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ABSTRACT
Existing deep learning frameworks optimize the computation graph of a DNN model by performing greedy
rule-based graph transformations, which generally only consider transformations that strictly improve runtime
performance. We propose relaxed graph substitutions that enable the exploration of complex graph optimizations
by relaxing the strict performance improvement constraint, which greatly increases the space of semantically equiv-
alent computation graphs that can be discovered by repeated application of a suitable set of graph transformations.
We introduce a backtracking search algorithm over a set of relaxed graph substitutions to find optimized networks
and use a flow-based graph split algorithm to recursively split a computation graph into smaller subgraphs to
allow efficient search. We implement relaxed graph substitutions in a system called MetaFlow and show that
MetaFlow improves the inference and training performance by 1.1-1.6x and 1.1-1.2x respectively over existing

deep learning frameworks.

1 INTRODUCTION

Deep neural networks (DNNs) have driven advances
in many practical problems, such as image classifica-
tion (Krizhevsky et al., 2012; He et al., 2016), machine
translation (Wu et al., 2016; Bahdanau et al., 2014), and
game playing (Silver et al., 2016). Over time, state-of-the-
art DNNs become larger and deeper, resulting in increased
computational requirements.

To mitigate the increasing computational requirements it
is standard to optimize computation in a DNN, which is
defined by a computation graph of mathematical operators
(e.g., matrix multiplication, convolution, etc.). Existing
deep learning systems such as TensorFlow, PyTorch, and
TVM optimize an input computation graph by performing
greedy rule-based substitutions on the graph (Abadi et al.
(2016); PyTorch; Chen et al. (2018)). Each substitution
replaces a subgraph matching a specific pattern with a new
subgraph that computes the same result. For example, oper-
ator fusion combines several operators into one, which can
eliminate intermediate results and increases the granularity
of the operators, thereby reducing system overheads such as
memory accesses and kernel launches.

Existing deep learning optimizers consider performance-
improving substitutions, which they greedily and repeatedly
apply to a computation graph until no further substitutions
can be made. More involved sequences of transformations
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where not all intermediate states are strict improvements
are not considered. As a result, current optimizers miss
many more complex optimization opportunities: we show
that exploring a larger space of substitutions can improve
the performance of widely used DNNs by up to 1.6x over
existing rule-based optimizers.

In this paper, we propose relaxed graph substitutions. We
increase the space of optimizations considered by relaxing
the strict performance constraint, allowing any substitutions
that preserve semantics whether or not they improve perfor-
mance. These “downgrading” graph substitutions are useful
as intermediate steps in transforming graph architectures
and eventually discovering new graphs with significantly
better runtime performance. To efficiently explore this larger
space of computation graphs, we use backtracking search
over a set of relaxed graph substitutions to find improved
networks after multiple substitution steps.

As a motivating example, we show how we can optimize the
widely used ResNet architecture (He et al., 2016) using our
approach, as shown in Figure 1. The left-most graph shows
an optimized graph after greedy operator fusions, which
combine a convolution and a following activation (i.e., relu)
into a “convolution with activation”. However, by adaptively
applying relaxed graph substitutions (shown as the arrows
in the figure), it is possible to generate a final graph (right-
most) that is 1.3x faster than the original graph (left-most) on
a NVIDIA V100 GPU. Note that the first graph substitution
increases a convolution’s kernel size from 1x1 to 3x3 by
padding the kernel with extra 0’s. This downgrades runtime
performance (since a convolution with a larger kernel runs
slower) but enables additional subsequent kernel fusions,
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Figure 1. A sequence of relaxed graph substitutions on a ResNet module (He et al., 2016). Each arrow is a graph substitution, and the
dotted subgraphs in the same color indicate the source and target graph of a substitution. “conv axbxc” indicates a convolution with kernel
size a x b and c output channels. The final graph (right-most) is 1.3x faster than the original graph (left-most) on a NVIDIA V100 GPU.

resulting in an overall improvement. Section 3 describes the
other graph substitutions in more detail.

Adding relaxed graph substitutions to existing DNN opti-
mizers and applying them greedily could easily result in
degraded performance. For example, the enlarge operator
substitution in Figure 1 will likely degrade performance
if the resulting convolution cannot be fused with another
operator. While one could attempt to address this by adding
special case rules and heuristics to an existing system, we
believe such an approach would be error-prone and brittle
in the face of new architectures and new substitution rules.
Instead we use cost-based backtracking search to effectively
explore the large space of computation graphs generated
by applying relaxed graph substitutions, without requiring
optimizer developers to implement numerous new rules.

First we introduce a cost model that incorporates multiple
cost dimensions (e.g., FLOPs, execution time, memory us-
age, etc.) and can accurately estimate the performance of
different computation graphs. The cost model allows us to
quickly compare different graphs.

Second, we propose a backtracking search algorithm that
quickly finds efficient solutions for small graphs. However,
the computation graphs of state-of-the-art DNNs are too
large to directly explore the search space of all equivalent
computation graphs. Therefore, we use a graph split algo-
rithm that recursively splits an original computation graph
into individual subgraphs with smaller sizes. The graph is
split in a way that minimizes the number of graph substi-
tutions spanning different subgraphs and is computed by
solving a max-flow problem (Cormen et al., 2009). These
subgraphs are optimized by the backtracking search and then
stitched back together to form the final optimized graph. Fig-
ure 3 depicts an overview of our graph optimization process.

