing programs. If we simply take the CUDA code we wrote
for the JSON parsing and integer coding applications and
adapt it slightly to be valid OpenCL, the HLS tool gener-
ates logic with initiation intervals (cycles per token) of 15
and 18, respectively. The Fleet versions of these applications
take 1 cycle per token and 3-8 cycles per token, respectively.
The primary reason is that the tool must make worst-case
assumptions about the mutual exclusivity of program state-
ments that may have BRAM resource conflicts. In the case
of the JSON parsing and integer coding programs, there are
many emits to the output buffer, but they are all mutually
exclusive. Consider the following program snippet:

if (state == 0) {

output_buf[output_idx ++] = 0;

}

if (state == 1) {

output_buf[output_idx ++] = 1;

}

Assuming that the BRAM output_buf has only one write
port, the HLS tool’s OpenCL compiler infers a pipeline with
an initiation interval of two for this code. If the second block
was wrapped in an else if rather than an if (or if the
compiler had a simple static analyzer) the initiation interval
would be one instead, but it is often hard to write complex
programs in a way that makes mutual exclusivity of BRAM
reads or writes obvious. The Fleet language makes mutual
exclusivity of BRAM reads and writes a requirement, sparing
the compiler the need to perform complex static analysis and
allowing it to reliably schedule program logic into one cycle.
It is possible to add dependency pragmas to the OpenCL
code to inform the compiler of mutual exclusivity, but these
did not work when we tried them in the commercial tool,
and the use of pragmas also demonstrates the mismatch of
the OpenCL abstraction to the FPGA streaming problem. In
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general, our streaming programs maintain fairly complex
state machines and have many branches, and it appears that
the commercial HLS tool is optimized for programs with
more regular control flow and BRAM access.

Beyond poor initiation intervals, the commercial HLS tool
also produces processing units with high resource usage,
likely because of extra logic for more complex pipelines and
conservative estimation of bitwdiths from OpenCL types
such as uint and uchar. Excluding the logic for AXI4 com-
munication, the naive OpenCL versions of JSON parsing and
integer coding (without pragmas or custom-bitwidth types)
consume about 4.6× and 2.8× more F1 logic cells than the
Fleet versions, respectively.

8 Related Work
There are two major classes of work related to ours.

FPGA Programming Frameworks. There are several
streaming-oriented or general-purpose frameworks that can
simplify the development of streaming applications on FP-
GAs. In general, many of these frameworks and their as-
sociated languages have focused on high-throughput pro-
cessing of a single stream, requiring programmers to write
complex processing units that exploit pipeline and/or data
parallelism and fill up the target FPGA [10, 19]. Due to their
focus on single-stream applications, they do not feature the
high-performance memory controllers required to support
many serial stream processing units operating on separate
streams.
C-like HLS languages have gained commercial adoption,

and we compare to one HLS system in detail in Section 7.4.
In addition to its poor memory controller performance for
multi-stream applications, the HLS system is unable to prop-
erly optimize serial processing units written in the OpenCL
language, even when compiler directives are provided. The
compiler for the Fleet language performs less automatic
scheduling of BRAM accesses and has more predictable be-
havior for the state machine-style processing units we con-
sider.
Spatial [16] is a general-purpose framework that offers a

lower-level language abstraction closer to the Fleet language,
but is still designed for single-stream parallelism. Rigel [14]
and Optimus [15] allow programmers to specify graphs of
high-level operators for processing a single stream and then
generate hardware from them. These frameworks still re-
quire programmers to think about whether they have ex-
pressed sufficient parallelism and whether they will fully
utilize the target FPGA’s resources. Of course, any of these
frameworks’ languages could be used to generate a serial
Fleet processing unit, as long the emitted RTL has the IO
interface we describe in Section 4.

Custom Streaming Architectures. Finally, there have
been a few custom processor architectures defined for stream-
ing. In general, our goal is to enable developers to achieve
hardware acceleration on commodity FPGA platforms such
as the Amazon F1, rather than proposing a new hardware
architecture. UAP [12] and UDP [13] are architectures with
many independent stream processors designed for many of
the same applications that we consider, including parsing
and regex matching. They have a fixed instruction set, which
prevents the fusing of multiple operations into a single cycle
that is possible on a reconfigurable architecture. The Imagine
family of stream processors [7] is designed more for graphics
and multimedia applications and has a VLIW architecture
with a C-like stream programming model.

9 Conclusion
We have presented Fleet, an FPGA programming framework
for applications processing many independent streams of
data in parallel. We have demonstrated that with Fleet FPGAs
can outperform CPUs and GPUs on multi-stream applica-
tions with low developer effort. Our extensions to Chisel for
token-oriented stream processing and our custom memory
system for multi-stream parallelism are the key factors in
our results. We are able to fit hundreds of stream processing
units for applications such as JSON parsing, integer com-
pression, and Bloom filter construction on the Amazon F1
FPGA and saturate its memory bandwidth.
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