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Abstract

Knowledge distillation (KD) is a popular method for reducing the computational
overhead of deep network inference, in which the output of a teacher model is used
to train a smaller, faster student model. Hint training (i.e., FitNets) extends KD by
regressing a student model’s intermediate representation (IR) to a teacher model’s IR.
In this work, we introduce bLock-wise Intermediate representation Training (LIT), a
novel model compression technique that extends the use of IRs in deep network com-
pression, outperforming KD and hint training. LIT has two key ideas: 1) LIT trains a
student of the same width (but shallower depth) as the teacher by directly comparing
the IRs, and 2) LIT uses the IR from the previous block in the teacher model as an
input to the current student block during training, avoiding unstable IRs in the student
network. We show that LIT provides substantial reductions in network depth without
loss in accuracy — for example, LIT can compress a ResNeXt-110 to a ResNeXt-20
(5.5×) on CIFAR10 and a VDCNN-29 to a VDCNN-9 (3.2×) on Amazon Reviews,
outperforming KD and hint training in network size for a given accuracy. Finally, we
show that LIT can effectively compress GAN generators, which are not supported
in the KD framework because GANs output pixels as opposed to probabilities.

1 Introduction

Modern deep networks have achieved increased accuracy by continuing to introduce more layers [1, 2]
at the cost of higher computational overhead. In response, researchers have proposed many techniques
to reduce this computational overhead at inference time, which broadly fall under two categories.
First, in deep compression [3, 4, 5, 6], parts of a model are removed or quantized to reduce the number
of weights and/or the computational footprint.2 However, deep compression techniques typically
require new hardware [7] to take advantage of the resulting model sparsity. Second, in student/teacher
methods—introduced in knowledge distillation (KD) [8] and further extended [9, 10, 11]—a smaller
student model learns from a large teacher model through distillation loss, wherein the student model
attempts to match the logits of the teacher model. As there are no constraints on the teacher and student
models, KD can produce hardware-friendly models: the student can be a standard model architecture
(e.g., ResNet), optimized for a given hardware substrate.

Hint training (i.e., FitNets [9]) extends KD by using a teacher’s intermediate representation (IR,
i.e., the output from a hidden layer) to guide the training of the student model. The authors show
that hint training with a single IR outperforms KD in compressing teacher networks (e.g., maxout
networks [12]) to thinner and deeper student networks.

We ask the natural question: does hint training compress more modern, highly-structured, very deep
networks—such as ResNet [2], VDCNN [13], and StarGAN [14]? We find that standard hint training
(i.e., with a single hint) and training with multiple hints is not effective for modern deep networks.

∗Equal Contribution
2In this work, we refer to this class of methods as “deep compression,” and methods to reduce model size

more generally as “model compression.”
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Figure 1: A schematic of LIT. In LIT, the teacher model’s blocks are used as input to the student
model’s blocks during training, except for the first block. Specifically, denoting the blocks S1,...,S4

for the student and T1,...,T4 for the student, S2(T1) is compared against T2 in training and similarly
for deeper parts of the network. S1 and T1 are directly compared. LIT additionally compares S and
T through the KD loss. The teacher model is not updated in training.

We hypothesize that, for modern deep networks, hint training causes unstable IRs: the deepest network
considered in [9] was only 17 layers, achieving 91.61% on CIFAR10; in contrast, a modern 110-layer
ResNet achieves 93.68% on CIFAR10. Further experiments validating this hypothesis are given in [15]

In this work, we extend hint training’s ability to transfer intermediate knowledge from teacher to
student to reduce the depth of modern, highly-structured architectures (e.g., compressing a standard
ResNeXt-110 to a standard ResNeXt-20 with no loss in accuracy). We do this via a novel method called
bLock-wise Intermediate representation Training (LIT), a student/teacher compression technique
that outperforms training student networks from scratch, hint training, and KD. LIT targets highly
structured, modern networks that consist of repetitive blocks (i.e., groups of layers) that can be scaled
up/down for accuracy/speed trade-offs; for example, ResNets have standard configurations from 20
to hundreds of layers. LIT leverages two key ideas to reduce unstable IRs in deep networks. First,
LIT directly trains student networks of the same width as the teacher model (as opposed to using a
single, thinner hint as in hint training). Second, LIT avoids unstable student IRs deep in the network by
using the IR from the previous block in the teacher model as input to the current student block during
training; each student block is effectively trained in isolation to match the corresponding (deeper) block
in the teacher. We show that LIT’s block-wise training improves accuracy, allows for copying parts
of the teacher model directly to the student model, and permits selective compression of networks
(e.g., compressing one out of three blocks in a network and copying the rest). For example, consider
compressing a ResNet-56 from a ResNet-110 (Figure 1), each of which have four sections. The IR loss
is applied to the output of each block, and the teacher model’s IRs are used as input to the student blocks.