We implement relaxed graph substitutions in a system called

MetaFlow, which can be used to optimize DNN computa-
tion graphs for any existing deep learning framework. In
particular, we show that TensorFlow, TensorFlow XL A, and
TensorRT can directly use MetaFlow’s optimized graphs to
improve both inference and training performance.

We evaluate MetaFlow on five real-world DNNS, including
Inception-v3 (Szegedy et al., 2016), SqueezeNet (Iandola
et al., 2016), ResNet-50 (He et al., 2016), RNN Text Classi-
fication (Kim, 2014), and Neural Machine Translation (Wu
et al., 2016). MetaFlow’s search algorithm is able to op-
timize each of these DNNs in under 5 minutes. We show
that MetaFlow outperforms existing deep learning optimiz-
ers with speedups ranging from 1.1-1.6x for inference and
1.1-1.2x for training. The performance improvement is
achieved by discovering efficient computation graphs that
decrease the overall memory usage by up to 1.5x and the
total number of kernel launches by up to 3.3x. Finally,
we show that MetaFlow’s optimized graphs can be directly
fed into existing frameworks and improve their inference
performance by up to 1.3 x.

To summarize, our contributions are:

e We introduce relaxed graph substitutions, which en-
able the exploration of complex graph optimizations
inaccessible to existing deep learning frameworks.

e We propose a cost-based search algorithm that can
automatically find optimized computation graphs in the
search space generated by relaxed graph substitutions.

e We implement MetaFlow, the first relaxed graph substi-
tution optimizer for DNNs. On a collection of standard
DNNS5, we show that compared to existing frameworks
MetaFlow improves runtime performance by 1.1-1.6 %,
while maintaining the same network accuracy.



Optimizing DNN Computation with Relaxed Graph Substitutions

Inference Data
(input)
1

Training Samples
(input)
1

v %
" : Convolution Derivatives
Convolution Convolution (Backward) > (output)
BatchNorm Derivatives
-->
BatchNorm BatchNorm (Backward) (output)
FullyConnected | __J Derivatives
FullyConnected FullyConnected (Backward) (output)
Softmax
Softmax Softmax (Backward)
v H
Prediction Training Labels
(output) (input)

(a) Inference (b) Training

Figure 2. The inference and training graphs of a 4-layer example
CNN model. Dotted edges are the inputs and outputs of each
computation graph.

2 OVERVIEW

Similar to existing DNN optimizers (Abadi et al., 2016;
Chen et al., 2018; PyTorch), MetaFlow uses a computation
graph G to define computation and state in a DNN model.
Each node is a mathematical operator (e.g., matrix multi-
plication, convolution, etc.), and each edge is a tensor (i.e.,
n-dimensional array). For a computation graph G taking
input tensors Z and producing output tensors O, we define
its computation as O = G(7).

We define two computation graphs G and G’ to be equiv-
alent if G and G’ compute mathematically equivalent out-
puts for arbitrary inputs (i.e., VZ : G(Z) = G'(Z)). For a
given computation graph G, MetaFlow automatically finds
an equivalent computation graph G’ with optimized run-
time performance by using compositions of provided graph
substitutions.

For a DNN model, the inference and training procedures
are defined by different computation graphs, as shown in
Figure 2. An inference graph includes a single input and
one or more outputs, while a training graph generally has
two inputs (i.e., training samples and labels) and multiple
outputs (i.e., derivatives for trainable parameters in each
operator). MetaFlow merely treats inference and training as
different graphs to optimize and applies the same techniques
on both graphs.

Figure 3 shows the main components of MetaFlow. First,
for any input computation graph, MetaFlow uses a flow-
based graph split algorithm to recursively divide the input
graph into subgraphs that are amenable to direct search.
Second, MetaFlow optimizes each individual subgraph with
a backtracking search on the search space defined by re-
peated application of relaxed graph substitutions to each
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Figure 3. MetaFlow Overview.

subgraph. Finally, MetaFlow generates an optimized com-
putation graph of the input graph by using the optimized
subgraphs as basic building blocks.

MetaFlow is a framework-agnostic computation graph opti-
mizer: an optimized computation graph by MetaFlow can
be executed on various deep learning runtimes, such as Ten-
sorRT (TensorRT), TensorFlow (Abadi et al., 2016), and
TensorFlow XLA.!

3 RELAXED GRAPH SUBSTITUTIONS

This section introduces relaxed graph substitutions, each of
which consists of a source graph that can map to particular
subgraphs in the computation graph of a DNN and a target
graph that defines how to create a new subgraph to replace
a mapped subgraph.

Source graph. A source graph defines the structure of valid
subgraphs for a substitution. Each node in a source graph
is associated with a type and can only be mapped to an
operator of the same type. A source graph can also include
wildcard nodes, each of which can be mapped to any sin-
gle operator. The wildcard nodes are useful when the type
of an operator does not affect the substitution procedure
and allow a source graph to describe multiple substitution
scenarios that are similar. In addition to type constraints,
a source graph can also incorporate additional constraints
on one or multiple operators to further restrict mapping.
Figure 4a demonstrates a substitution for fusing two convo-
lutions, which defines constraints on convl and conv2 to
guarantee they can only be mapped to convolutions with the
same kernel size, stride, and padding.

