
Evaluating End-to-End Optimization for Data Analytics
Applications in Weld

Shoumik Palkar, James Thomas, Deepak Narayanan, Pratiksha Thaker,
Rahul Palamuttam, Parimajan Negi, Anil Shanbhag‡, Malte Schwarzkopf‡,

Holger Pirk†, Saman Amarasinghe‡, Samuel Madden‡, Matei Zaharia
Stanford University, †Imperial College London, ‡MIT CSAIL

{shoumik, jjthomas, deepakn, prthaker, rpalamut, pnegi, mzaharia}@stanford.edu,
pirk@imperial.ac.uk, {anil,malte,madden,saman}@csail.mit.edu

ABSTRACT
Modern analytics applications use a diverse mix of libraries and func-
tions. Unfortunately, there is no optimization across these libraries,
resulting in performance penalties as high as an order of magnitude
in many applications. To address this problem, we proposed Weld,
a common runtime for existing data analytics libraries that performs
key physical optimizations such as pipelining under existing, imper-
ative library APIs. In this work, we further develop the Weld vision
by designing an automatic adaptive optimizer for Weld applications,
and evaluating its impact on realistic data science workloads. Our
optimizer eliminates multiple forms of overhead that arise when
composing imperative libraries like Pandas and NumPy, and uses
lightweight measurements to make data-dependent decisions at run-
time in ad-hoc workloads where no statistics are available, with
sub-second overhead. We also evaluate which optimizations have
the largest impact in practice and whether Weld can be integrated
into libraries incrementally. Our results are promising: using our
optimizer, Weld accelerates data science workloads by up to 23× on
one thread and 80× on eight threads, and its adaptive optimizations
provide up to a 3.75× speedup over rule-based optimization. More-
over, Weld provides benefits if even just 4–5 operators in a library
are ported to use it. Our results show that common runtime designs
like Weld may be a viable approach to accelerate analytics.

PVLDB Reference Format:
S. Palkar, J. Thomas, D. Narayanan, P. Thaker, R. Palamuttam, P. Negi, A.
Shanbhag, M. Schwarzkopf, H. Pirk, S. Amarasinghe, S. Madden, M. Za-
haria. Evaluating End-to-End Optimization for Data Analytics Applications
in Weld. PVLDB, 11(9): 1002-1015, 2018.
DOI: https://doi.org/10.14778/3213880.3213890

1. INTRODUCTION
Modern data analytics workloads combine a broad mix of li-

braries, functions and processing systems. Although a workload
might begin by selecting and transforming data through SQL, ad-
vanced analytics and machine learning pipelines typically involve
external libraries such as Pandas [39], NumPy [43], TensorFlow [1],
Apache Spark [61] and others in a programming language such
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 44th International Conference on Very Large Data Bases,
August 2018, Rio de Janeiro, Brazil.
Proceedings of the VLDB Endowment, Vol. 11, No. 9
Copyright 2018 VLDB Endowment 2150-8097/18/05... $ 10.00.
DOI: https://doi.org/10.14778/3213880.3213890

data = lib1.f1()
lib2.map(data,

item => lib3.f2(item))

User Application

Weld Runtime

Combined
IR program

Machine
code

11011100
11101011
01111010

IR fragments
for each function

Runtime
API

f1 map

f2

Data in
application

Optimized
IR program

Figure 1: Weld’s runtime lets diverse libraries submit computation
in a functional intermediate representation (IR). After collecting
fragments from multiple libraries via a lazy API, Weld generates
optimized code that runs on the application’s in-memory data.

as Python or R. These languages already offer thousands of third-
party software libraries for data analytics [11, 50], and new ones are
constantly being written to support new workloads [20, 51].

Unfortunately, the analytics performed with these independent
software libraries lack one of the main benefits of a DBMS: end-
to-end optimization. A key reason for this is that users submit
workloads to a DBMS using a unified query language—SQL—over
which optimizations occur. In contrast, the interface to traditional
software libraries is a rigid set of library-specific functions. Each
library manages its own function execution, precluding optimization
across different libraries, and sometimes even across functions in
the same library. As a result, in applications using multiple libraries
and functions, even simple optimizations like pipelining do not
occur. This lack of end-to-end optimization has a serious impact on
performance: we found that typical data science workloads using
NumPy, Pandas and TensorFlow can run as much as 23× slower one
thread compared to hand-optimized code, even when the individual
functions they call (e.g., BLAS kernels) are heavily optimized.

To address this problem, we have proposed Weld [48], a common
runtime for data analytics libraries that can perform key physical
optimizations under diverse existing libraries. Weld provides a novel
programming interface for analytics libraries that enables efficient
composition. Weld lets libraries express the data-parallel structure
of their computations (e.g., a map operation or an aggregation) us-
ing a functional intermediate representation (IR), and uses a lazily
evaluated runtime API to collect IR code from different libraries
(Figure 1). As applications call Weld-enabled libraries and func-
tions, Weld builds up a combined IR program, and then optimizes
across the whole program before generating native code and running
it. We showed that Weld IR can express a variety of workloads (e.g.,
relational and linear algebra) and that the IR supports a variety of

1002

transformations to improve performance. However, this early work
was limited in two ways: all the IR optimizations were invoked man-
ually, and evaluation was limited to a small set of microbenchmarks.

In this paper, we extend our work in [48] to study what is needed
to build a fully automatic Weld runtime system, including an opti-
mizer for Weld’s IR, and evaluate the “common runtime" approach
using a variety of realistic applications. In particular, we answer the
following four questions in designing a common analytics runtime:
1. How should Weld optimize workloads? Although the prob-

lem of optimizing applications in Weld is similar to database and
compiler optimization at a high level, we address two challenges
specific to the common runtime setting:
(a) Unlike many human-authored SQL queries or programs, the

Weld IR code generated by calling multiple libraries is often
highly redundant, because imperative libraries like NumPy
and Pandas materialize results after most operations. It is
thus crucial to eliminate redundancies that arise from library
composition, e.g., intermediate results that can be pipelined.

(b) Weld needs to optimize ad-hoc analytics workloads with no
precomputed data statistics (e.g., interactive data analysis in
Python), without adding significant runtime overhead.

To address these problems, we designed a fast adaptive op-
timizer for Weld based on (i) a rich set of pipelining, common
subexpression elimination and loop fusion [30] rules to elimi-
nate redundancy and (ii) adaptive optimizations for predicating
branches [29] and choosing efficient data structures based on
data sampled at runtime. We show that our optimization, com-
pilation and sampling steps take sub-second time on realistic
workloads and produce high performance code.

2. How does Weld perform on complex real workloads? Our
prior work only evaluates microbenchmarks using minimal in-
tegrations of Weld with NumPy, Pandas and other libraries. In
this paper, we study a full set of realistic data science workloads,
including data cleaning and ad-hoc analytics in Pandas, image
classification in TensorFlow, and physics simulation in NumPy,
using expanded integrations with these frameworks.

3. Can Weld be integrated into libraries incrementally? Port-
ing whole libraries to use Weld is time-consuming, so we evalu-
ate the impact of porting just a few widely used operators.

4. Which cross-library optimizations matter in practice? We
study the impact of each of our optimizations (e.g., pipelining,
vectorization and adaptive predication) on our suite of workloads
to identify which are critical to support in a common runtime.

More generally, this work substantiates the “analytics common
runtime” vision set forth in [48] by designing and evaluating the
first runtime that can optimize across disjoint analytics libraries
automatically end-to-end. Although Weld is only one possible de-
sign point and has its tradeoffs and limitations (e.g., we chose to
focus on physical data movement optimizations using a functional
programming-based IR instead of an IR with domain-specific opera-
tors), we believe the results are promising for several reasons:
1. Weld produces code competitive with domain-specific compilers

like XLA [59] and HyPer [42], but with a more general IR.

2. Weld achieves speedups of up to 80× on eight threads in unmod-
ified analytics applications written using existing, widely used
APIs [1, 4, 39, 43], showing that it is possible to automatically
make significant optimizations under existing library APIs.

3. Weld only requires moderate effort to integrate into existing
libraries and can be integrated incrementally, requiring a similar
effort to accelerating specific operators using languages like

CUDA and C (which many libraries do [1,39,43]). Compared to
CUDA or C, Weld provides similar single-operator performance,
and enable cross-operator optimizations that current libraries
do not provide unless they implement a compiler [59].

Perhaps most importantly, our work highlights the interface for
composing software libraries as a key area to work in to enable
high performance and high developer productivity at the same time.
Today, most systems either feature a domain-specific, high-level
interface (such as SQL) that enables rich optimization but requires
all of the computation to be understood by a single engine, or low-
level interfaces (such as function calls) that can be invoked from
anywhere but do not offer end-to-end optimization. Weld’s IR aims
to give library developers enough freedom to implement their own
computations, while still supporting the most performance-critical
optimizations, such as pipelining. This lets users have the benefits of
a wide library ecosystem and database-like end-to-end optimization
at the same time. Weld is open source at https://weld.rs.

2. WELD OVERVIEW
This section gives an overview of Weld, covering background on

its IR and runtime API from [48] as well as several new extensions
we made since that first version to enable additional optimizations.

2.1 Goals and Non-Goals
Weld aims to accelerate in-memory applications that compose

data-parallel computations on a single machine, taking advantage of
multicore and SIMD processing while minimizing memory move-
ment. It does not currently aim to generate distributed code or
handle disk spilling, although it can be integrated into distributed
big data systems to accelerate per-node computation. As shown
in previous work, many distributed frameworks can be CPU- or
memory-bound [4, 12, 47] (as opposed to I/O-bound), so Weld can
improve their performance. For example, we show in §8 that Weld
can accelerate Spark SQL workloads by up to 6.5×.

Weld optimizes computations across functions and libraries by us-
ing a common intermediate language and runtime. There are many
possible designs for such a system, ranging from one with built-in
primitives for every domain (e.g., machine learning, graph algo-
rithms or relational algebra) to low-level languages such as OpenCL
that give library developers full control over how to implement their
computations. With Weld, we designed a minimal IR and runtime
that enables the most impactful cross-library optimizations while
being expressive enough to allow libraries to represent their algo-
rithms. Specifically, Weld was designed to focus primarily on data
movement optimizations for data-parallel operators from domains
such as relational and linear algebra. These operators consume
the bulk of time in many applications by causing memory traffic,
and benefit from co-optimization. Domain-specific optimizations
such as index maintenance, reordering linear algebra expressions
or reordering SQL joins still need to be implemented within each
library outside of Weld, but many systems already perform these.
For example, a relational library could first optimize a logical plan
by ordering joins, pushing down predicates, etc. and then use Weld
for physical plan optimization. For already-optimized code such as
BLAS or for domain-specific tasks such as using an index to load
on-disk data, Weld supports calling existing C functions.

