
Matrix Computations and Optimization in Apache Spark

Reza Bosagh Zadeh
∗

Stanford and Matroid
475 Via Ortega

Stanford, CA 94305
rezab@stanford.edu

Xiangrui Meng
Databricks

160 Spear Street, 13th Floor
San Francisco, CA 94105

meng@databricks.com

Alexander Ulanov
HP Labs

1501 Page Mill Rd
Palo Alto, CA 94304

alexander.ulanov@hp.com
Burak Yavuz

Databricks
160 Spear Street, 13th Floor

San Francisco, CA 94105
burak@databricks.com

Li Pu
Twitter

1355 Market Street Suite 900.
San Francisco, CA 94103

li.pu@outlook.com

Shivaram Venkataraman
UC Berkeley

465 Soda Hall
Berkeley, CA 94720

shivaram@eecs.berkeley.edu
Evan Sparks

UC Berkeley
465 Soda Hall

Berkeley, CA 94720
sparks@cs.berkeley.edu

Aaron Staple
Databricks

160 Spear Street, 13th Floor
San Francisco, CA 94105

aaron.staple@gmail.com

Matei Zaharia
MIT and Databricks

160 Spear Street, 13th Floor
San Francisco, CA 94105

matei@mit.edu

ABSTRACT
We describe matrix computations available in the cluster
programming framework, Apache Spark. Out of the box,
Spark provides abstractions and implementations for dis-
tributed matrices and optimization routines using these ma-
trices. When translating single-node algorithms to run on
a distributed cluster, we observe that often a simple idea
is enough: separating matrix operations from vector opera-
tions and shipping the matrix operations to be ran on the
cluster, while keeping vector operations local to the driver.
In the case of the Singular Value Decomposition, by taking
this idea to an extreme, we are able to exploit the computa-
tional power of a cluster, while running code written decades
ago for a single core. Another example is our Spark port of
the popular TFOCS optimization package, originally built
for MATLAB, which allows for solving Linear programs as
well as a variety of other convex programs. We conclude with
a comprehensive set of benchmarks for hardware accelerated
matrix computations from the JVM, which is interesting in
its own right, as many cluster programming frameworks use
the JVM. The contributions described in this paper are al-
ready merged into Apache Spark and available on Spark
installations by default, and commercially supported by a
slew of companies which provide further services.

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

KDD 2016 8/13-17, San Francisco
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4232-2/16/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2939672.2939675

CCS Concepts
•Mathematics of computing → Mathematical soft-
ware; Solvers; •Computing methodologies→MapRe-
duce algorithms; Machine learning algorithms; Concur-
rent algorithms;

Keywords
Distributed Linear Algebra, Matrix Computations, Opti-
mization, Machine Learning, MLlib, Spark

1. INTRODUCTION
Modern datasets are rapidly growing in size and many

datasets come in the form of matrices. There is a press-
ing need to handle large matrices spread across many ma-
chines with the same familiar linear algebra tools that are
available for single-machine analysis. Several ‘next genera-
tion’ data flow engines that generalize MapReduce [5] have
been developed for large-scale data processing, and build-
ing linear algebra functionality on these engines is a prob-
lem of great interest. In particular, Apache Spark [12] has
emerged as a widely used open-source engine. Spark is a
fault-tolerant and general-purpose cluster computing system
providing APIs in Java, Scala, Python, and R, along with
an optimized engine that supports general execution graphs.

In this work we present Spark’s distributed linear alge-
bra and optimization libraries, the largest concerted cross-
institution effort to build a distributed linear algebra and
optimization library. The library targets large-scale matri-
ces that benefit from row, column, entry, or block sparsity to
store and operate on distributed and local matrices. The li-
brary, named linalg consists of fast and scalable implemen-
tations of standard matrix computations for common linear
algebra operations including basic operations such as mul-
tiplication and more advanced ones such as factorizations.
It also provides a variety of underlying primitives such as
column and block statistics. Written in Scala and using na-
tive (C++ and fortran based) linear algebra libraries on each

KDD '16, August 13 - 17, 2016, San Francisco, CA, USA

31

http://dx.doi.org/10.1145/2939672.2939675

node, linalg includes Java, Scala, and Python APIs, and is
released as part of the Spark project under the Apache 2.0
license.