Edges in a source graph describe data dependencies between
operators. A graph substitution requires the mapped sub-
graph to have the same data dependencies as the source
graph. Each operator can optionally have an external edge
(shown as dotted edges in Figure 4) that can map to zero,
one, or multiple edges connecting to external operators in
the computation graph. An external edge indicates that the
operator’s output can be accessed by external operators and

'hitps://www.tensorflow.org/xla
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convl.kernel == conv2.kernel
convl.stride == conv2.stride
convl.padding == conv2.padding

# Construct the target graph:

op2._ = opl._

conv3._ = convl._

conv3.outChannels = convl.outChannels + conv2.outChannels
conv3.weights = concat(convl.weights, conv2.weights)
split.sizes = [convl.outChannels, conv2.outChannels]

(a) Fuse two convolutions.

split

convl
v conv2

add 1
1
1

1
==--» add.out <--4

Source Graph Target Graph

# Constraints on the source graph:
convl.stride == (1, 1)

# Construct the target graph:

conv2.inChannels = convl.inChannels + convl.outChannels
conv2.outChannels = convl.outChannels

# I is an identity matrix

conv2.weights = concat(convl.weights, I)

(b) Fuse a convolution and an add.

Figure 4. Example relaxed graph substitutions. The substitution
in (a) was used in the second (green) step of Figure 1, and the
substitution in (b) was used in the third (yellow) step.

must be preserved in the substitution.

Target graph. A target graph describes how to construct a
new subgraph to substitute for the mapped subgraph. For
each newly created operator, the target graph defines how
to set parameters and compute weights by using parameters
and weights in the source graph. For each external edge in
the source graph, there is a corresponding external edge in
the target graph (also shown as dotted edges). Any exter-
nal operator originally connecting to a mapped operator in
the source graph should now connect to the corresponding
operator in the target graph.

Correctness. We define a graph substitution to be valid if

its source and target graphs compute mathematically equiva-
lent outputs for all external edges. This definition is similar
to our definition of equivalent computation graphs if each
external edge is considered as an output of the graph. Any
composition of valid graph substitutions preserves equiva-
lence among generated computation graphs.

Composition. Many complex graph optimizations can be
decomposed into a sequence of simple relaxed graph sub-
stitutions. Recall that Figure 1 demonstrates a potential
optimization on ResNet that fuses two convolutions with
different kernel sizes by enlarging the kernel of one convo-
Iution. As another example, the following equations show
how to simplify the computation in a Simple Recurrent Unit
(Equations 2 and 4 in Lei et al. (2017)) by using a sequence
of graph substitutions that distribute multiplications, reorder
commutative operators, and factor out common terms, re-
spectively.

IQj+(1-8)®2 (4 operators)
= ERJ+1I07I-TQ7Z (5 operators)
= IRY—TRZ+Z (4 operators)
= TRY—-2)+7 (3 operators)

Note that both optimizations involve complex sequences
of graph substitutions that require temporarily decreasing
runtime performance in intermediate states.

4 THE METAFLOW SEARCH ALGORITHM

Relaxed graph substitutions provide a search space of po-
tential computation graphs that are equivalent to an initial
computation graph but have different runtime performance.
Finding optimal graphs in the search space is challenging,
since the search space can be infinite depending on which
substitution rules are used. It is certainly infeasible to ex-
haustively enumerate the search space for today’s DNN
models.

This section describes the key techniques used in MetaFlow
to efficiently prune the search space and quickly find opti-
mized (but not necessarily optimal) graphs. In particular,
Section 4.1 introduces a cost model that incorporates mul-
tiple cost dimensions (e.g., FLOPs, execution time, mem-
ory usage, etc) and can accurately predict the execution
performance of various computation graphs. Section 4.2
introduces a backtracking search algorithm that effectively
finds an optimized candidate graph in the search space under
the cost model. Because the computation graphs of state-
of-the-art DNNs are too large to directly optimize, we use
a flow-based graph split algorithm (Section 4.3) to recur-
sively divide a computation graph into smaller individual
subgraphs while maximizing graph substitution opportuni-
ties.
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4.1 Cost Model

We introduce a cost model that incorporates multiple dimen-
sions to evaluate the runtime performance of a computation
graph. The cost model computes metrics for each opera-
tor in a graph and combines them appropriately to obtain
a total cost. This includes both metrics that can be com-
puted statically (e.g., FLOPs, memory usage, and number
of kernel launches) as well as dynamic metrics that usually
require measurements on specific hardware (e.g., execution
time on a particular GPU or CPU). For dynamic metrics,
previous work (Jia et al., 2018) shows that it is possible
to accurately predict the execution time of a computation
graph by only measuring a few representative operators on
hardware. Since most DNN operators involve dense linear
algebra with no branches, their performance on hardware is
highly consistent and predictable given the same parameters.
For example, once we have measured and stored the execu-
tion time of a convolution with particular parameters (i.e.,
kernel size, stride, padding, etc.), we can use that execution
time for other convolutions with the same parameters.