We expect libraries to integrate Weld in two ways. First, many li-
braries, such as Pandas and NumPy, already implement performance-
sensitive functions in low-level languages such as C. Developers can
port individual functions in these libraries to use Weld’s functional
IR instead, thus automatically benefiting from cross-function opti-
mizations. These libraries often already have compact in-memory
data representations (e.g., NumPy arrays [43]), so Weld can work

1003

https://weld.rs

directly against their in-memory data at no extra cost. Second, some
libraries, such as Spark SQL and TensorFlow, already perform code
generation beneath a lazily evaluated API. For these libraries, Weld
offers both the ability to interface efficiently with other libraries
and a systematic way to JIT code. For example, much of the com-
plexity in code generators for databases comes from operator fusion
logic that requires transforming a tree of operators into a single
loop [2,42]. With Weld, each operator can emit a separate loop over
its inputs, and our optimizer will automatically fuse them.

2.2 Weld IR
The first component in Weld is its intermediate representation

(IR), a language that libraries use to describe their computations.
The IR plays a similar role to relational algebra in a database, but
aims to also support other analytics workloads (e.g., linear algebra).

In order to support a wide range of computations while still
enabling key optimizations, Weld’s IR is based on monad compre-
hensions [23], a low-level representation for functional programs
or relational algebra that facilitates expressing fusion optimizations.
The key idea is to provide a parallel loop operator that can read
one or more collections of data and updates one or more declarative
builders to produce results, such as computing a sum or constructing
a hash table. Weld imposes a number of constraints on the IR to
make it amenable to analysis and optimization: the IR is purely
functional, meaning variables are immutable once assigned, and
virtual function calls are disallowed. We described the IR in [48],
but provide an overview and discuss extensions here.
Data Types. Weld’s basic data types are scalars (e.g., int, float),
structures (denoted {T1,T2,...}), variable-length vectors (vec[T]),
and dictionaries (dict[K,V]). These types are nestable to support
complex data such as JSON or XML. We chose these types because
they appear commonly in analytics applications and in low-level
data processing code (e.g., dictionaries appear in hash joins).
Computation. Weld’s IR contains sequential operators for arith-
metic, dictionary lookups, indexed lookups on vectors, sequential
while loops, sorting, and calling external C functions. In addition,
the IR has two parallel constructs: a parallel for loop and an ab-
straction for constructing results called builders.

Weld’s parallel loops can be nested arbitrarily, which allows
complex library function composition (e.g., calling NumPy on each
row of a table) and workloads that perform an irregular amount of
work per item (e.g., processing an array of variable-length strings).
Each for loop can merge values into multiple builders. For example,
a single loop can merge values into one builder to produce a sum
and another to produce a list.

Weld includes multiple types of builders, shown in Table 1. As
examples, a vecbuilder[T] takes values of type T and builds a vector
of merged values, and a merger[T,op] combines values of type T

into a single result using an associative operation op. In the database
context, builders are used to construct the result of a query while
consuming data. For example, a merger captures aggregations, a
vecbuilder captures selections, and the dictionary-based builders
can be used for hash joins or grouping. Builders are declarative
types since they only specify a high-level operation rather than
specific hardware implementation. This allows Weld to change
builder implementations adaptively based on the data and hardware.

Builders support three basic operations. The merge(b, v) opera-
tion adds a new value v into the builder b and returns a new builder
object to represent the result. Merges into builders are associative,
enabling parallel execution. The result(b) operator destroys the
builder b and returns its final result: no further operations are al-
lowed on it after this. Finally, Weld’s parallel for loop updates one
or more builders in parallel. for(vector, builders, func) applies

Table 1: Builder types in Weld.

Builder Types

vecbuilder[T] Builds vec[T] by appending merged
values of type T.

merger[T,op] Builds a T by merging values using an
associative operation op.

dictmerger[K,V,op] Builds dict[K,V] by merging {K,V}
pairs using an associative operation.

vecmerger[T,op] Builds vec[T] by merging {index,T}
pairs into specific cells in the vector

using an associative operation.

groupbuilder[K,V] Builds dict[K,vec[V]] by merging
{K,V} pairs and grouping by key.

a function of type (builders, index, elem)=> builders to each
element of a vector in parallel, then returns the updated builders.
Each call to func receives an element of a vector and its index, and
may merge zero or more values into each builder. Although our
original IR [48] only allowed iterating over one vector at a time in
a loop, we have also extended it to iterating over multiple vectors
together, as we discuss in §2.3.

// Merge two values into a builder.
b1 := vecbuilder[int]
b2 := merge(b1, 1)
b3 := merge(b2, 2)
result(b3) // returns [1, 2]

// Use a for loop to merge multiple values.
data := [1, 2, 3]
b1 := merger[int, +]
b2 := for(data, b1, (b,i,x) => merge(b, x))
result(b2) // returns 6

Listing 1: Examples of using builders.

Weld places two additional restrictions on the use of builders
for efficiency. First, each builder must be consumed (passed to an
operator) exactly once per control path to prevent having multiple
values derive from the same builder, which would require copying
its state. Second, functions passed to for must return builders
derived from their arguments. These restrictions allow Weld to
safely implement builders using mutable state.

Weld also provides macros that implement common functional
operators such as map, filter and reduce. These operators all map
into loops and builders.
User Defined Functions. Weld supports calling user-defined C
functions by name as part of its IR. Users pass values from the Weld
program to the C function and specify the Weld return type of the
function. Each Weld type has a standard C-compatible data layout
(§2.4). UDFs can be used to call compute-optimized kernels such
as Level-3 BLAS routines or to access state outside of Weld.
Benefits of Weld’s IR. As described in [48], Weld’s IR can express
many common data processing tasks, including relational operators,
functional APIs like Spark, graph computations and linear algebra.
Moreover, the explicit separation of loops and builders also makes it
possible to describe fused computations that update multiple builders
in a single loop. For example, suppose that an application wants
to compute two results based on a sequence of numbers. In the
Weld IR, it is possible to write a single loop over the data that
produces both results in two different builders, as shown in Listing 2.
Weld’s optimizer analyzes the builders and loops to apply these
optimizations automatically.

1004

// Compute two results from same sequence.
data := [1, 2, 3]
squares := map(data, x => x*x)
doubled := map(data, x => 2*x)

// Program above converted to a single loop.
b1, b2 := vecbuilder[int], vecbuilder[int]
res = for(data, {b1, b2},

(bs, i, x) => {merge(bs.0, x*x), merge(bs.1, 2*x)})
squares, doubled := result(res.0), result(res.1)

Listing 2: Computing two results in a single loop.

2.3 Weld IR Extensions
To better support more workloads, we extended the Weld IR pre-

sented in [48] with a more general concept of loops. First, some
libraries, such as NumPy, require strided access over part of an
array (e.g., accessing just one column in a matrix). Second, many
operations require iterating over multiple collections together. As
an example, many Pandas [39] functions require operating over
two separate data columns in a DataFrame. A limited version of
this could be achieved in the IR from [48] by using indices to look
up elements in multiple arrays, but we wanted to make this more
explicit to enable more optimizations. We thus extended the for

construct in Weld to accept multiple iterators as input, where an
iterator is defined as a vector of data, a start index, an end index, and
a stride. The function passed to the for loop receives the correspond-
ing element from each iterator and can process elements from each
iterator together. This extension enables automatic identification
of a broader class of redundant computations, even in applications
using complex access patterns such as matrix operations.

2.4 Weld Runtime API
Weld’s second major component is its runtime API. The API is

inspired by interfaces like OpenCL and CUDA, which allow libraries
submit code that runs on parallel hardware. However, unlike these
two interfaces, Weld’s API is lazily evaluated. As libraries call
the API and submit fragments of IR code, Weld remembers the
fragments and only executes them when a special function is called
to force evaluation. This creates the opportunity to run our optimizer
(§3). Once Weld has optimized the provided IR code, our system
compiles it and executes it against the application’s in-memory data.

As an example, the Python program in Listing 3 takes a Pandas
DataFrame data, filters values from a column, and sums the result
with NumPy. In the current versions of these libraries, each step
would proceed eagerly as separate loops over the data. With Weld’s
API, the filtering and aggregation computations are submitted lazily,
and Weld’s optimizer will fuse and vectorize them together for
enhanced performance to just compute the final result sum.

def filter_and_sum(data):
filtered = data[data["myColumn"] > 500000]
sum = numpy.sum(filtered)
print sum

Listing 3: A sample Python program using Pandas an NumPy.

Developers integrate Weld into their libraries using an interface
called WeldObject, which represents either a lazily evaluated sub-
computation or some in-memory data in the application (e.g., a
NumPy array). A WeldObject may depend on other WeldObjects
(possibly from other libraries), forming a DAG for the whole pro-

Table 2: Weld API for lazily composing and evaluating functions.

API Summary

NewWeldObj(data,ty) Creates a WeldObject representing an in-
memory value data with type ty.

NewWeldObj(deps,expr) Creates a WeldObject with the Weld IR
expression expr, which may depend on any
of the WeldObjects in deps.

Evaluate(obj) Evaluates the WeldObject obj and returns
its value to the application.

gram where leaf nodes in the DAG refer to in-memory data. Table 2
summarizes the main API functions for manipulating WeldObjects.

Developers create WeldObjects using the NewWeldObj call. This
call has two variants: one to register in-memory data in the appli-
cation with Weld and one to define an object computed from other
WeldObjects. To encapsulate in-memory data, developers pass a
pointer to the data dependency and the Weld type of the dependency
(e.g., vec[int] for an integer array). Weld’s runtime uses a standard
binary format for data types that allows the system to operate over
many existing in-memory formats without marshalling. Scalar types
(int, float, etc.) and structs follow C packed structure layout, and
vectors vec[T] are represented as a pointer and a length. If neces-
sary, developers can provide “encoder” and “decoder” functions for
conversions to and from the Weld format.

To define WeldObjects that depend on other WeldObjects, devel-
opers pass a list of the parent WeldObjects (deps) and Weld IR code
representing a computation. The IR code must reference only the
objects declared in deps. Internally, each WeldObject has a unique
name; using an existing WeldObject in an IR fragment substitutes
the name into the fragment. Listing 4 shows an example defining a
function to square a number passed as a WeldObject:

def square(self, arg):
Programatically construct an IR expression.
expr = weld.Multiply(arg, arg)
return NewWeldObj([arg], expr)

Listing 4: A simple function that squares an argument using Weld.

