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ABSTRACT

Despite considerable research on systems, algorithms and hard-
ware to speed up deep learning workloads, there is no standard
means of evaluating end-to-end deep learning performance. Exist-
ing benchmarks measure proxy metrics, such as time to process
one minibatch of data, that do not indicate whether the system as a
whole will produce a high-quality result. In this work, we introduce
DAWNBench, a benchmark and competition focused on end-to-end
training time to achieve a state-of-the-art accuracy level, as well
as inference with that accuracy. We have seeded the benchmark
with entries for image classification on CIFAR10 and ImageNet, and
question answering on SQuAD, showing differences across models,
software and hardware. We believe DAWNBench will provide a
useful, reproducible means of evaluating the many tradeoffs in deep
learning systems.

1 INTRODUCTION

Deep learning methods are effective but computationally expensive,
leading to a great deal of work to optimize their computational
performance. Researchers have proposed new software systems [1,
7,8, 11, 25, 41], training algorithms [12, 16, 23, 24, 28, 37-40, 42, 44],
communication methods [8, 10, 11, 20, 34, 43] and hardware [6, 17-
19, 26, 32] to decrease this cost. Despite significant advances, it is
hard to measure or compare the utility of these results due to a
lack of standard evaluation criteria. Most existing benchmarks for
deep learning performance [2-4, 7, 9, 14, 36] only measure proxy
metrics such as the time to process one minibatch of data. In reality,
deep learning performance is far more complex. Approaches such
as using larger batch sizes [16, 26], reduced precision [8, 10, 19, 22]
and asynchronous updates [8, 11, 34, 43] can stop an algorithm
from converging to a good result, or increase the time to do so.
These approaches also interact in nontrivial ways and may require
updating the underlying optimization algorithm [16, 28, 31], further
affecting performance.

This lack of standard evaluation criteria leaves deep learning
practitioners having to navigate these trade-offs. For example, min-
imal effort back propagation (meProp) delivers a 3.1x speed up over
back propagation on MNIST [38]. Using 8-bit precision gives a 3x
speed up on MNIST [10]. Does combining meProp with 8-bit preci-
sion give a 9.3x speed up? Would that speed translate to a larger
model on a dataset like ImageNet, and combine with "Accurate,
Large Minibatch SGD" [16] to train an ImageNet model in 7 min-
utes? Currently, these questions can only be answered via tedious
and time-consuming experimentation. Researchers face a similar
challenge: when they have a new idea for an optimization, which
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Tasks [

Image classification
Question answering

Metrics

Training time
Training cost
Inference latency
Inference cost
Table 1: Dimensions evaluated in the first version of DAWNBench.

Dataset ‘ Threshold
ImageNet | 93% Top-5 Accuracy
CIFAR10 | 94% Top-1 Accuracy
SQuAD 75 F1 Score
Table 2: Target thresholds in the first version of DAWNBench.

previous techniques should they consider combining in evaluating
their results?

To provide an objective means of quantifying end-to-end deep
learning performance, we introduce DAWNBench, an open bench-
mark and competition for end-to-end deep learning training and in-
ference. Instead of simply measuring time per iteration (or through-
put), DAWNBench measures end-to-end performance in training
(e.g., time, cost) and inference (e.g., latency, cost) at a specified state-
of-the-art level of accuracy. This provides an objective means of
normalizing across differences in computation frameworks, hard-
ware, optimization algorithms, hyperparameter settings, and other
factors that affect real-world performance. Our initial release of
DAWNBench provides end-to-end learning and inference tasks in-
cluding image classification on CIFAR10 [29] and ImageNet [35],
and question answering on SQuAD [33], and reference implemen-
tations for each task. Over time, with community input, we plan
to expand the set of benchmark tasks (e.g., segmentation, machine
translation, video classification) and metrics.