Our cost model can optimize a single cost dimension (e.g.,
minimizing overall FLOPs) as well as incorporate multiple
cost dimensions, such as minimizing execution time while
maintaining a memory usage limit (by returning an infinite
cost if the memory usage limit is exceeded). We observe
that many graph substitutions result in a tradeoff among sev-
eral cost dimensions instead of improving all of them. For
example, the graph substitution in Figure 4b reduces mem-
ory accesses and kernel launches at the cost of increasing
FLOPs.

4.2 Backtracking Search

We now describe a backtracking search algorithm to au-
tomatically find optimized computation graphs under the
cost model. Algorithm 1 shows the pseudocode. All can-
didate graphs are enqueued into a global priority queue
and are dequeued in increasing order by their costs. For
each dequeued graph G, the search algorithm generates and
enqueues new graphs by applying potential graph substitu-
tions on G. The search algorithm uses a parameter « (line
13 in the algorithm) to tradeoff between the search time
and the best-discovered solution. By setting @ = 1, the
search algorithm becomes a simple greedy algorithm and
only considers graph substitutions that strictly reduce cost.
As « increases, the search algorithm explores a larger part
of the search space.

4.3 Flow-Based Recursive Graph Split

Many state-of-the-art DNN models are too large to optimize
directly with the backtracking search. We use a flow-based
graph split algorithm to recursively divide a computation

Algorithm 1 A Backtracking Search Algorithm

1: Input: An initial computation graph Gy, a cost model
Cost(+), a list of valid graph substitutions {51, ..., S },
and a hyper parameter o

2: Output: An optimized computation graph.
3:
4: // Q is a priority queue of graphs sorted by Cost(-).
5: Q={Go}
6: while Q # {} do
7: g = Q.dequeue ()
8: fori=1tomdo
9: G =5,(9)
10: if Cost(G') < Cost(Gopy) then
11: Gopt =G’
12: end if
13: if Cost(G") < a x Cost(Gopy) then
14: Q.enqueue (G')
15: end if
16: end for

17: end while
18: return Gopt

graph into smaller disjoint subgraphs that are amenable to
backtracking search. This is motivated by our observation
that graph substitutions are performed on a few locally con-
nected operators, and splitting a computation graph into
smaller individual subgraphs can still preserve most graph
substitutions.

To split a graph into two disjoint subgraphs, we aim at
minimizing the number of graph substitutions spanning the
two subgraphs, since these graph substitutions cannot be
performed on either subgraph. For each operator o; € G,
we define its capacity Cap(o;) to be the number of graph
substitutions that map to at least one in-edge and one out-
edge of operator o;. These graph substitutions are disabled
if operator o; is used to split the graph. By using Cap(o;) as
the weight for each operator, we map the graph split problem
to a minimum vertex cut problem (Cormen et al., 2009) and
can use any max-flow algorithm to find a minimum cut.

A max-flow algorithm splits an arbitrary graph into two dis-
joint subgraphs by minimizing spanning graph substitutions.
Using the max-flow algorithm as a subroutine, Algorithm 2
shows a graph split algorithm that recursively divides an
entire computation graph into individual subgraphs smaller
than a threshold.

After running the backtracking search algorithm to optimize
individual subgraphs, MetaFlow stitches the optimized sub-
graphs back together to constitute an entire computation
graph. Finally, a local backtracking search around each
splitting point is performed for substitutions spanning the
splitting point.
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Algorithm 2 A Flow-based Graph Split Algorithm.
1: Input: An initial computation graph G
2:
3: function GRAPHSPLIT(G)
4 if |G| < threshold then
5 return §
6: else
7
8
9

// MIN-CUT(+) returns a minimum vertex cut.
C = MIN-CUT(G)

: G1 = {0; € G|o; is reachable from C}
10: Go=G -G

11: return { GRAPHSPLIT(G1), GRAPHSPLIT(G2)}
12: end if

13: end function

We would like to point out that while the flow-based graph
split algorithm is sufficient and achieves good performance
for all DNNs used in the experiments, we do not claim that
it is an optimal graph split algorithm. We have examined an-
other graph split algorithm, balanced partitioning (Andreev
& Racke, 2000), to see if the results differ. Both algorithms
achieve the same performance due to the existence of natu-
ral splitting points in the graphs we examined. For example,
none of our substitutions cross the boundary between fire
modules in SqueezeNet (Iandola et al., 2016), yielding an
easy way to split the graph. However, if either the set of
substitution rules or the computation graph were different,
another graph split algorithm may prove more effective.

5 IMPLEMENTATION

MetaFlow is a framework-agnostic DNN optimizer for ar-
bitrary computation graphs. The MetaFlow cost model
and runtime use existing deep learning libraries (e.g.,
cuDNN (Chetlur et al., 2014) and cuBLAS (cuBLAS) for
GPUs, and MKL? for CPUs) to estimate the execution time
of a computation graph and perform real executions on dif-
ferent devices. MetaFlow accepts a user-defined cost func-
tion that incorporates one or multiple cost dimensions and
finds a computation graph optimizing the cost function. An
optimized graph by MetaFlow can be automatically trans-
formed to the formats accepted by existing deep learning
frameworks, including TensorRT, TensorFlow, and Tensor-
Flow XLA (TensorRT; Abadi et al., 2016). This allows ex-
isting deep learning frameworks to directly use MetaFlow’s
optimized graphs as inputs to improve runtime performance.
In particular, we show that MetaFlow can further improve
the runtime performance of existing deep learning frame-
works by up to 1.3, even though these systems internally
perform rule-based graph transformations before executing
an input computation graph.