The Evaluate call evaluates a WeldObject instance and returns
a result. Libraries choose when to evaluate an object. In our inte-
grations with Python libraries, we used methods that save or print
the object (e.g., the __str__ method to convert it to a string) as
evaluation points to introduce lazy evaluation behind the library’s
existing API. Systems like Spark and TensorFlow already have lazy
APIs with well-defined evaluation points.

2.5 Runtime API Extensions
We developed two API extensions beyond the system described

in [48] to support larger applications:
Grouped Evaluation. We updated Evaluate to allow evaluating
multiple Weld objects in one computation, which is useful in appli-
cations that produce multiple results. Our optimizer automatically
identifies shared subcomputations across these results.
Memory Management Functions. We added functions allowing
libraries to control Weld’s memory usage. Libraries can set a cap
on how much memory a call to Evaluate may use, and the call will
fail if it needs to allocate more memory at runtime. This is useful
in engines that already perform their own memory management,
such as Spark SQL: these engines can call Weld-optimized code on
batches of data and spill to disk when they grow past a certain size.

1005

Combine IR
Program

Rule-Based
Optimizer

Adaptive
Optimizer

LLVM
Codegen

Optimizer

Runtime API
IR Fragments

CodeGen

Figure 2: Architecture of the Weld optimizer. IR code submitted to
Weld is combined, optimized via rules, and transformed to generate
adaptive optimization code for decisions based on runtime statistics.
The optimized IR code is compiled to assembly using LLVM.

3. AN OPTIMIZER FOR WELD
The main contribution we evaluate in this paper is an automatic

optimizer for Weld. Optimizing Weld computations is conceptually
similar to relational query optimization, but two aspects of Weld’s
“common runtime” setting pose unique challenges:
1. IR code passed to Weld is generated out of fragments from dif-

ferent library functions that have no knowledge of each other,
even though they may depend on the same data or subcompu-
tation. This contrasts with many queries to a DBMS, where
the full SQL query is generated as one program or even written
by one user. Weld thus needs to identify and eliminate many
forms of redundancy that arise from imperative data analytics li-
braries. We addressed this challenge by performing a wide range
of redundancy elimination transformations from the database
and compiler literature (e.g., pipelining [22] and fusion trans-
formations across multiple loops [30], which are similar to scan
sharing [52] and some types of multi-query optimization [55]).
Our loop-and-builder IR and the extensions for loops with mul-
tiple inputs (§2.3) also help with this task.

2. In the most general target setting for Weld (ad-hoc data analysis
in a language such as Python), there are no precomputed data
statistics, so Weld needs to make any data-dependent decisions
adaptively at runtime. Moreover, each query might only run
once, so any data sampling to compute statistics must be fast. In
this paper, we focused on designing an optimizer for this setting
to show that effective optimization is still possible. However,
our optimizer can also use application-provided statistics instead
of measuring them at runtime.

We designed an optimizer using a combination of transforma-
tion rules and adaptive decisions that combines ideas from both the
database and compilers literatures (Figure 2). The optimizer begins
with rule-based optimizations from the database and compiler liter-
ature, then moves on to an adaptive optimization phase where key
data-dependent decisions are considered (such as whether to use
branching or predication based on a filter’s selectivity [29]). For
these decisions, our optimizer generates code to sample the relevant
property of the data at runtime and switch between two possible
execution plans. Both plans are represented in Weld IR and are
passed through the rule-based optimizer again. Finally, given a
Weld IR program that contains both the sampling code and the possi-
ble execution branches, we apply a code generator based on LLVM
to JIT-compile the code. This code then runs on a multithreaded,
memory-managed runtime. §4–6 describe the rule-based, adaptive,
and code generation optimizations in turn.

4. RULE-BASED OPTIMIZATIONS
The first step of the optimizer is to apply rule-based optimizations

on the combined IR program. Like other database optimizers and
compilers [33, 56], we group our rules into phases and run each
phase to a fixpoint. Moreover, each rule produces a new abstract
syntax tree (AST) in the Weld IR, making it easy to combine rules

filtered= df[df[‘country’] == ‘usa’]
prices = filtered[‘price’] * filtered[‘quantity’]
outp= prices.sum()

tmp0 = filter(country, x => x == ‘usa’)
tmp1 = map(zip(price, quantity), (x) => x.price * x.quantity)
tmp2 = filter(zip(tmp0, tmp1), (x) => x.tmp0)
outp = reduce(tmp2, 0, (x, y) => x.tmp1 + y)

result(for(zip(price, quantity, country),
merger[int,+],
(b,i,x) => if (x.country == ‘usa’,

merge(b, x.price * x.quantity), b)
))

Pandas to Naïve Data Parallel Operators

Disjoint operators to fused Weld Program

Figure 3: Optimizing a simple Pandas program that filters and
aggregates data. While Pandas repeatedly loops over data, Weld
integration enables pipelining.

in an arbitrary order. After each pass, Weld also applies a number
of simplification transformations to remove redundant computa-
tion, such as inlining variables that are only used in one expression,
common subexpression elimination, constant propagation, and stan-
dard algebraic simplifications. These rule-based optimizations help
eliminate redundancies caused by composing independently-written
functions and libraries. We elaborate on key optimization passes.

4.1 Fusion
The fusion pass performs the main data movement optimizations

in Weld, merging data-parallel operations from different libraries
and functions into a single parallel for loop and removing redundant
iteration over the same data or materialization of results. “Fusion”
is our general term for several transformations including pipelining
for loops whose output is directly consumed by another loop (as
in many database engines [22, 42]) and fusing independent loops
that read the same input data (similar to some forms of multi-query
optimization [55] and scan sharing [52] in the database literature,
or loop fusion [30] in the compilers literature). This pass is critical
because independently called libraries will produce separate loops,
even if these loops are running over the same data. For example,
in Pandas and NumPy, every operator used to build an expression
(e.g., vec1+vec2+vec3) produces a new array or data column for its
intermediate result. Figure 3 shows an example of a simple Pandas
program that benefits from fusion.

We perform two types of fusion: pipelining and horizontal fusion
of loops over the same data. Listings 5 and 6 give examples of both.

// Before pipelining.
v1 := result(for(

v0, vecbuilder[int], (b,i,x) => merge(b, x+1)))
v2 := result(for(

v1, vecbuilder[int], (b,i,x) => merge(b, x*5)))

// After pipelining.
v2 := result(for(

v0, vecbuilder[int], (b,i,x) => merge(b, (x+1)*5)))

Listing 5: Pipelining expressed using Weld.

In the pipelining transformation, Weld fuses the body of loops
whose result is consumed in just one other loop. Rather than travers-
ing (and materializing) vectors after each operation, pipelining en-
hances memory locality by loading data into the cache or registers

1006

and applying all operations at once. While DBMS engines usually
pipeline operators in the Volcano query processing model, without
Weld, independently written libraries have no common substrate
to allow for such optimizations. Compared to code-generating
databases like HyPer [42], which pipeline operators via a produce/-
consume API and a complex translation to imperative code to fuse
individual operators, Weld’s approach is to use a higher level IR that
facilitates identification and fusion of pipelinable loops while simul-
taneously capturing parallelism. For example, in Listing 5, Weld
identifies that v1 is only used in one downstream expression, and
fuses it into that loop. The optimized loop still executes in parallel
and is represented in the same IR, allowing further optimizations.

// Before horizontal fusion
v1 := result(for(

v0, vecbuilder[int], (b,i,x) => merge(b,x+1)))
v2 := result(for(

v0, merger[int,+], (b,i,x) => merge(b,x)))
{v1, v2}

// After horizontal fusion
tmp := for(v0, {vecbuilder[int], merger[int,+]},

(bs,i,x) => {merge(bs.0, x+1), merge(bs.1, x)}
)
{result(tmp.0), result(tmp.1)}

Listing 6: Horizontal fusion of two independent loops.

In horizontal fusion, loops over the same input data that produce
different results are fused to loop over data just once, and return a
tuple of results. Like pipelining, horizontal fusion enhances memory
locality. The transform helps when repeatedly computing multiple
results from the same input data: for example, the Pandas API
creates a new vector from each operator on a data frame column
(e.g., col+1), as shown in Figure 3.

4.2 Size Analysis Optimizations
Weld contains two optimizations based on knowledge of the

size of a vector (vec[T]) at optimization time. Loop unrolling [36]
allows replacing small loops with a sequence of statements to reduce
control flow, while preallocation allows allocating memory for data
structures in advance instead of growing them dynamically.

When Weld’s optimizer is invoked, it knows the size of the input
vectors to the computation. Moreover, libraries can mark the size of
intermediate results in IR code with an annotation (e.g., if a library
knows it works with 3-element vectors). The optimizer propagates
this information to other intermediate results when possible (e.g., a
loop that merges exactly one value per iteration into a vecbuilder

will produce a result of the same size as the input).
Using this information, Weld first unrolls for loops with a simple

body to run sequentially if they are sufficiently small. This can
yield better pipelining within the CPU by eliminating control flow
and branching logic, and also reduce overheads from Weld’s multi-
threaded runtime by running small loops sequentially.

Second, Weld attempts to preallocates memory for data structures
that might otherwise be resized. For example, the vecbuilder sup-
ports merging a variable number of records, and is implemented
using a dynamically-growing array by default. However, if the loop
merging values into a vecbuilder adds in exactly one value per
iteration (i.e., each control path in its body has just one merge), the
optimizer can pre-allocate a vector of the same size as the input.

Unrolling and preallocation have a large impact in numerical
code especially, such as NumPy code working with arrays of fixed
dimensions. While these transformations also exist in traditional

compilers, they are more powerful in Weld because the optimizer
has access to size information that is only available at runtime.

4.3 Vectorization
The vectorization pass changes for loops to use SIMD instruc-

tions when possible to take advantage of modern CPU execution
capabilities. Specifically, the optimizer change loops over elements
of type T to loops over simd[T], where simd[T] is a fixed-length
SIMD data type. This pass only vectorizes loops without branches;
our adaptive predication optimization (§5.1) determines whether to
vectorize branches because the benefit depends on selectivity.

Although LLVM also provides a vectorizer, we found that it
was easier to get consistent results by vectorizing at the Weld IR
level. This is because Weld’s IR is purely functional, with no side-
effects, and is thus simpler to analyze than lower-level IRs. These
optimizations are harder to apply in a lower-level IR such as LLVM
due to the need to analyze pointer aliasing (whether two addresses in
mutable memory might point to the same data) [37]. Even in cases
where the aliasing analysis is successful, applying these passes on
Weld IR is beneficial because it reduces compile time—an important
factor because Weld needs to JIT-compile code.