1.1 Apache Spark
We restrict our attention to Spark, because it has several

features that are particularly attractive for matrix compu-
tations:

1. The Spark storage abstraction called Resilient Dis-
tributed Datasets (RDDs) is essentially a distributed
fault-tolerant vector on which programmers can per-
form a subset of operations expected from a regular
local vector.

2. RDDs permit user-defined data partitioning, and the
execution engine can exploit this to co-partition RDDs
and co-schedule tasks to avoid data movement.

3. Spark logs the lineage of operations used to build an
RDD, enabling automatic reconstruction of lost par-
titions upon failures. Since the lineage graph is rel-
atively small even for long-running applications, this
approach incurs negligible runtime overhead, unlike
checkpointing, and can be left on without concern for
performance. Furthermore, Spark supports optional
in-memory distributed replication to reduce the amount
of recomputation on failure.

4. Spark provides a high-level API in Scala that can be
easily extended. This aided in creating a coherent API
for both collections and matrix computations.

There exists a history of using clusters of machines for
distributed linear algebra, for example [3]. These systems
are often not fault-tolerant to hardware failures and assume
random access to non-local memory. In contrast, our library
is built on Spark, which is a dataflow system without direct
access to non-local memory, designed for clusters of commod-
ity computers with relatively slow and cheap interconnects,
and abundant machines failures. All of the contributions de-
scribed in this paper are already merged into Apache Spark
and available on Spark installations by default, and com-
mercially supported by a slew of companies which provide
further services.

1.2 Challenges and Contributions
Given that we have access to RDDs in a JVM environ-

ment, four key challenges arise to building a distributed lin-
ear algebra library, each of which we address:

1. Data representation: how should one partition the en-
tries of a matrix across machines so that subsequent
matrix operations can be implemented as efficiently
as possible? This led us to develop three different
distributed matrix representations, each of which has
benefits depending on the sparsity pattern of the data.
We have built

(a) CoordinateMatrix which puts each nonzero into
a separate RDD entry.

(b) BlockMatrix which treats the matrix as dense
blocks of non-zeros, each block small enough to
fit in memory on a single machine.

(c) RowMatrix which assumes each row is small
enough to fit in memory. There is an option to
use a sparse or dense representation for each row.

These matrix types and the design decisions behind
them are outlined in Section 2.

2. Matrix Computations must be adapted for running on
a cluster, as we cannot readily reuse linear algebra al-
gorithms available for single-machine situations. A key
idea that lets us distribute many operations is to sep-
arate algorithms into portions that require matrix op-
erations versus vector operations. Since matrices are
often quadratically larger than vectors, a reasonable
assumption is that vectors fit in memory on a single
machine, while matrices do not. Exploiting this idea,
we were able to distribute the Singular Value Decom-
position via code written decades ago in FORTRAN90,
as part of the ARPACK [6] software package. By sepa-
rating matrix from vector computations, and shipping
the matrix computations to the cluster while keeping
vector operations local to the driver, we were able to
distribute two classes of optimization problems:

(a) Spectral programs: Singular Value Decomposi-
tion (SVD) and PCA

(b) Convex programs: Gradient Descent, LBFGS, Ac-
celerate Gradient, and other unconstrained opti-
mization methods. We provide a port of the pop-
ular TFOCS optimization framework [1], which
covers Linear Programs and a variety of other
convex objectives

Separating matrix operations from vector operations
helps in the case that vectors fit in memory, but ma-
trices do not. This covers a wide array of applications,
since matrices are often quadratically larger. However,
there are some cases for which vectors do not fit in
memory on a single machine. For such cases, we use
an RDD for the vector as well, and use BlockMatrix
for data storage.