2 BENCHMARK STRUCTURE

DAWNBench evaluates deep learning systems on different tasks
based on several metrics, using multiple datasets. The benchmark
allows innovation in software, algorithms, communication meth-
ods, etc. By only specifying the task, DAWNBench also allows
experimentation of new model architectures and hardware. In the
initial release, we seed entries for two tasks: image classification
on CIFAR10 and ImageNet, and question answering on SQuAD,
and evaluate on four metrics: training time to a specified valida-
tion accuracy, cost (in USD) of training to a specified validation
accuracy using reserved public cloud instances!, average latency
of performing inference on a single item (image or question), and
average cost of inference for 10,000 items (Table 1). Each dataset

ISpot instances are not allowed due to volatile pricing.
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Figure 1: Effect of minibatch size on convergence rate, throughput,
and end-to-end training time of a ResNet56 CIFAR10 model written
in TensorFlow and run on a Nvidia P100. Learning rates are tuned

as per [16].

has a specific target threshold all entries must exceed to be con-
sidered (Table 2). Outside submissions can choose which subset
of metrics to be evaluated on. We also provide reference imple-
mentations and seed entries, implemented in two popular deep
learning frameworks, PyTorch and TensorFlow. These reference
implementations were collected and adapted from official reposito-
ries on Github, and produce accuracy numbers on par with those
reported in the original research papers [21], while also conforming
to the various performance recommendations published with these
frameworks [15].

3 EXAMPLE RESULTS

In this section, we offer preliminary results that seek to answer two
questions: (1) Is training time to a specified validation accuracy a
useful metric to evaluate deep learning systems? (2) What type of
insights can DAWNBench surface?

Evaluating Impact of Minibatch Size. To illustrate the value of
DAWNBench’s end-to-end performance metric, we use it to study
how minibatch size impacts both the convergence rate and hardware
performance (FLOPS) of a deep learning workload, making it hard
to reason about end-to-end performance from either metric alone.
Prior work [5, 13, 16, 27, 30] has shown that picking a minibatch size
too small or too large can lead to poor convergence, i.e. minibatch
size affects convergence. Additionally, larger minibatch sizes better
saturate hardware execution units [5, 13]. In choosing the minibatch
size that minimizes total time to a target accuracy, we must balance
these two factors. As we show in Figure 1, for a ResNet56 model
implemented in TensorFlow and trained on the CIFAR10 dataset
on a Nvidia P100 GPU, a minibatch size of 32 produces the best
convergence rate (least number of epochs to highest accuracy), and
a minibatch size of 2048 produces the best throughput (number of
images processed divided by total time taken). A minibatch size of
256 represents a reasonable trade-off between convergence rate and
throughput. A minibatch size of 256 reaches an accuracy of 93.38%,
which is only 0.43% less than the maximum accuracy achieved
with a minibatch size of 32, in 1.9x less time. Benchmarks that
focus exclusively on convergence rate and throughput are unable
to surface these practical trade-offs for factors even as simple as
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Figure 2: Inference time vs. training time to 93% val. acc., for dif-
ferent hardware, frameworks, and model architectures in DAWN-
Bench’s seed entries. ResNet164 (B) uses a bottleneck building block,
while (NB) uses a simple building block.

minibatch size. Due to the impact and importance of these trade-
offs, training time to a specified validation accuracy is a useful
metric to evaluate deep learning systems.

Comparison of DAWNBench Seed Entries. We seeded DAWN-
Bench with single-GPU and CPU results for TensorFlow and Py-
Torch, using reference implementations of models when possible.
To illustrate some of the insights DAWNBench can surface, we show
some of the variability present across DAWNBench’s metrics even
from simple factors such as the model, software framework and
hardware type in Figure 2. This figure presents training time to 93%
validation accuracy, and single-image inference latency for various
ResNet architectures for the CIFAR10 dataset, on different hard-
ware platforms (1 K80 GPU on two cloud providers [Google and
Amazon], 1 P100 GPU on a private cluster, and a 16vCPU machine
on Google Cloud) and frameworks.

As the figure illustrates, TensorFlow is faster than PyTorch on
CPUs, but slightly slower on GPUs, both for training and inference.
This is partly due to data format: TensorFlow supports both NCHW
and NHWC layouts (N: Number of Samples, C: Number of Channels,
H: Height, W: Width), which give better performance on GPUs and
CPUs respectively, while PyTorch only supports NCHW. K80 per-
formance is similar on both cloud providers. Training and inference
time are proportional to the depth of the model, as expected.

4 CONCLUSION

DAWNBench proposes a simple, living benchmark for the perfor-
mance metrics practitioners care about most: end-to-end time to
train a model with state-of-the-art accuracy, and inference time
with that accuracy. We hope that this collection of tasks, seed en-
tries and our ongoing competition will provide a simple way to
test and validate a wide variety of new ideas, spanning systems,
algorithms, and hardware, to optimize deep learning. We intend to
keep DAWNBench up to date with new tasks and goals to help the
community track progress in deep learning systems.
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