5. ADAPTIVE OPTIMIZATIONS
Certain optimization decisions are data-dependent. In a DBMS,

statistics catalogs and cost-based optimizers guide whether such
optimizations should be applied to a plan, but the libraries Weld in-
tegrates with generally do not have these tools a priori. We therefore
designed a set of adaptive optimizations that can occur at runtime
based on observed properties of the data. In particular, we consider
two adaptive optimizations that we found have the greatest impact:
adaptive predication and adaptive data structures.

5.1 Adaptive Predication
Given a Weld program with a branch (i.e., an if statement), predi-

cating the branch evaluates the condition, on-true expression, and on-
false expression unconditionally, and then uses a hardware select

instruction to choose between the true or false expression depend-
ing on whether the condition is true or false. The key advantage
of predication is that it enables vectorization: modern CPUs con-
tain vectorized select instructions, whereas loops with branches or
other control flow are difficult to vectorize. The tradeoff is that both
the true and false expression are always evaluated (whereas in a
branched expression, only one of the two is evaluated). If the branch
is highly predictable and computing the true and false expressions
is expensive, predication may hurt performance. The choice of
whether to predicate thus depends on (i) the selectivity of the branch
(a data-dependent factor) and (ii) the branch target costs [29].

Adaptive predication proceeds as follows. Given a loop with a
branch that can be vectorized, the optimizer replaces the loop with
three loops. The first loop samples the input vector and evaluates
the condition of the branch on each sample to estimate the branch
selectivity. The second loop is a copy of the original branched
loop with scalar instructions, and the third loop is a vectorized and
predicated version of the original loop. We generate code that uses
the measured selectivity to choose between these two loops using a
cost model. The cost model determines the costs of the true and false
expressions to determine whether, at the given selectivity, evaluating
both expressions unconditionally with SIMD will provide a speedup.

We use a simplified version of existing database cost models [29,
38] to make this decision. These cost models take as input a con-
ditional of the form expr = if(cond, merge(b, body), b) and the
measured selectivity of cond. The memory accesses in branched
expressions can be separated into two sets: the set of accesses in the

1007

condition, C, and accesses in the body, B. In branched code, we
assume that memory accesses in the condition are sequential, and
accesses in the body are random (i.e., they will not be prefetched).
This is because accesses in the condition are performed on every
loop iteration. We assume sequential accesses are prefetched by the
CPU, and the access time is thus limited by the memory bandwidth.
Columns accessed only in the body will not always be prefetched;
therefore, the memory latency (computed as in [38]) dominates the
access time. Therefore, we compute the cost for branched code as:∑

e∈C

sizeof(e)

T
+ s×

∑
e∈B

L, (1)

where T is the memory throughput in bytes per second, L the
memory latency, and s the measured selectivity.

In predicated code, we treat accesses in both the condition and
body are sequential, since both execute on every input row. For
simplicity, we captured the expected speedup from vectorization in
predicated code using a constant multiplier v to reflect the reduced
number of instructions, but we validated that the results were similar
to modeling instruction costs and memory access time separately.
This gives us the following expression for the predicated cost:

v ×
∑

e∈C∪B

sizeof(e)

T
(2)

The generated code evaluates both of these expressions based
on the measured selectivity and chooses the plan with the lower
estimated cost (i.e., lower expected runtime). We show in §8 that
predication can either increase or decrease performance depending
on the data, so choosing whether to apply it adaptively is important.

5.2 Adaptive Data Structures
Weld’s builders are declarative data types that can choose an

implementation without specifying one in the IR. An important
data-dependent decision Weld makes for builders using dictionary-
like data structures (e.g., hash tables for groupBy operations) is
determining when to use thread-local dictionaries that are merged
when result is called, and when to use a single global dictionary
shared by all threads. The local strategy performs better at lower
cardinalities because it avoids the synchronization overhead of the
global dictionary, but uses more memory due to keys appearing in
multiple dictionaries. The global strategy naturally performs better
at large key cardinalities due to its more efficient use of memory.

Our builder implementations for dictionaries thus use an adaptive
design that comes close to the best of both worlds: for each thread,
we use a local dictionary until the dictionary reaches a certain size
threshold, then switch to using a global dictionary for all new keys
that are not already in the local one. Thus, hot keys can be accessed
in the local dictionary without synchronization overhead, while
keeping memory usage and the risk of page faults and TLB misses
in check. This design adapts to both small and large cardinalities in
the event that Weld does not have access to statistical information
(e.g., cardinality estimates) at optimization time.

6. CODE GENERATION AND RUNTIME
The final phase of Weld’s optimizer is code generation. Weld JIT-

compiles its optimized IR code into multithreaded assembly code
using LLVM, and then executes it on a custom runtime. Our runtime
supports dynamic load balancing between threads using a work-
stealing mechanism inspired by Cilk [7], allowing Weld to support
workloads with irregular parallelism such as graph algorithms.

The runtime manages one worker thread per core, where each
thread can run tasks from a local queue (a task being a function

Table 3: Number of lines of code in our library integrations.

Library Glue LoC Per-Operator LoC

NumPy Py: 84, C++: 201 avg: 16, max: 50
Pandas Py: 416, C++: 284 avg: 22, max: 64

Spark SQL Py: 5, Scala: 300 avg: 23, max: 63
TensorFlow Py: 175, C++: 652 avg: 22, max: 85

pointer and argument). Each task may spawn additional tasks onto
its local queue. When a worker thread is idle, it steals a task from
a random worker, which can be shown to offer near-optimal load
balancing and high locality [7]. In addition, new tasks can have a
set of parent tasks specified that must complete before they become
runnable, creating a dependency DAG. The parent tasks will update a
counter on the child task when they complete to ultimately determine
when it has become runnable. Weld generates code by generating
one task for the outermost expression in the AST, and recursing
down into the expressions needed to compute it. Whenever the code
generator encounters a for loop (the only construct that can spawn
parallel work), it generates a new LLVM function for running the
loop’s body, which takes a start and end iteration index and any
external variables the loop body depends on as arguments. The
runtime splits loops into multiple tasks by passing different iteration
indices into the function dynamically, similar to [7].

Builders support merging values from multiple tasks. Internally,
each builder type follows an API that includes an initialization step,
a function to “promote” a local builder (running in just one task)
to a “global” builder (when its task gets split), and a function for
merging values that also receives the iteration index of the value
being merged. For example, the merger type will store one value
per thread and combine them in its result operation, while the
vecbuilder will keep inserted items in loop iterator order.

7. LIBRARY INTEGRATIONS
We integrated Weld into four popular libraries: Spark SQL, Ten-

sorFlow, NumPy, and Pandas. Each integration was performed
incrementally and supports porting only a subset of the operators to
Weld while interoperating with non-ported ones. Each integration
required some up front “glue code” for marshalling data and en-
abling lazy evaluation (if the library was eagerly evaluated), as well
as code for each ported operator. Overall, we found the integration
effort to be modest across the board, as shown in Table 3.

Spark SQL. We integrated Weld with Spark SQL [4] to accelerate
its local computations on each node, which can be a bottleneck
on modern hardware [47]. Spark SQL already has a lazy API to
build an operator graph, and already performs Java code generation
using a similar technique to HyPer [42], so porting it to use Weld
was straightforward: we only needed to replace the generated Java
code with Weld IR via Weld’s API. Spark SQL’s existing Java code
generator uses complex logic [2] to directly generate imperative
loops for multiple chained operators because the Java compiler
cannot perform these optimizations automatically. In contrast, our
Weld port emits a separate IR fragment for each operator without
considering its context, and Weld automatically fuses these loops.

TensorFlow. Like Spark SQL, TensorFlow [1] also has a lazily
evaluated API that generates a data flow graph composed of modular
operators. Our integration with TensorFlow required two compo-
nents: (i) a user-defined WeldOp operator that runs Weld programs,
and (ii) a graph transformer that replaces a subgraph of the Ten-
sorFlow data flow graph with an equivalent WeldOp node. Before
execution, the transformer searches the original data flow graph

1008

for subgraphs containing only operators that are understood by our
port, and replaces each such subgraph with a WeldOp node for their
combined expression, relying on Weld to fuse these expressions.
Our integration leverages TensorFlow’s support for user-defined
operators and graph rewriting and makes no changes to the core
TensorFlow engine.
NumPy and Pandas. Our integrations with NumPy and Pandas
required more effort because these libraries’ APIs are eagerly evalu-
ated. To enable lazy evaluation in NumPy, we created a WeldObject

-based subclass of its array type called weldarray. This routes the
NumPy ufuncs (C-based implementations of low-level operators
such as addition, dot product, or element-wise logarithms) through
the weldarray class and allows us to easily offload unsupported
operations to NumPy (thus enabling incremental integration). Our
integration supports most NumPy ufuncs and partially supports other
NumPy features such as reductions and broadcasting. It also ac-
cesses existing NumPy arrays directly without copying memory,
because they already stored as packed arrays of primitive types that
we can pass to NewWeldObj.

To work around NumPy’s eagerly evaluated interface, each opera-
tion adds a dependency or computation to the weldarray WeldObject,
and evaluation occurs only when necessary. Our evaluation points
are similar to Bohrium’s [8], another effort at building a lazily eval-
uated NumPy. Specifically, we evaluate a weldarray when the data
is accessed (e.g., by print) or when the values are needed for opera-
tors we have not ported to Weld. Like Bohrium, our port requires
minimal changes to NumPy applications (just importing a different
package). weldarray is less than 1000 lines of Python code, and did
not require extensive familiarity with internals.

NumPy also supports indexed access into vectors and matrices
to access specific elements in an array or to view “slices” of the
array (i.e., a range of values across a set of axes). When a user
performs indexed access into a weldarray, our port evaluates the
array and defers indexing to NumPy. This also allows Weld to
support NumPy’s advanced indexing features [44]. Notably, indexed
access removes opportunities for lazy evaluation, and as in native
NumPy and Bohrium, they can be slow due to the overhead of
running Python code. In general, in NumPy it is considered best
practice to avoid indexed access in loops [24].

We ported Pandas in a similar way, by creating wrapper objects
around the Pandas DataFrame and Series classes. We ported Pandas’
filtering, sorting, predicate masking, aggregation, groupby, merge,
per-element string slicing, getUniqueElements, and pivot table oper-
ations to Weld. Pandas represents DataFrame columns as NumPy
arrays, so we reuse code from our NumPy port to pass pointers to
this data to Weld. We additionally added custom encoding functions
for string data, because Pandas stores them as an array of pointers to
Python string objects. We copy these strings to arrays of characters
managed by our code when we need to access them from Weld.