We give an outline of the most interesting of these
computations in Section 3.

3. Many distributed computing frameworks such as Spark
and Hadoop run on the Java Virtual Machine (JVM),
which means that achieving hardware-specific acceler-
ation for computation can be difficult. We provide a
comprehensive survey of tools that allow matrix com-
putations to be pushed down to hardware via the Basic
Linear Algebra Subprograms (BLAS) interface from
the JVM. In addition to a comprehensive set of bench-
marks, we have made all the code for producing the
benchmark public to allow for reproducibility.

In Section 4 we provide results and pointers to code
and benchmarks.

4. Given that there are many cases when distributed ma-
trices and local matrices need to interact (for example
multiplying a distributed matrix by a local one), we
also briefly describe the local linear algebra library we
built to make this possible, although the focus of the
paper is distributed linear algebra.

32

2. DISTRIBUTED MATRIX
Before we can build algorithms to perform distributed ma-

trix computations, we need to lay out the matrix across ma-
chines. We do this in several ways, all of which use the
sparsity pattern to optimize computation and space usage.
A distributed matrix has long-typed row and column in-
dices and double-typed values, stored distributively in one
or more RDDs. It is very important to choose the right for-
mat to store large and distributed matrices. Converting a
distributed matrix to a different format may require a global
shuffle, which is quite expensive. Three types of distributed
matrices have been implemented so far.

2.1 RowMatrix and IndexedRowMatrix
A RowMatrix is a row-oriented distributed matrix with-

out meaningful row indices, backed by an RDD of its rows,
where each row is a local vector. Since each row is repre-
sented by a local vector, the number of columns is limited
by the integer range but it should be much smaller in prac-
tice. We assume that the number of columns is not huge for
a RowMatrix so that a single local vector can be reason-
ably communicated to the driver and can also be stored /
operated on using a single machine.

An IndexedRowMatrix is similar to a RowMatrix but
with meaningful row indices. It is backed by an RDD of
indexed rows, so that each row is represented by its index
(long-typed) and a local vector.

2.2 CoordinateMatrix
A CoordinateMatrix is a distributed matrix backed by

an RDD of its entries. Each entry is a tuple of (i: Long, j:
Long, value: Double), where i is the row index, j is the
column index, and value is the entry value.

A CoordinateMatrix should be used only when both
dimensions of the matrix are huge and the matrix is very
sparse. A CoordinateMatrix can be created from an
RDD[MatrixEntry] instance, where MatrixEntry is a
wrapper over (Long, Long, Double). A CoordinateM-
atrix can be converted to an IndexedRowMatrix with
sparse rows by calling toIndexedRowMatrix.

2.3 BlockMatrix
A BlockMatrix is a distributed matrix backed by an

RDD of MatrixBlocks, where a MatrixBlock is a tuple
of ((Int, Int), Matrix), where the (Int, Int) is the index
of the block, and Matrix is the sub-matrix at the given in-
dex with size rowsPerBlock × colsPerBlock. BlockMatrix
supports methods such as add and multiply with another
BlockMatrix. BlockMatrix also has a helper function vali-
date which can be used to check whether the BlockMatrix
is set up properly.

2.4 Local Vectors and Matrices
Spark supports local vectors and matrices stored on a sin-

gle machine, as well as distributed matrices backed by one
or more RDDs. Local vectors and local matrices are simple
data models that serve as public interfaces. The underly-
ing linear algebra operations are provided by Breeze and
jblas. A local vector has integer-type and 0-based indices
and double-typed values, stored on a single machine. Spark
supports two types of local vectors: dense and sparse. A
dense vector is backed by a double array representing its
entry values, while a sparse vector is backed by two parallel

arrays: indices and values. For example, a vector (1.0, 0.0,
3.0) can be represented in dense format as [1.0, 0.0, 3.0] or
in sparse format as (3, [0, 2], [1.0, 3.0]), where 3 is the size
of the vector.