Because it is possible to transfer IRs directly, LIT is, to our knowledge, the first student/teacher
compression method that works for GAN generators. LIT can compress GAN generators by only
compressing the repetitive blocks present in certain GANs [14]. In contrast, KD does not apply directly
as the KL divergence in KD loss operates on probabilities but not the pixels output by GAN generators.
LIT can compress GANs by leveraging LIT’s key property that, by matching the teacher IR dimensions,
parts of the teacher network can be directly copied to the student network.

2 Experiments

We evaluate LIT’s efficacy at compressing models on a range of tasks and models, including image
classification, sentiment analysis, and image-to-image translation (GAN). Throughout, we use
student and teacher networks with the same broad architecture (e.g., ResNet to ResNet). We consider
ResNet [2], ResNeXt [16], VDCNN [13], and StarGAN [14]. We use standard architecture depths,
widths, and learning rate schedules; details are given in [15].

LIT is effective at compressing a range of datasets and models. We ran LIT on a variety of models
and datasets for image classification and sentiment analysis (CIFAR10, CIFAR100, Amazon Reviews).
We additionally performed KD and hint training on these datasets and models.

Figure 2 shows the results for ResNet and ResNeXt for CIFAR10 and CIFAR100, and VDCNN on
Amazon Reviews (full, polarity). LIT can compress models by up to 5.5× (CIFAR10, ResNeXt 110
to 20) on image classification and up to 3.2× on sentiment analysis (Amazon Reviews, VDCNN 29
to 9), with no loss in accuracy. LIT outperforms KD and hint training on all settings. We have found
that, in some cases, training sequences of models using LIT results in higher performance. Thus,
for VDCNN, we additionally compressed using LIT a VDCNN-29 to a VDCNN-17, and using this
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(b) CIFAR10, ResNeXt
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(c) CIFAR100, ResNet
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(d) CIFAR100, ResNeXt
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(f) Amazon polarity, VDCNN
Figure 2: The accuracy of ResNet and ResNeXt on CIFAR10/100 and VDCNN on Amazon Reviews
when trained from scratch, trained via KD, and trained via LIT. The teacher models were ResNet-110,
ResNeXt-110, and VDCNN-29/17. As shown, LIT outperforms KD for every student model. In some
cases, KD can reduce the accuracy of the student model, as reported in [17].
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Figure 3: Selected images from the teacher (six residual blocks), student (two residual blocks), and
trained from scratch (two residual blocks) StarGANs. As shown (column two, four), LIT can appear
to improve GAN performance while significantly compressing models. Best viewed in color.

Model Inception score (higher is better) FID score (lower is better)
Teacher (18 layers) 3.49 6.43
LIT student (10 layers) 3.56 5.84
Trained from scratch (10 layers) 3.37 6.56

Table 1: Inception and FID scores for different versions of StarGAN. Despite having fewer layers
than the teacher, the LIT student model achieves the best scores.

VDCNN-17, we trained a VDCNN-9 and VDCNN-17. We also found that in some cases, KD degrades
the accuracy of student models when the teacher model is the same architecture (ResNeXt-110 on
CIFAR100, VDCNN-29 on Amazon Reviews polarity). This corroborates prior observations in [17].

LIT can compress GANs. We compressed StarGAN’s generator [14] using the LIT procedure
with β=0 (i.e., only using the intermediate representation loss). The original StarGAN has 18 total
convolutional layers (including transposed convolutional layers), with 12 of the layers in the residual
blocks (for a total of six residual blocks). We compressed the six residual blocks to two residual blocks
(i.e., 12 to four layers) while keeping the rest of the layers fixed. The remaining layers for the teacher
model were copied to the student model and fine-tuned. The discriminator remained fixed.

As shown in Table 1, LIT outperforms all baselines in inception and FID score. Additionally, as
shown in Figure 3, the student model appears to perceptually outperform both the teacher model and
equivalent model trained from scratch, suggesting LIT can serve as a form of regularization.
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