8. EVALUATION
Our evaluation seeks to answer the following questions:

1. Does Weld speed up realistic data science workloads that com-
pose functions from existing analytics libraries?

2. Which optimizations have the greatest impact on performance?

3. Can Weld provide benefits when integrated incrementally?

4. How does Weld compare to specialized systems for domains
such as relational algebra, linear algebra, and graph analytics?

Unless otherwise noted, we ran experiments on an Amazon EC2
r4.8xlarge instance, with 16 Intel Xeon E5-2686v4 cores (32 hy-
perthreads) and 244GB of memory. We used LLVM 3.8 for compila-

Table 4: Workloads used in our evaluation. An operator represents
a single library API call (e.g., a pivot table construction or groupby
in Pandas or an element-wise sum or logarithm in NumPy).

Workload Libraries Description (# Operators)

Data Clean-
ing [16]

Pandas Cleans a DataFrame of 311 requests [53]
by replacing NULL, broken, or missing
values with NaN. (8)

Crime
Index

Pandas
NumPy Computes an average “crime index”

score, given per-city population and
crime information. (16)

Black
Scholes

NumPy Computes the Black Scholes [21] for-
mula over a set of vectors. (19)

Haversine NumPy Computes Haversine Dist. [26] from a
set of GPS coordinates to a fixed point.
(18)

N-Body NumPy An n-body simulation that uses New-
tonian force equations to determine the
position/velocity of stars over time. (38)

Birth Anal-
ysis [35]

Pandas
NumPy Given a dataset of number of births by

name and year, computes the proportion
of names starting with “Lesl” grouped
by gender and year-of-birth. (12)

MovieLens Pandas
NumPy Given the MovieLens dataset [25], finds

the movies that are most divisive be-
tween male and female viewers. (13)

Log. Reg. NumPy
TensorFlow Whitens and normalizes MNIST [41]

images in NumPy, and then evaluates
a logistic regression classifer on the
whitened images in TensorFlow. (14)

NYC Filter Pandas Counts the number of taxi rides [45]
which occur outside of Manhattan, have
zero cost, and zero distance. (12)

Flight De-
lays

Pandas
NumPy Computes the mean delay, the unique

tail numbers, the unique carriers, and
the total number of flights [19] from any
of four airports in NYC to Seattle. (13)

tion. Each result is an average of five runs, and all end-to-end Weld
runtimes include Weld optimization and LLVM compilation times,
sampling time, and data encoding and decoding. We present results
on one and eight threads. We compare against NumPy v1.13.1,
Pandas v0.19.2, TensorFlow v1.2, and Spark v2.2.

8.1 Workloads and Datasets
We evaluate Weld primarily on ten real data science workloads

we found from various online sources such as tutorials or cookbooks
for specific libraries, popular GitHub repositories, and Kaggle com-
petitions (Table 4). Each workload uses one or more of our ported
libraries (§7). We ran the workloads with no code changes (modulo
importing our versions of the libraries) when possible, except for
two workloads where we also evaluated adding a grouped evaluation
call across multiple results (§2.5): Black Scholes and Flight Delays.

8.2 End-to-End Performance
In this section, we study the end-to-end performance of our ten

workloads using Weld compared to the native versions of the li-
braries. Because NumPy and Pandas are single-threaded, we report
results on both one and eight threads, to show that Weld improves

1009

0

20

40

60

80

100

Na
tiv

e
W

el
d

1T
W

el
d

8T

Na
tiv

e
W

el
d

1T
W

el
d

8T

Na
tiv

e
W

el
d

1T
W

el
d

8T

Na
tiv

e
W

el
d

1T
W

el
d

8T

Na
tiv

e
W

el
d

1T
W

el
d

8T

Na
tiv

e
W

el
d

1T
W

el
d

8T

Na
tiv

e
W

el
d

1T
W

el
d

8T

TF
 1

T
TF

 8
T

W
el

d
1T

W
el

d
8T

Na
tiv

e
W

el
d

1T
W

el
d

8T

Na
tiv

e
W

el
d

1T
W

el
d

8T

DataClean CrimeIndex BlackSch Haversine Nbody BirthAnalysis MovieLens LogReg NYCFilter FlightDel

Ru
nt

im
e

(s
ec

on
ds

) Encode Decode Optimize + Compile Compute

196.65

Figure 4: Performance of each workload on 1 and 8 threads, compared vs. native libraries. Weld’s compile time includes data sampling.

single-thread efficiency too. §8.3 details the optimizations that
impact performance in each workload.
NumPy Workloads: Black Scholes, Haversine, and N-Body. These
workloads perform numerical vector computations using NumPy.
Figure 4 shows the results. Overall, Weld’s optimizer improves
performance over native NumPy by 2.5–5× across the three work-
loads, even though individual operators in NumPy are implemented
in C and BLAS [34]. In Black Scholes and Haversine, Weld fuses
every vector math operation into a single loop to reduce memory
allocation and data movement. On a single thread, we found this
improves performance by reducing page faults caused by demand
paging [17] by removing allocation of intermediate results. N-Body
uses NumPy’s indexing features to set the diagonal of a matrix to
0; this forces Weld to evaluate a partial computation and prevents
fusion of loops that occur before and after the index operation. In
all workloads, NumPy implements vector operations using L1 and
L2 BLAS calls, but Weld still accelerates them by reducing data
movement. Weld automatically parallelizes each workload as well,
increasing the speedup over the single-threaded NumPy versions to
4–30×. Data encoding time in these workloads is negligible, since
NumPy internally represents vectors as C arrays and encoding only
involves a pointer copy.
Pandas Workloads: Data Cleaning and NYC Filtering. These
workloads use Pandas to filter, normalize and clean a DataFrame
by dropping NULL values, selecting values that pass predicates, and
replacing broken values (e.g., short zip codes) with placeholders.
These workloads represent common preliminary tasks seen in data
science and are often bottlenecked by memory movement.

Although most individual Pandas operators are implemented in
C, NumPy or Cython [15], Weld still provides speedups as shown in
Figure 4. The speedups come from fusing every loop into a single
one: the NYC workload in particular benefits greatly from lazy
evaluation and fusion because the final output is a scalar, so after
loop fusion Weld does not need to allocate any extra memory. The
NYC workload shows a 23× speedup on one core, while the data
cleaning workload shows a 5× speedup. Weld also provides further
transparent multicore speedups over Pandas on eight threads.
Multi-Library Workloads. The remaining data science workloads
from §8.1 combine operators from multiple libraries. Figure 4
shows the results for each workload, compared against its native
implementation. We describe each result in more detail below.
Birth Analysis and MovieLens: These workloads construct a pivot
table and filter columns using Pandas in a preprocessing stage, and
then compute aggregate statistics using NumPy in an analysis phase.
Weld accelerates the birth analysis workload by fusing loops in the
analysis portion. The MovieLens workload is dominated by hash
table performance, which is similar in both Pandas and Weld (both
use an optimized C hash table). Weld does not speed up the pivot

table construction substantially for this reason. Weld matches the
runtime performance of Pandas here on one thread, showing that
its general IR can capture complex workloads effectively. However,
Weld performs worse than Pandas end-to-end on the MovieLens
workload due to decoding time, since C-strings returned by Weld
must be marshalled into Python strings. Furthermore, since the
Python C API is not thread-safe, the decoding step cannot be paral-
lelized on eight threads. In addition, Weld’s merging of thread-local
dictionaries into a final result is also serial. This is an area for future
improvement and can improve scalability. Overall, Weld accelerates
the end-to-end birth analysis workload by 3.5× and is within 25%
on MovieLens on one thread. Weld speeds up MovieLens by 1.25×
on eight threads, with 40% of the end-to-end time spent in the serial
decode step. Efforts toward common data layouts such as Apache
Arrow [5] can prevent expensive data conversion steps.
Flight Delay and Crime Index: The flight delay workload produces
multiple results, each of which are computationally inexpensive
to compute (e.g., a filtered column using Pandas or a mean using
NumPy). Weld again fuses every loop in the workloads here, produc-
ing a single pass over the input to compute multiple results. Weld
accelerates this workload by 3.7× on one thread and 14× on eight
threads. Weld improves performance of the crime index workload
for similar reasons by fusing the dot products used to compute the
crime index into a single loop and using vectorization, by 9× and
32× on one and 8 threads respectively.
Logistic Regression: This workload, which combines NumPy and
TensorFlow to normalize (whiten) images and evaluate a logistic
regression model over them, shows a 4× performance improvement
via Weld over NumPy and TensorFlow with XLA, on a single thread.
This performance improvement increases to 13× over the native li-
brary implementations with eight threads. Weld provides a speedup
despite TensorFlow’s specialized XLA compiler optimizing the scor-
ing computation because it co-optimizes the image whitening task
with the model scoring task. With eight cores, the speedup is due to
parallelizing the whitening computation; in the native library imple-
mentation of the workload with eight cores, TensorFlow parallelizes
the model scoring but NumPy continues to run on a single thread.
Performance improvements over NumPy and TensorFlow without
XLA were slightly better; we omit them for brevity.
Optimization and Sampling Times. Weld’s optimization times (in-
cluding IR optimization and LLVM code generation) ranged from
62ms to 257ms (mean 126ms) across all workloads. The overhead
of adding sampling for adaptive predication similarly ranged from
100–250ms. Since we expect real analytics workloads to run for
many seconds to minutes (as in our experiments), we believe that
these times are acceptable. Our optimizer is thus able to produce
high-quality optimization decisions quickly in ad-hoc workloads
with no statistics.

1010

Experiment All -Fuse -Unrl -Pre -Vec -Pred -Grp -ADS -CLO
DataClean 1.00 1.82 1.05 1.06 1.05 1.05
CrimeIndex 1.00 15.86 3.17 1.02 1.01 1.01 2.95
BlackSch 1.00 2.72 1.00 1.85 1.51
Haversine 1.00 2.19 1.06 1.01 1.01
Nbody 1.00 1.69 1.50 1.12 1.02
BirthAn 1.00 1.07 1.05 0.98 1.00

MovieLens 1.00 1.07 1.00 0.98 1.01
LogReg 1.00 2.51 0.99 1.25
NYCFilter 1.00 11.21 0.99 1.40 4.45
FlightDel 1.00 2.02 1.01 1.00 1.00 4.59 2.16
NYC-Sel 1.00 62.68 0.99 1.03 0.99

NYC-NoSel 1.00 10.27 0.99 1.60 1.49
Q1-Few 1.00 1.38
Q1-Many 1.00 1.08
Q3-Few 1.00 1.23
Q3-Many 1.00 1.10
Q6-Sel 1.00 1.45 0.97 0.95 1.00 1.05

Q6-NoSel 1.00 10.00 1.01 1.02 2.69 2.49

Figure 5: Slowdown from removing each optimization (while apply-
ing all others) on one thread. Fuse = Fusion, Unrl = Loop Unrolling,
Pre = Preallocation, Vec = Vectorization, Pred = Adaptive Predica-
tion, Grp = Grouped Eval, ADS = Adaptive Data Structures, CLO =
Cross-Library Optimization.