*https://01.org/mkl-dnn

Table 1. DNNs used in our experiments.

| Description
Convolutional Neural Networks (CNNSs)
Inception-v3 | A 102-layer CNN with Inception modules
SqueezeNet | A 42-layer CNN with fire modules
ResNet50 A 50-layer CNN with residual modules
Recurrent Neural Networks (RNN5s)
A 3-layer RNN for text classification
A 4-layer RNN for neural machine translation

DNN

RNNTC
NMT

6 EVALUATION

This section evaluates both inference and training perfor-
mance of MetaFlow by answering the following questions:

e How does MetaFlow compare to existing deep learning
frameworks that rely on rule-based graph transforma-
tions?

e Can MetaFlow’s graph optimization be used to im-
prove the runtime performance of these deep learning
frameworks?

e Can MetaFlow improve both the inference and training
performance of different real-world DNNs?

6.1 Experimental Setup

Table 1 summarizes the DNNs used in our experiments.
We use three representative CNNss for image classification:
Inception-v3 (Szegedy et al., 2016), SqueezeNet (Iandola
et al., 2016), and ResNet50 (He et al., 2016). They use
different DNN modules to improve model accuracy and
exhibit different graph architectures. RNNTC and NMT are
two sequence-to-sequence RNN models from (Lei et al.,
2017) for text classification and neural machine translation,
respectively. RNNTC uses an embedding layer, a recurrent
layer with a hidden size of 1024, and a softmax layer. NMT
includes an encoder and a decoder, both of which consist
of an embedding layer and two recurrent layers each with
a hidden size of 1024. We follow previous work and use
SRU (Lei et al., 2017) as the recurrent units for RNNTC and
NMT. All experiments were performed on a GPU node with
a 10-core Intel E5-2600 CPU and 4 NVIDIA Tesla V100
GPUs.

In all experiments, MetaFlow considers all applicable graph
substitutions in TensorFlow XLA as well as all substitutions
described in Section 3 and Figure 4. Overall, a total of 14
graph substitutions are used in all experiments. The cost
model used in the experiments was to minimize execution
time. Unless otherwise stated, we use o« = 1.05 as the
pruning parameter for our backtracking search algorithm
(see Algorithm 1). The graph split algorithm recursively
divides subgraphs with more than 30 operators. This allows
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Figure 5. End-to-end inference performance comparison among MetaFlow, TensorFlow, TensorFlow XLA, and TensorRT. For TensorFlow,
TensorFlow XLA and TensorRT, we also measure the performance with MetaFlow’s optimized graphs. The experiments were performed
using a single inference sample on a NVIDIA V100 GPU. The right-most orange bars indicate the inference time of MetaFlow’s optimized
graphs on the MetaFlow engine, which achieves similar performance as TensorRT on CNNs and is faster on RNNs. This difference is due
to a more efficient implementation of the concat and split operators that are introduced in MetaFlow’s graph optimizations. For each DNN
model, the blue and red lines indicate the performance achieved by the best existing system and MetaFlow, respectively. The number
above each red line indicates the relative speedup over the best baseline.
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Figure 6. Performance comparison between MetaFlow and Ten-
sorRT on individual subgraphs in Inception-v3 (Szegedy et al.,
2016). The experiments were performed on a NVIDIA V100
GPU.

MetaFlow’s search procedure to finish in less than 5 minutes
for all the experiments.

6.2 Inference Performance
6.2.1 End-to-end performance

We first compare the end-to-end inference performance be-
tween MetaFlow and existing deep learning frameworks,
including TensorFlow, TensorFlow XL A, and TensorRT, on
a NVIDIA V100 GPU. MetaFlow can automatically trans-
form optimized computation graphs to standard formats
accepted by the baseline frameworks, therefore we also

evaluate the performance of the baseline frameworks with
MetaFlow’s optimized computation graphs.

Figure 5 shows the comparison results. The blue lines
show the best performance achieved among the three
baseline frameworks without using MetaFlow’s optimized
graphs, and the red lines show the MetaFlow performance.
MetaFlow outperforms existing deep learning inference en-
gines with speedups ranging from 1.1x to 1.6 . In addition,
when running MetaFlow’s optimized graphs on baseline
frameworks, MetaFlow also improves the inference perfor-
mance of TensorFlow, TensorFlow XL A and TensorRT by
up to 1.3x. Note that all existing systems internally per-
form rule-based graph transformations before executing a
computation graph, therefore the performance improvement
comes from other graph optimizations beyond rule-based
graph transformations.

We further study the performance difference between
MetaFlow and existing rule-based deep learning frameworks
on multiple cost dimensions, including the overall mem-
ory accesses, the number of FLOPs, the number of kernel
launches and the device utilization. For this experiment, we
use TensorRT as the baseline as it has the best performance
among existing deep learning frameworks. For TensorRT,
the cost metrics are collected through its IProfiler in-
terface.