3. MATRIX COMPUTATIONS
We now move to the most challenging of tasks: rebuilding

algorithms from single-core modes of computation to operate
on our distributed matrices in parallel. Here we outline some
of the more interesting approaches.

3.1 Singular Value Decomposition
The rank k singular value decomposition (SVD) of an m×

n real matrix A is a factorization of the form A = UΣV T ,
where U is an m× k unitary matrix, Σ is an k× k diagonal
matrix with non-negative real numbers on the diagonal, and
V is an n × k unitary matrix. The diagonal entries Σ are
known as the singular values. The k columns of U and the
n columns of V are called the “left-singular vectors” and
“right-singular vectors” of A, respectively.

Depending on whether the m × n input matrix A is tall
and skinny (m � n) or square, we use different algorithms
to compute the SVD. In the case that A is roughly square,
we use the ARPACK package for computing eigenvalue de-
compositions, which can then be used to compute a singu-
lar value decomposition via the eigenvalue decomposition of
ATA. In the case that A is tall and skinny, we compute
ATA, which is small, and use it locally. In the following two
sections with detail the approaches for each of these two
cases. Note that the SVD of a wide and short matrix can be
recovered from its transpose, which is tall and skinny, and
so we do not consider the wide and short case.

There is a well known connection between the eigen and
singular value decompositions of a matrix, that is the two
decompositions are the same for positive semidefinite matri-
ces, and ATA is positive semidefinite with its singular values
being squares of the singular values of A. So one can recover
the SVD of A from the eigenvalue decomposition of ATA.
We exploit this relationship in the following two sections.

3.1.1 Square SVD with ARPACK
ARPACK is a collection of Fortran77 subroutines designed

to solve eigenvalue problems [6]. Written many decades ago
and compiled for specific architectures, it is surprising that
it can be effectively distributed on a modern commodity
cluster.

The package is designed to compute a few eigenvalues and
corresponding eigenvectors of a general n× n matrix A. In
the local setting, it is appropriate for sparse or structured
matrices where structured means that a matrix-vector prod-
uct requires order n rather than the usual order n2 floating
point operations and storage. APRACK is based upon an
algorithmic variant of the Arnoldi process called the Im-
plicitly Restarted Arnoldi Method (IRAM). When the ma-
trix A is symmetric it reduces to a variant of the Lanc-
zos process called the Implicitly Restarted Lanczos Method
(IRLM). These variants may be viewed as a synthesis of
the Arnoldi/Lanczos process with the Implicitly Shifted QR
technique. The Arnoldi process only interacts with the ma-
trix via matrix-vector multiplies.

APRACK is designed to compute a few, say k eigenvalues
with user specified features such as those of largest real part
or largest magnitude. Storage requirements are on the order

33

of nk doubles with no auxiliary storage is required. A set of
Schur basis vectors for the desired k-dimensional eigen-space
is computed which is numerically orthogonal to working pre-
cision. The only interaction that ARPACK needs with a
matrix is the result of matrix-vector multiplies.

By separating matrix operations from vector operations,
we are able to distribute the computations required by ARPACK.
An important feature of ARPACK is its ability to allow
for arbitrary matrix formats. This is because it does not
operate on the matrix directly, but instead acts on the ma-
trix via prespecified operations, such as matrix-vector multi-
plies. When a matrix operation is required, ARPACK gives
control to the calling program with a request for a matrix-
vector multiply. The calling program must then perform the
multiply and return the result to ARPACK. By using the
distributed-computing utility of Spark, we can distribute the
matrix-vector multiplies, and thus exploit the computational
resources available in the entire cluster.

Since ARPACK is written in Fortran77, it cannot im-
mediately be used on the Java Virtual Machine. However,
through the netlib-java and breeze packages, we use ARPACK
on the JVM on the driver node and ship the computations
required for matrix-vector multiplies to the cluster. This
also means that low-level hardware optimizations can be ex-
ploited for any local linear algebraic operations. As with all
linear algebraic operations within MLlib, we use hardware
acceleration whenever possible. This functionality has been
available since Spark 1.1.