8.3 Effects of Individual Optimizations
In this section, we study the effects that individual optimizations

have on the runtime of the ten workloads. We specifically consider
the optimizations discussed in §4–6: fusion, vectorization, loop
unrolling, buffer preallocation, the runtime API’s grouped evalua-
tion feature (§2.5), adaptive predication, adaptive data structures,
and cross-library optimization. For each workload, we turn each
optimization off one at a time and measure its performnace impact.

Figure 5 shows the results of this study on a single thread. Each
box shows the relative slowdown of turning the optimization off,
compared to having all optimizations on (i.e., numbers close to
1.0 mean the optimization had little effect, while larger numbers
mean a large effect). Blank entries mean the optimization did not
apply, and colors show the scale of the effect. Figure 6 shows the
same experiment with eight threads. To show the effects of adaptive
predication and data structures, we also ran additional versions of
some workloads with different selectivity shown below the line (the
Sel and NoSel versions), as well as several TPC-H queries where
we varied selectivity and number of keys; we discuss these below.
Fusion: The fusion transformations have the most impact across
our workloads. This shows that optimizing memory allocation and
data movement has a substantial cost in these workloads. Fusion
optimizations affect every real workload except MovieLens (which
is dominated by one operation) by up to 15× on one thread. Op-
timizing memory movement is especially important on on eight
threads, where there is less memory bandwidth per thread. Data
science libraries will thus need some form of cross-operator fusion
to achieve optimal performance, and would benefit greatly from lazy
runtime APIs like Weld’s (indeed, many newer libraries use lazy
APIs and optimizers on top of them to tackle this problem [1, 4]).
Vectorization: Vectorization also shows significant impact in several
compute-heavy workloads. In some cases, vectorization can only be
applied if predication is used, which requires adaptivity.
Grouped Evaluation: This API feature takes lazy evaluation allows
users to submit multiple results to evaluate at once at the cost of
requiring a small code change. It helped in two workloads where,
without grouping, Weld had to recompute a common subexpression
that would otherwise be shared across the evaluation of two results.
Preallocation, Loop Unrolling: These optimizations impact CPU

Experiment All -Fuse -Unrl -Pre -Vec -Pred -Grp -ADS -CLO
DataClean 1.00 2.44 0.97 0.99 0.98 0.95
CrimeIndex 1.00 195 2.04 1.00 1.02 0.96 3.23
BlackSch 1.00 6.68 1.44 1.95 1.64
Haversine 1.00 3.97 1.20 1.02
Nbody 1.00 1.78 2.22 1.01
BirthAn 1.00 1.02 0.97 0.98 1.00

MovieLens 1.00 1.07 1.02 0.98 1.09
LogReg 1.00 20.18 1.00 2.20
NYCFilter 1.00 9.99 1.20 1.23 2.79
FlightDel 1.00 1.27 1.01 0.96 0.96 5.50 1.47
NYC-Sel 1.00 32.43 1.29 0.96 0.93

NYC-NoSel 1.00 6.16 1.02 1.26 1.17
Q1-Few 1.00 2.60 3.75
Q1-Many 1.00 1.13 1.12
Q3-Few 1.00 1.86 2.56
Q3-Many 1.00 1.10 0.97
Q6-Sel 1.00 1.45 1.00 1.00 0.99 0.98

Q6-NoSel 1.00 10.04 0.99 0.99 2.44 2.66

Figure 6: Slowdown from removing each optimization on 8 threads.

efficiency by reducing memory allocations or other overheads. They
help most in NumPy workloads with fixed-size arrays.
Adaptive Predication: To show the effects of adaptive predication
on different selectivities, we ran the NYC Taxi workload on syn-
thetic data with both high and low selectivity. Turning adaptive
predication off always runs the branched version of the code. The
NYC-Sel and NYC-NoSel entries in Figures 5 and 6 show the results.
In NYC-Sel, most data is filtered by the first predicate in the work-
load, so adaptive predication chooses not to predicate the code
and removing adaptive predication does nothing. NYC-NoSel shows
the opposite effect: the filter always passes, so removing adaptive
predication (and thus vectorization) results in a slowdown over the
adaptively chosen plan, which would be to apply predication. We
also show the same experiment on TPC-H Q6, which performs a
number of filters and performs an aggregation, to the same effect.
Adaptive Data Structures: We ran a similar benchmark to show the
effect of a non-adaptive dictionary on modified versions of TPC-H
Q1 (an aggregation) and TPC-H Q3 (which contains a hash join).
We again ran two versions of each experiment, varying the number
of unique keys in the hash table. Figure 6 shows the results (Q1-Few
/Many and Q3-Few/Many, referring to the number of distinct keys).
The Few setting used 1024 distinct keys, and the Many setting used
228 keys. We used 231 total records in all cases. The comparison
in Figure 6 is between the adaptive dictionary and the worse of the
two simple dictionary implementation strategies: global and thread-
local. We observe up to a 3.75× performance difference between
the adaptive dictionary and the worst alternative.
Cross-Library Optimizations: We evaluate the effect of cross-library
optimizations (CLOs) by forcing Weld to evaluate computations
at library boundaries. Disabling CLO for Crime Index, Flight De-
lays, and Logistic Regression both prevents loop fusion and causes
Weld to allocate temporary buffers for intermediate values, resulting
in slowdowns. Birth Analysis and MovieLens predominately use
Pandas operators, and only use NumPy for a small subset of the
data after calling a top-K operator in Pandas over the pivot table
columns. These workloads are also primarily bottlenecked by hash
table operations in Pandas, so disabling CLO has a relatively small
effect. Overall, the results show that CLO provides up to 3× further
speedups even after optimizing computations in individual libraries.

8.4 Incremental Integration
To show that Weld can be integrated into libraries incrementally,

we ran the Black Scholes and Haversine workloads and incremen-

1011

0

50

100

150

0 1 2 3 4 5 6 7 8Ru
nt

im
e

(s
ec

on
ds

)

Operators

NumPy Weld

(a) 1 Thread Black Scholes

0

20

40

60

80

0 1 2 3 4 5 6 7 8Ru
nt

im
e

(s
ec

on
ds

)

Operators

NumPy Weld

(b) 1 Thread Haversine Distance

0

50

100

150

0 1 2 3 4 5 6 7 8

Ru
nt

im
e

(s
ec

on
ds

)

Operators

NumPy Weld

(c) 8 Thread Black Scholes

0
20
40
60
80

0 1 2 3 4 5 6 7 8Ru
nt

im
e

(s
ec

on
ds

)
Operators

NumPy Weld

(d) 8 Thread Haversine Distance

Figure 7: Incremental Integration on two of the NumPy workloads.

tally integrated one operator at a time to use Weld. Operators that
were not Weld-enabled used native NumPy. The workloads both use
eight unique operators; we ported these one by one to Weld in order
of which operator took the most CPU cycles in each workload.

Figure 7 shows the results. On one thread, implementing the first
operator in Weld gives a 1.5× speedup, and implementing half the
operators gives a 2.5× speedup over native NumPy, by providing
vectorized implementations for functions that NumPy runs sequen-
tially. Interestingly, adding operators in Black Scholes slightly
regressed performance in two cases, due to an extra Evaluate call,
which causes some recomputation. On eight threads, the speedups
at each step are significantly higher because Weld accelerates even
the operators that can’t yet be fused with other nearby ones by mul-
tithreading them. These results indicate that library developers can
add Weld incrementally into the most widely used operators to start
enjoying speedups without fully porting their libraries.

8.5 Comparison to Specialized Systems
We also evaluated our optimizer’s code generation on x86 CPUs

by comparing performance on several workloads against several
state-of-the-art, domain-specific compilers and systems.
TPC-H Queries. Figure 8 show the results for a subset of the TPC-
H queries (scale factor 10) on eight threads, compared against the
HyPer [42] database and a hand-optimized C baseline using Intel’s
AVX2 intrinsics for vectorization and OpenMP [46] for paralleliza-
tion. We chose these queries because they cover the major join
types, scans, predicates, and aggregations and do not include com-
plex string operations. HyPer generates LLVM IR for SQL queries,
which is then compiled to machine code before execution. For Weld,
we used the same physical plan as HyPer from its web interface [28]
but wrote each operator in Weld. Execution time was competitive
with HyPer across the board. Weld outpeformed HyPer on Q6 and
Q12 because it applied predication and generated vectorized LLVM
code. Results on one thread were similar.
Linear Algebra. Figure 9a shows Weld’s performance on training
a binary logistic regression classifier on the MNIST [41] dataset,
classifying each digit as either zero or non-zero. We compare against
TensorFlow with and without its specialized XLA compiler [59].
Unlike the logistic regression example in §8.2, the computation here
is fully exposed to XLA for optimization, allowing it to achieve its
best performance. Weld and XLA outperform standard TensorFlow
by fusing operators, but perhaps surprisingly, Weld also matches
XLA’s performance even though XLA is built specifically for Ten-
sorFlow’s linear algebra operators. We also compared Weld against

0

0.5

1

Q1 Q3 Q6 Q12 Q14 Q19No
rm

al
iz

ed
 T

im
e

Hyper C++ Weld

Figure 8: TPC-H microbenchmarks on 8 threads, compared against
Hyper and handwritten C++ code using OpenMP for threading.

0

50

100

150

200

1T 8T

Ru
nt

im
e

(s
ec

on
ds

)

TF
TF XLA
Weld

(a) Logistic Regression

0

5

10

15

1T 8T

Ru
nt

im
e

(s
ec

on
ds

)

GraphMat
C++ Cilk
Weld

(b) PageRank

Figure 9: Specialized systems for linear algebra and graphs.

Bohrium, an open-source lazy NumPy. Figure 10 shows the results;
Weld outperforms Bohrium by vectorizing more operators and using
grouped evaluation to eliminate redundant computation.

Finally, we benchmarked Weld’s performance on dense matrix
multiplication (DMM). This workload is both compute-bound and
heavily optimized by existing linear algebra libraries. We compare
Weld’s generated code against a C baseline and MKL [40], the
fastest DMM implementation we are aware of on Intel CPUs. We
implemented the C and Weld kernels using (i) naive, triply nested
loops and (ii) blocked loops for improved cache performance. The
MKL implementation is proprietary but highly optimized and writ-
ten in assembly to control aspects such as instruction scheduling. On
a 8192×8192 matrix, we found that Weld’s generated code matches
C, but MKL outperforms both even against the blocked algorithm
by 10×. Weld imposes no overhead when calling MKL as a UDF
compared to a C program calling MKL. In short, like in systems
designed for linear algebra [1, 14], users should call existing DMM
kernels by using UDFs rather than relying on code generation to
achieve the best performance.