Tables 2 compares different cost metrics between TensorRT
and MetaFlow. Compared to TensorRT, MetaFlow reduces
the overall memory accesses by up to 1.6x and the number
of kernel launches by up to 3.7x. For the CNNs in our
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Table 2. Performance comparison between MetaFlow and TensorRT on multiple cost dimensions. The experiments were performed on a
NVIDIA V100 GPU. For TensorRT, the cost metrics are collected through its Profiler interface. The device utilization is computed by
normalizing the FLOPs by the execution time (TFLOPs per second). For each cost dimension, a number in bold shows the one with better

performance.
DNN Execution Time (ms) | Memory Accesses (GB) Launched Kernels FLOPs (GFLOPs) Device Utilization
TensorRT MetaFlow | TensorRT MetaFlow TensorRT MetaFlow | TensorRT MetaFlow | TensorRT MetaFlow
Inception-v3 | 5.51 5.00 95.4 62.2 138 115 5.68 5.69 1.03 1.14
SqueezeNet | 0.94 0.75 62.1 46.1 50 40 0.64 1.00 0.68 1.35
ResNet50 1.97 1.86 37.2 35.8 70 67 0.52 0.54 0.26 0.29
RNNTC 0.91 0.60 1.33 1.17 220 83 0.22 0.20 0.24 0.33
NMT 245 1.56 5.32 4.68 440 135 0.84 0.78 0.34 0.50
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Figure 7. The original and MetaFlow’s optimized computation graphs of an Inception module on different GPUs. Dotted boxes in the
same color indicate mapped operators in different computation graphs, and shadow boxes highlight MetaFlow’s graph optimizations.
Note that on K80, MetaFlow does not expand conv1x3 and conv3x1 to conv3x3 due to less available hardware parallelism.

experiments, MetaFlow achieves performance improvement
at the cost of increasing FLOPs in a computation graph.
This allows MetaFlow to opportunistically fuse multiple
operators to reduce memory accesses and kernel launches.
For example, in an Inception module, MetaFlow enlarges
a convlx3 and a conv3x1 operator both to conv3x3
operators to fuse them to a single conv3x3 operator (see
Figure 7). This reduces both memory accesses and kernel
launches.

For the RNNs, MetaFlow can also decrease the FLOPs com-
pared TensorRT. Section 3 shows how MetaFlow transforms
the computation in a recurrent unit from 4 element-wise
operators to 3 by composing a sequence of simple graph
substitutions. This is a potential but currently missing opti-
mization in TensorRT (v4.0.1, the latest version as of Sep
2018).

6.2.2 Subgraph performance

We evaluate whether MetaFlow can improve the perfor-
mance of individual subgraphs in a DNN. Figure 6 com-
pares the performance of TensorRT and MetaFlow on in-
dividual subgraphs in Inception-v3. The figure shows that
MetaFlow can consistently find faster computation graphs

than TensorRT, which leads to an end-to-end performance
improvement of 1.25x.

6.2.3 Comparison among different devices

For a given input graph MetaFlow may discover different
optimized graphs on different devices. For example, Fig-
ure 7 shows the original and MetaFlow’s optimized compu-
tation graphs of an Inception module on a V100 and a K80
GPU, respectively. The graph substitutions performed on
each GPU are highlighted in shadow boxes. Note that the
substitution that fuses a conv1x3 and a conv3x1 into a
conv3x3 improves the runtime performance on a V100
but decreases the performance on a K80.

We have also observed other graph substitutions whose value
depends on the specific hardware. This situation makes ex-
isting greedy rule-based graph transformations less reliable
for optimizing computation graphs on different devices,
since substitutions that increase the runtime performance on
some devices may decrease performance on other devices.
On the other hand, MetaFlow’s search-based approach is
better positioned for generating hardware-specific computa-
tion graphs by leveraging the actual performance of different
graph substitutions on the hardware.
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Figure 8. End-to-end inference performance comparison between
MetaFlow and TVM on a NVIDIA V100 GPU.
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Figure 9. Training performance comparison between TensorFlow
and TensorFlow w/ MetaFlow’s graph optimizations. The ex-
periments were performed on 4 NVIDIA V100 GPUs with data
parallelism and a global batch size of 64.

6.2.4 Comparison with code generation techniques

Figure 8 compares the end-to-end inference performance
between MetaFlow and TVM (Chen et al., 2018). Our cur-
rent implementation of MetaFlow directly uses the cuDNN
and cuBLAS libraries to run individual operators, while
TVM uses auto-generated high-performance kernels, es-
pecially for convolutions, making it competitive on some
benchmarks despite its lack of the higher-level graph opti-
mizations MetaFlow provides. The optimizations in TVM
operate at a lower level than the optimizations in MetaFlow,
so they could easily be composed. In the future, we plan
to integrate TVM as a backend for MetaFlow so that we
can improve performance via both graph optimization and
individual kernel code generation.

Table 3. Performance comparison between MetaFlow’s backtrack-
ing search (with &« = 1.05) and a baseline exhaustive search on
AlexNet, VGG16, ResNet18, and an Inception module shown in
Figure 7a. A check mark indicates the backtracking search found
the same optimal graph as the exhaustive search under the cost
model.