We provide experimental results using this idea. A very
popular matrix in the recommender systems community is
the Netflix Prize Matrix. The matrix has 17,770 rows, 480,189
columns, and 100,480,507 non-zeros. Below we report results
on several larger matrices, up to 16x larger.

With the Spark implementation of SVD using ARPACK,
calculating wall-clock time with 68 executors and 8GB mem-
ory in each, looking for the top 5 singular vectors, we can
factorize larger matrices distributed in RAM across a clus-
ter, in a few seconds, with times listed Table 1.

3.1.2 Tall and Skinny SVD
In the case that the input matrix has few enough columns

that ATA can fit in memory on the driver node, we can
avoid shipping the eigen-decomposition to the cluster and
avoid the associated communication costs.

First we compute Σ and V . We do this by comput-
ing ATA, which can be done with one all-to-one commu-
nication, details of which are available in [11, 10]. Since
ATA = V Σ2V T is of dimension n × n, for small n (for ex-
ample n = 104) we can compute the eigen-decomposition of
ATA directly and locally on the driver to retrieve V and Σ.

Once V and Σ are computed, we can recover U . Since in
this case n is small enough to fit n2 doubles in memory, then
V and Σ will also fit in memory on the driver. U however
will not fit in memory on a single node and will need to be
distributed, and we still need to compute it. This can be
achieved by computing U = AV Σ−1 which is derived from
A = UΣV T . Σ−1 is easy to compute since it is diagonal,
and the pseudo-inverse of V is its transpose and also easy
to compute. We can distribute the computation of U =
A(V Σ−1) by broadcasting V Σ−1 to all nodes holding rows
of U , and from there it is embarrassingly parallel to compute
U .

The method computeSVD on the RowMatrix class takes

care of which of the tall and skinny or square versions to in-
voke, so the user does not need to make that decision.

3.2 Spark TFOCS: Templates for First-Order
Conic Solvers

To allow users of single-machine optimization algorithms
to use commodity clusters, we have developed Spark TFOCS,
which is an implementation of the TFOCS convex solver for
Apache Spark.

The original Matlab TFOCS library [1] provides build-
ing blocks to construct efficient solvers for convex problems.
Spark TFOCS implements a useful subset of this functional-
ity, in Scala, and is designed to operate on distributed data
using the Spark. Spark TFOCS includes support for:

• Convex optimization using Nesterov’s accelerated method
(Auslender and Teboulle variant)

• Adaptive step size using backtracking Lipschitz esti-
mation

• Automatic acceleration restart using the gradient test

• Linear operator structure optimizations

• Smoothed Conic Dual (SCD) formulation solver, with
continuation support

• Smoothed linear program solver

• Multiple data distribution patterns. (Currently sup-
port is only implemented for RDD[Vector] row ma-
trices.)

The name “TFOCS” is being used with permission from
the original TFOCS developers, who are not involved in the
development of this package and hence not responsible for
the support. To report issues or download code, please see
the project’s GitHub page

https://github.com/databricks/spark-tfocs

3.2.1 TFOCS
TFOCS is a state of the art numeric solver; formally, a

first order convex solver [1]. This means that it optimizes
functions that have a global minimum without additional lo-
cal minima, and that it operates by evaluating an objective
function, and the gradient of that objective function, at a
series of probe points. The key optimization algorithm im-
plemented in TFOCS is NesterovÕs accelerated gradient de-
scent method, an extension of the familiar gradient descent
algorithm. In traditional gradient descent, optimization is
performed by moving “downhill” along a function gradient
from one probe point to the next, iteration after iteration.
The accelerated gradient descent algorithm tracks a linear
combination of prior probe points, rather than only the most
recent point, using a clever technique that greatly improves
asymptotic performance.