Graph Analytics. Figure 9b shows results for a PageRank imple-
mentation in Weld, compared against the GraphMat [58] graph
processing framework. GraphMat had the fastest multicore PageR-
ank implementation we found. Weld’s per-iteration runtime for both
serial and parallel code outperforms GraphMat, and is competitive
with a hand-optimized Cilk [7] based C++ baseline.

Spark SQL. To illustrate Weld’s benefits in a distributed frame-
work, we evaluate a partial integration of Weld in Spark SQL’s
execution engine. Spark SQL natively generates Java bytecode, and
uses a HyPer-like code generation process to pipeline code from
different operators. In our Weld integration, we updated each Spark
SQL operator to emit single Weld IR fragment encapsulating its
computation, and relied on Weld’s optimizer to fuse and co-optimize
these fragments (§7). We tested the Weld integration on TPC-H
queries 1 and 6 with 20 Amazon EC2 r3.xlarge worker instances
(2 cores, 30 GB memory) and 800GB of TPC-H data (scale factor
800). We chose these two queries because they only contain scans,
filters, and aggregations that our current Weld integration supports.
Data was read from Spark’s in-memory cache. We observed that
Weld provides a 6.2× speedup for TPC-H Q1 and 6.5× for Q6, with
Weld’s speedup coming largely from its ability to generate low-level,
vectorized x86 code, since the JVM did not vectorize Spark’s code.

1012

0
20
40
60
80

Bo
hr

.
W

el
d

Bo
hr

.
W

el
d

Bo
hr

.
W

el
d

BlackSh Haversine Nbody

Ru
nt

im
e

(s
ec

on
ds

)

(a) 1 Thread

0
5

10
15
20

Bo
hr

.
W

el
d

Bo
hr

.
W

el
d

Bo
hr

.
W

el
d

BlackSh Haversine Nbody

Ru
nt

im
e

(s
ec

on
ds

)

(b) 8 Threads

Figure 10: Performance of Weld vs. Bohrium.

0

50

100

150

200

10 12 14 16 18 20 22 24 26 28

Ru
nt

im
e

(s
ec

on
ds

)

log2(number of distinct keys)

Local Global
Adaptive

(a) Adaptive Dictionaries

0

2

4

6

8

p=0.01 p=0.5 p=1.0

Ru
nt

im
e

(s
ec

on
ds

)
Predicated Branched

Adaptive

(b) Adaptive Predication

Figure 11: 11a. Performance of TPC-H Q1 with three different
dictionary implementation strategies. The experiments all used 16
threads. 11b. adaptively predicating the branch in TPC-H Q6.

Memory Usage. In each experiment, Weld’s runtime memory us-
age matched the memory usage of the optimized C baseline imple-
mentations. In summary, Weld produces machine code competitive
with existing systems on a variety of workloads, demonstrating both
the expressiveness of its IR and the effectiveness of our optimizer.

8.6 Adaptive Optimization Microbenchmarks
In this section, we evaluate the quality of the adaptive transforma-

tions across a variety of inputs. For the dictionary, we plotted the
runtime of a global-only, local-only, and adaptive dictionary imple-
mentation while varying the number of distinct keys in TPC-H Q1.
We used 231 total records in all cases. Figure 11a shows our results.
In all cases, the adaptive dictionary achieves the performance of the
better of the two dictionary strategies.

Figure 11b plots the runtime of a predicated, branched, and adap-
tively predicated version of TPC-H Q6 at various selectivities. Once
again, adaptive predication matches the better of the branched and
predicated strategies in the three cases. As the selectivity of the
branch increases, the adaptive optimizer determines that evaluating a
conditional branch has a lower cost than unconditionally evaluating
both branch targets, and disables predication.

9. RELATED WORK
Both Weld and our optimizer build on ideas in several fields,

including database optimizers, compilers, and hardware-efficient
data processing. Unlike most existing systems, however, our setting
is different because we aim to optimize across diverse, independently
written libraries while retaining their user facing API. This required
an optimizer that can identify and eliminate the redundancies in
operations called by imperative APIs like NumPy and Pandas, and
that runs quickly enough to be usable in ad-hoc interactive analytics.

RDBMS engines like HyPer [42], LegoBase [32], DBLAB [56]
and Voodoo [49] perform runtime code generation, but these sys-
tems only support SQL workloads. Tupleware [12] is closer to our
domain in that it also integrates LLVM-based UDFs into parallel
workflows and includes a cost model for optimizing pipelining, vec-
torization and selection. However, Tupleware represents UDFs as

sequential LLVM IR code and does not support more complex opti-
mizations such as fusion of parallel loops, which are essential for
Weld’s setting. It also does not aim to integrate underneath existing,
imperative analytics libraries. Work on analyzing UDFs in MapRe-
duce [27] likewise does not consider parallel UDFs or integration
under existing libraries.

OpenCL [57], CUDA [13] and SPIR [31] are languages for tar-
geting parallel hardware that let users submit functions to run in
parallel, but these systems do not aim to optimize across function
invocations. Many existing libraries, such as NumPy, TensorFlow
and Pandas, implement their operators in these languages or in C
or Cython [15]. Nonetheless, our evaluation shows that Weld can
significantly accelerate these libraries by optimizing across oper-
ators. Systems like XLA [59] and Bohrium [8] have also built
cross-operator compilers but are limited to a single library.

Weld’s IR is closest to monad comprehensions [10, 23] and
Delite’s multiloop construct [9,54], both of which support nested par-
allel loops that produce multiple results and loop fusion. However,
to our knowledge, Weld is the first system to provide an adaptive
optimizer for this type of IR and to evaluate integrating it under
existing analytics libraries. Unlike Delite, Weld is also the first such
system designed for incremental integration into existing libraries,
and the first to evaluate evaluates optimizations across different
libraries. LINQ [60], Emma [3] and NESL [6] also use functional
or relational IRs but do not provide adaptive optimizers.

Finally, our optimizer leverages ideas from both databases (e.g.,
adaptive optimization [18] and memory cost models [29, 38]) and
compilers [30,33], but adapts them to the novel setting of optimizing
disparate, existing data analytics libraries. This setting creates new
challenges including identifying and eliminating the highly redun-
dant code produced by various libraries (e.g., through pipelining and
horizontal fusion), efficiently representing and manipulating fused
code (through Weld’s IR), and making data-dependent optimiza-
tions in ad-hoc workflows with minimal time to collect statistics
at runtime (through our adaptive optimizations). Our resulting de-
sign effectively accelerates real-world workloads while incurring
minimal overhead for optimization, compilation and sampling.

10. CONCLUSION
In this paper, we showed that order-of-magnitude speedups are

possible by optimizing across imperative data analytics libraries,
and presented an optimizer that can achieve these speedups in Weld,
a common runtime that can be added incrementally into existing
libraries. Our optimizer includes rule-based and adaptive optimiza-
tions that work within and across popular libraries like Pandas,
NumPy, TensorFlow and Spark SQL, and accelerates workloads
by up to 80× on 8 threads with sub-second optimization overhead.
We also showed that adding Weld incrementally into libraries still
yields large speedups, quantified which optimizations affect each
workload, and showed that our Weld optimizer is competitive with
domain-specific systems in many cases despite its more general IR.

11. ACKNOWLEDGEMENTS
We thank the members of the Stanford DAWN lab for their in-

valuable feedback on this work. This research was supported in part
by affiliate members and other supporters of the Stanford DAWN
project (Facebook, Google, Intel, Microsoft, NEC, Teradata, and
VMware), by Amazon Web Services, and by NSF CAREER grant
CNS-1651570 and NSF Graduate Research Fellowship grant DGE-
1656518. Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation.

1013

12. REFERENCES
[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,

M. Devin, S. Ghemawat, G. Irving, M. Isard, et al.
TensorFlow: A System for Large-Scale Machine Learning. In
Proc. USENIX OSDI, pages 265–283, 2016.

[2] S. Agarwal, D. Liu, and R. Xin. Apache Spark as a Compiler:
Joining a Billion Rows per Second on a Laptop.
https://databricks.com/blog/2016/05/23/, 2016.

[3] A. Alexandrov, A. Kunft, A. Katsifodimos, F. Schüler,
L. Thamsen, O. Kao, T. Herb, and V. Markl. Implicit
Parallelism Through Deep Language Embedding. In SIGMOD

’15, 2015.
[4] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K.

Bradley, X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi, and
M. Zaharia. Spark SQL: Relational Data Processing in Spark.
In Proc. ACM SIGMOD, pages 1383–1394, 2015.

[5] Apache Arrow. https://arrow.apache.org/, 2018.
[6] G. E. Blelloch, J. C. Hardwick, S. Chatterjee, J. Sipelstein,

and M. Zagha. Implementation of a Portable Nested
Data-parallel Language. SIGPLAN Not., 28(7):102–111, 1993.

[7] R. D. Blumenofe, C. F. Joerg, B. C. Kurzmaul, C. E.
Leiserson, K. H. Randall, and Y. Zhou. Cilk: An Efficient
Multithreaded Runtime System. Journal of Parallel and
Distributed Computing, 37(1):55–69, 1996.

[8] Bohrium. http://bohrium.readthedocs.io, 2018.
[9] K. J. Brown, H. Lee, T. Rompf, A. K. Sujeeth, C. De Sa,

C. Aberger, and K. Olukotun. Have Abstraction and Eat
Performance, Too: Optimized Heterogeneous Computing with
Parallel Patterns. In Proceedings of the 2016 International
Symposium on Code Generation and Optimization, CGO
2016, pages 194–205. ACM, 2016.

[10] P. Buneman, L. Libkin, D. Suciu, V. Tannen, and L. Wong.
Comprehension syntax. SIGMOD Rec., 23(1):87–96, March
1994.

[11] Cran. https://cran.r-project.org, 2018.
[12] A. Crotty, A. Galakatos, K. Dursun, T. Kraska, C. Binnig,

U. Cetintemel, and S. Zdonik. An Architecture for Compiling
UDF-centric Workflows. PVLDB, 8(12):1466–1477, 2015.

[13] CUDA.
http://www.nvidia.com/object/cuda_home_new.html,
2018.