Graph Exhaustive | Backtracking | Same
Search Search Result?
AlexNet 5.0 seconds 0.1 seconds v
VGGI16 2.3 minutes 0.2 seconds v
InceptionE | 12.8 minutes | 0.29 seconds v
ResNetl8 3.1 hours 0.99 seconds v

6.3 Training Performance

Graph substitution optimizations are applicable to arbitrary
computation graphs including both inference and training.
To evaluate how MetaFlow improves the training perfor-
mance on different DNNs, we run both the original com-
putation graphs and MetaFlow’s optimized graphs on Ten-
sorFlow. We follow the suggestions in TensorFlow Bench-
marks® and use synthetic data to benchmark the training
performance. The experiments were performed on four
NVIDIA V100 GPUs on a single compute node, with data
parallelism and a global batch size of 64.

Figure 9 shows the training throughput comparison. We
observe that a training graph generally involves more data
dependencies than its corresponding inference graph, as
shown in Figure 2. As a result, MetaFlow’s graph optimiza-
tions generally achieve smaller performance improvement
for training than inference. However, MetaFlow can still dis-
cover computation graphs that increase training throughput
byupto 1.2x.

6.4 Search Algorithm Performance

We now compare the backtracking search algorithm de-
scribed in Section 4.2 with a baseline exhaustive search
algorithm that enumerates all computation graphs in the
search space. To allow the exhaustive search to complete
in reasonable time, we use small DNN models including
AlexNet (Krizhevsky et al., 2012), VGG16 (Simonyan &
Zisserman, 2014), ResNetl8, and an Inception module
shown in Figure 7a.

Table 3 compares the search time of the two algorithms.
Compared to the baseline exhaustive search, MetaFlow’s
backtracking search finds the same optimal graph for the
four DNNs and reduces the search time by orders of magni-
tude over the baseline.

Second, we evaluate the performance of our backtracking
search algorithm with different pruning parameters «. Fig-

3https://www.tensorflow.org/guide/performance/benchmarks
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Figure 10. The performance of the best discovered graphs (shown
as the red line) and the end-to-end search time for running
Inception-v3 on a V100 GPU with different o.

ure 10 shows the performance of the best discovered graphs
and the end-to-end search time for running Inception-v3
on a V100 GPU with different . The figure shows that a
relatively small o (e.g., 1.05 in this case) allows us to find a
highly optimized computation graph while maintaining low
search cost.

7 RELATED WORK

Greedy rule-based graph transformation has been
widely used by existing deep learning frameworks (Abadi
et al., 2016; TensorRT; PyTorch) to improve the runtime per-
formance of a computation graph. Existing systems require
each rule to improve the runtime performance, preventing
a large number of potential graph substitutions from being
considered. The key difference between existing deep learn-
ing frameworks and MetaFlow is that MetaFlow considers
relaxed graph substitutions that may temporarily decrease
runtime performance and uses a search algorithm to discover
optimized computation graphs in the search space.

Automatic kernel generation. Recent work has pro-
posed different approaches to automatically generate high-
performance kernels for specific hardware (Vasilache et al.,
2018; Chen et al., 2018; Ragan-Kelley et al., 2013). These
kernel generation techniques solve an orthogonal problem of
how to improve performance of individual operators, while
MetaFlow aims at optimizing computation graphs using
relaxed graph substitutions. We believe it is possible to
combine relaxed graph substitutions with automatic code
generation and leave this as future work.

Optimizing distributed DNN training. Recent work has
also proposed deep learning frameworks that automati-
cally find efficient parallelization strategies for distributed
DNN training. For example, ColocRL (Mirhoseini et al.,

2017) uses reinforcement learning to find efficient device
assignment for model parallelism across multiple GPUs.
FlexFlow (Jia et al., 2019) introduces a comprehensive
search space of parallelization strategies for DNNs and
uses randomized search to find efficient strategies in the
search space. These frameworks optimize distributed DNN
training by assuming a fixed computation graph, and it still
remains an open problem to combine MetaFlow’s graph
optimizations with these frameworks to further improve the
runtime performance of distributed DNN training.

8 CONCLUSION

Existing deep learning optimizers use greedy methods to
optimize computation graphs by applying graph substitu-
tions that are strictly performance increasing. This approach
misses potential performance gains from more complex
transformations where some intermediate states are not im-
provements. We identify the potential of performing such
transformations, and propose relaxed graph substitutions to
achieve them. We provide a system, MetaFlow, for optimiz-
ing DNN computation graphs using relaxed graph substitu-
tions, and show that MetaFlow can achieve up to 1.6x per-
formance improvements on a variety of widely used DNNSs.
Finally, we demonstrate that relaxed graph substitutions are
widely applicable as we show that adding them to existing
frameworks such as TensorFlow XLA and TensorRT results
in further performance improvements.
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A ARTIFACT APPENDIX
A.1 Abstract

This artifact appendix helps readers to reproduce the main
experimental results in this paper. In this artifact evaluation,
we show (1) how MetaFlow can automatically search for op-
timized computation graphs for different DNN models, and
(2) how MetaFlow’s optimized graphs can be directly used
as inputs to improve the runtime performance of existing
deep learning systems, including TensorFlow, TensorFlow
XLA, and TensorRT.

A.2 Artifact check-list (meta-information)

o Run-time environment: Linux Ubuntu 16.04+
e Hardware: NVIDIA Tesla P100 or V100 GPUs

e Metrics: The primary metric of comparison is the end-to-
end inference latency.

e How much disk space required (approximately)?: A
hundred MB of disk storage should be sufficient for all ex-
periments.

e How much time is needed to prepare workflow (approx-
imately)?: About one hour to install all dependencies and
compile the MetaFlow runtime.

e How much time is needed to complete experiments (ap-
proximately)?: About 20 minutes for all experiments.

e Publicly available?: Yes

e Code licenses (if publicly available)?:
Version 2.0.

Apache License,

o Workflow framework used?: TensorFlow r1.12 and Ten-
sorRT 5.0.2.6.

e Archived (provide DOI)?:
https://doi.org/10.5281/zenodo.2549853

A.3 Description

A.3.1 Hardware dependencies

This artifact evaluation depends on a NVIDIA GPU. All experi-
ments in this paper were performed on a NVIDIA V100 GPU. We
have also run experiments on a NVIDIA P100 GPU and observed
similar performance improvements.

A.3.2  Software dependencies
MetaFlow depends on the following software libraries:
e The MetaFlow runtime were implemented on top of

cuDNN (Chetlur et al., 2014) and cuBLAS (cuBLAS) li-
braries.

e (Optional) TensorFlow, TensorFlow XLA, and TensorRT are
optionally required to run MetaFlow’s optimized computa-
tion graphs on these systems.

The following software versions were used in our experiments:
cuDNN 7.3, CUDA 9.0, TensorFlow r1.12, and TensorRT 5.0.2.6.

A.4 Installation

A.4.1 MetaFlow runtime

The MetaFlow runtime can be installed by downloading source
code from an archived DOI website * or from a public git reposi-
tory °. The install. sh script automatically builds all binaries
used in this artifact evaluation.

A.4.2 TensorRT runtime

The TensorRT runtime can be installed following the instructions at
https://developer.nvidia.com/tensorrt. The ex-
periments in the paper were performed with TensorRT 5.0.2.6. We
have also verified MetaFlow’s usability on several older versions
of TensorRT (e.g., 4.0.1.6).

A4.3 TensorFlow runtime

The TensorFlow runtime can be installed following the instruc-
tionsathttps://www.tensorflow.org/install/. The
experiments in this paper were done with TensorFlow version 1.12.
Note that XLLA support is not linked by default in older versions
of TensorFlow. If you would like to use an older version with
XLA, you must compile from source. Instructions can be found at
https://www.tensorflow.org/install/source.

A.5 Experiment workflow

The following experiments are included in this artifact evaluation.
All experiments were run with synthetic input data in GPU device
memory to remove the side effects of data transfers between CPU
and GPU.

A.5.1 MetaFlow experiments

The following command line automatically finds an optimized
computation graph for a DNN model and measures the inference
latency of the optimized graph in the MetaFlow runtime.

./mf ——-dnn model

The example DNN models included in this artifact evaluation
are Inception-v3 (Szegedy et al., 2016), SqueezeNet (Iandola
et al., 2016), ResNet-50 (He et al., 2016), and RNNTC (Kim,
2014). You can run the example models by replacing model with
inception, squeezenet, resnet50, or rnntc.

A.5.2  TensorRT experiments

The following command line measures the inference latency of a
MetaFlow’s optimized computation graph in TensorRT.

./mf-trt —--dnn model

*nttps://doi.org/10.5281/zenodo.2549853
Shttps://github.com/jiazhihao/metaflow_
sysmll9
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DNN: SqueezeNet with Complex Byass.
Baseline Graph:
End-to-end runtime = 1.4037ms
Estimated runtime = 1.4171 ms
Floating point operations = 0.6364 Gflop
Memory accesses = 62.0473 MB
GPU kernel launches = 50
Optimized Graph:
End-to-end runtime = 1.1923ms
Estimated runtime = 1.1820 ms
Floating point operations = 0.8180 Gflop
Memory accesses = 46.6183 MB
GPU kernel launches = 42
Optimized Graph on TensorRT:
Average over 10 runs is 1.15658 ms.

Figure 11. An example output of this artifact evaluation.

where model can be one of inception, squeezenet,
resnet50, and rnntc.

A.5.3 TensorFlow and TensorFlow XLA experiments

First, run MetaFlow using the ——export file_name flag to
output the computation graph to a file. You can optionally in-
clude the ——noopt flag to output an unoptimized graph. See the
script code/export_graphs. sh for some examples of how
to export graphs.

Next, run the script tensorflow py/tf_executor.pyona
graph file generated as described above.

python tf_executor.py --graph_file
path_to_graph_file [--xla]

The ——x1a flag controls whether TensorFlow will run with XLA
turned on. You can run python tf_executor —-help fora
full list of options.

A.6 Evaluation and expected result

Each execution outputs the end-to-end inference time of an original
computation graph as well as the MetaFlow’s optimized computa-
tion graph. When running on a NVIDIA V100 GPU, this artifact
evaluation should reproduce all experimental results in Figure 5.

Figure 11 shows an example output by running mf-trt on
squeezenet.

A.7 Experiment customization

MetaFlow can be used to optimize arbitrary DNN computation
graphs on any GPU device. We refer users to the four running ex-
amples in this artifact evaluation for more details on the MetaFlow
usage.