[14] P. Cudre-Mauroux, H. Kimura, K.-T. Lim, J. Rogers,
R. Simakov, E. Soroush, P. Velikhov, D. L. Wang,
M. Balazinska, J. Becla, D. DeWitt, B. Heath, D. Maier,
S. Madden, J. Patel, M. Stonebraker, and S. Zdonik. A
Demonstration of SciDB: A Science-oriented DBMS. PVLDB,
2(2):1534–1537, 2009.

[15] Cython. http://cython.org, 2018.
[16] Pandas Cookbook Chapter 7: Cleaning Up Messy Data.

https://github.com/jvns/pandas-cookbook/.
[17] Demand Paging.

https://en.wikipedia.org/wiki/Demand_paging,
2018.

[18] A. Deshpande, Z. Ives, V. Raman, et al. Adaptive query
processing. Foundations and Trends R© in Databases,
1(1):1–140, 2007.

[19] Flight Delays and Cancellations Dataset.
https://www.kaggle.com/usdot/flight-delays/data.

[20] Gluon. https://gluon.mxnet.io.
[21] J. Goseme. Black Scholes Formula, 2013.
[22] G. Graefe. Encapsulation of Parallelism in the Volcano Query

Processing System, volume 19. ACM, 1990.

[23] T. Grust. Monad Comprehensions: A Versatile Representation
for Queries, pages 288–311. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2004.

[24] J. Hamrick. The Demise of for Loops.
https://docs.scipy.org/doc/numpy-1.13.0/
reference/arrays.indexing.html.

[25] F. M. Harper and J. A. Konstan. The Movielens Datasets:
History and context. ACM Transactions on Interactive
Intelligent Systems (TiiS), 5(4):19, 2016.

[26] S. Heisler. A Beginner’s Guide to Optimizing Pandas Code for
Speed. goo.gl/dqwmrG, 2017.

[27] F. Hueske, M. Peters, A. Krettek, M. Ringwald, K. Tzoumas,
V. Markl, and J.-C. Freytag. Peeking into the Optimization of
Data Flow Programs with MapReduce-style UDFs. In 2013
IEEE 29th International Conference on Data Engineering
(ICDE), pages 1292–1295. IEEE, 2013.

[28] HyPer Web Interface.
http://hyper-db.de/interface.html, 2013.

[29] A. Kemper, F. Funke, H. Pirk, S. Manegold, U. Leser,
M. Grund, T. Neumann, and M. Kersten. Cpu and cache
efficient management of memory-resident databases. In
Proceedings of the 2013 IEEE International Conference on
Data Engineering (ICDE 2013), ICDE ’13, pages 14–25,
Washington, DC, USA, 2013. IEEE Computer Society.

[30] K. Kennedy and K. S. McKinley. Maximizing loop parallelism
and improving data locality via loop fusion and distribution.
In International Workshop on Languages and Compilers for
Parallel Computing, pages 301–320. Springer, 1993.

[31] J. Kessenich. An introduction to SPIR-V.
https://www.khronos.org/registry/spir-v/papers/
WhitePaper.pdf, 2015.

[32] Y. Klonatos, C. Koch, T. Rompf, and H. Chafi. Building
Efficient Query Engines in a High-level Language. PVLDB,
7(10):853–864, 2014.

[33] C. Lattner and V. Adve. LLVM: a compilation framework for
lifelong program analysis transformation. In Code Generation
and Optimization, 2004. CGO 2004. International Symposium
on, pages 75–86, 2004.

[34] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh.
Basic Linear Algebra Subprograms for Fortran Usage. ACM
Trans. Math. Softw., 5(3):308–323, 1979.

[35] W. Liu. Python and Pandas Part 4: More Baby Names.
http://beyondvalence.blogspot.com/2014/09/
python-and-pandas-part-4-more-baby-names.html,
2014.

[36] Loop Unrolling. https://www.cs.umd.edu/class/
fall2001/cmsc411/proj01/proja/loop.html, 2001.

[37] S. Maleki, Y. Gao, M. J. Garzar, T. Wong, D. A. Padua, et al.
An evaluation of vectorizing compilers. In Parallel
Architectures and Compilation Techniques (PACT), 2011
International Conference on, pages 372–382. IEEE, 2011.

[38] S. Manegold, P. Boncz, and M. L. Kersten. Generic Database
Cost Models for Hierarchical Memory Systems. In
Proceedings of the 28th International Conference on Very
Large Data Bases, VLDB ’02, pages 191–202. VLDB
Endowment, 2002.

[39] W. McKinney. Data Structures for Statistical Computing in
Python . In Proceedings of the 9th Python in Science
Conference, pages 51 – 56, 2010.

[40] Intel Math Kernel Library.
https://software.intel.com/en-us/mkl, 2018.

1014

https://databricks.com/blog/2016/05/23/
https://arrow.apache.org/
http://bohrium.readthedocs.io
https://cran.r-project.org
http://www.nvidia.com/object/cuda_home_new.html
http://cython.org
https://github.com/jvns/pandas-cookbook/
https://en.wikipedia.org/wiki/Demand_paging
https://www.kaggle.com/usdot/flight-delays/data
https://gluon.mxnet.io
https://docs.scipy.org/doc/numpy-1.13.0/reference/arrays.indexing.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/arrays.indexing.html
goo.gl/dqwmrG
http://hyper-db.de/interface.html
https://www.khronos.org/registry/spir-v/papers/WhitePaper.pdf
https://www.khronos.org/registry/spir-v/papers/WhitePaper.pdf
http://beyondvalence.blogspot.com/2014/09/python-and-pandas-part-4-more-baby-names.html
http://beyondvalence.blogspot.com/2014/09/python-and-pandas-part-4-more-baby-names.html
https://www.cs.umd.edu/class/fall2001/cmsc411/proj01/proja/loop.html
https://www.cs.umd.edu/class/fall2001/cmsc411/proj01/proja/loop.html
https://software.intel.com/en-us/mkl

[41] MNIST. http://yann.lecun.com/exdb/mnist/.
[42] T. Neumann. Efficiently Compiling Efficient Query Plans for

Modern Hardware. PVLDB, 4(9):539–550, 2011.
[43] NumPy. http://www.numpy.org/.
[44] NumPy Array Indexing. https://docs.scipy.org/doc/

numpy-1.13.0/reference/arrays.indexing.html,
2009.

[45] NYC Taxi Dataset. https://cloud.google.com/
bigquery/public-data/nyc-tlc-trips.

[46] OpenMP. http://openmp.org/wp/.
[47] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and B.-G.

Chun. Making Sense of Performance in Data Analytics
Frameworks. In 12th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 15), pages
293–307, 2015.

[48] S. Palkar, J. J. Thomas, A. Shanbhag, D. Narayanan, H. Pirk,
M. Schwarzkopf, S. Amarasinghe, and M. Zaharia. Weld: A
Common Runtime for High Performance Analytics. In CIDR,
2017.

[49] H. Pirk, O. Moll, M. Zaharia, and S. Madden. Voodoo-A
Vector Algebra for Portable Database Performance on Modern
Hardware. PVLDB, 9(14):1707–1718, 2016.

[50] Pypi. https://pypi.python.org, 2018.
[51] Pytorch. http://pytorch.org, 2018.
[52] L. Qiao, V. Raman, F. Reiss, P. J. Haas, and G. M. Lohman.

Main-memory Scan Sharing for multi-core CPUs. PVLDB,
1(1):610–621, 2008.

[53] 311 Service Requests Dataset.
https://github.com/jvns/pandas-cookbook/blob/
master/data/311-service-requests.csv.

[54] T. Rompf, A. K. Sujeeth, N. Amin, K. J. Brown, V. Jovanovic,
H. Lee, M. Jonnalagedda, K. Olukotun, and M. Odersky.

Optimizing Data Structures in High-level Programs: New
Directions for Extensible Compilers Based on Staging. In
POPL ’13, 2013.

[55] T. K. Sellis. Multiple-query optimization. ACM Transactions
on Database Systems (TODS), 13(1):23–52, 1988.

[56] A. Shaikhha, Y. Klonatos, L. Parreaux, L. Brown, M. Dashti,
and C. Koch. How to architect a query compiler. In
Proceedings of the 2016 International Conference on
Management of Data, SIGMOD ’16, pages 1907–1922, New
York, NY, USA, 2016. ACM.

[57] J. E. Stone, D. Gohara, and G. Shi. OpenCL: A Parallel
Programming Standard for Heterogeneous Computing
Systems. Computing in Science Engineering, 12(3):66–73,
2010.

[58] N. Sundaram, N. Satish, M. M. A. Patwary, S. R. Dulloor,
M. J. Anderson, S. G. Vadlamudi, D. Das, and P. Dubey.
GraphMat: High Performance Graph Analytics Made
Productive. PVLDB, 8(11):1214–1225, 2015.

[59] TensorFlow XLA.
https://www.tensorflow.org/performance/xla/,
2018.

[60] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. K.
Gunda, and J. Currey. DryadLINQ: A System for
General-purpose Distributed Data-parallel Computing Using a
High-level Language. In Proceedings of the 8th USENIX
Conference on Operating Systems Design and
Implementation, OSDI’08, pages 1–14, Berkeley, CA, USA,
2008. USENIX Association.

[61] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust,
A. Dave, X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin,
A. Ghodsi, J. Gonzalez, S. Shenker, and I. Stoica. Apache
Spark: A Unified Engine for Big Data Processing. Commun.
ACM, 59(11):56–65, October 2016.

1015

http://yann.lecun.com/exdb/mnist/
http://www.numpy.org/
https://docs.scipy.org/doc/numpy-1.13.0/reference/arrays.indexing.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/arrays.indexing.html
https://cloud.google.com/bigquery/public-data/nyc-tlc-trips
https://cloud.google.com/bigquery/public-data/nyc-tlc-trips
http://openmp.org/wp/
https://pypi.python.org
http://pytorch.org
https://github.com/jvns/pandas-cookbook/blob/master/data/311-service-requests.csv
https://github.com/jvns/pandas-cookbook/blob/master/data/311-service-requests.csv
https://www.tensorflow.org/performance/xla/

	Introduction
	Weld Overview
	Goals and Non-Goals
	Weld IR
	Weld IR Extensions
	Weld Runtime API
	Runtime API Extensions

	An Optimizer for Weld
	Rule-Based Optimizations
	Fusion
	Size Analysis Optimizations
	Vectorization

	Adaptive Optimizations
	Adaptive Predication
	Adaptive Data Structures

	Code Generation and Runtime
	Library Integrations
	Evaluation
	Workloads and Datasets
	End-to-End Performance
	Effects of Individual Optimizations
	Incremental Integration
	Comparison to Specialized Systems
	Adaptive Optimization Microbenchmarks

	Related Work
	Conclusion
	Acknowledgements
	References