TFOCS fine-tunes the accelerated gradient descent algo-
rithm in several ways to ensure good performance in prac-
tice, often with minimal configuration. For example TFOCS
supports backtracking line search. Using this technique, the
optimizer analyzes the rate of change of an objective func-
tion and dynamically adjusts the step size when descending
along its gradient. As a result, no explicit step size needs to
be provided by the user when running TFOCS.

34

https://github.com/databricks/spark-tfocs

Matrix size Number of nonzeros Time per iteration (s) Total time (s)
23,000,000 × 38,000 51,000,000 0.2 10
63,000,000 × 49,000 440,000,000 1 50
94,000,000 × 4,000 1,600,000,000 0.5 50

Table 1: Runtimes for ARPACK Singular Value Decomposition

Matlab TFOCS contains an extensive feature set. While
the initial version of Spark TFOCS implements only a subset
of the many possible features, it contains sufficient function-
ality to solve several interesting problems.

3.2.2 Example: LASSO Regression
A LASSO linear regression problem (otherwise known as

L1 regularized least squares regression) can be described and
solved easily using TFOCS. Objective functions are provided
to TFOCS in three separate parts, which are together re-
ferred to as a composite objective function. The complete
LASSO objective function can be represented as:

1

2
||Ax− b||22 + λ||x||1

This function is provided to TFOCS in three parts. The
first part, the linear component, implements matrix multi-
plication:

Ax

The next part, the smooth component, implements quadratic
loss:

1

2
|| • −b||22

And the final part, the nonsmooth component, implements
L1 regularization:

λ||x||1

The TFOCS optimizer is specifically implemented to lever-
age this separation of a composite objective function into
component parts. For example, the optimizer may evaluate
the (expensive) linear component and cache the result for
later use.

Concretely, in Spark TFOCS the above LASSO regression
problem can be solved as follows:

TFOCS.optimize(new SmoothQuad(b), new
LinopMatrix(A), new ProxL1(lambda), x0)

Here, SmoothQuad is the quadratic loss smooth com-
ponent, LinopMatrix is the matrix multiplication linear
component, and ProxL1 is the L1 norm nonsmooth compo-
nent. The x0 variable is an initial starting point for gradient
descent. Spark TFOCS also provides a helper function for
solving LASSO problems, which can be called as follows:

SolverL1RLS.run(A, b, lambda)

3.2.3 Example: Linear Programming
Solving a linear programming problem requires minimiz-

ing a linear objective function subject to a set of linear
constraints. TFOCS supports solving smoothed linear pro-
grams, which include an approximation term that simplifies
finding a solution. Smoothed linear programs can be repre-
sented as:

minimize cTx+
1

2
||x− x0||22

subject to Ax = b
x ≥ 0

A smoothed linear program can be solved in Spark TFOCS
using a helper function as follows:

SolverSLP.run(c, A, b, mu)

A complete linear program example is presented here:

https://github.com/databricks/spark-tfocs

3.3 Convex Optimization
We now focus on Convex optimization via gradient de-

scent for separable objective functions. That is, objective
functions that can be written in the form of

F (w) =

n∑
i=1

Fi(w)

where w is a d-dimensional vector of parameters to be tuned
and each Fi(w) represents the loss of the model for the i’th
training point. In the case that d doubles can fit in mem-
ory on the driver, the gradient of F (w) can be computed
using the computational resources on the cluster, and then
collected on the driver, where it will also fit in memory. A
simple gradient update can be done locally and then the
new guess for w broadcast out to the cluster. This idea is
essentially separating the matrix operations from the vec-
tor operations, since the vector of optimization variables is
much smaller than the data matrix.

Given that the gradient can be computed using the clus-
ter and then collected on the driver, all computations on the
driver can proceed oblivious to how the gradient was com-
puted. This means in addition to gradient descent, we can
use tradtional single-node implementations of all first-order
optimization methods that only use the gradient, such as
accelerated gradient methods, LBFGS, and variants thereof.
Indeed, we have LBFGS and accelerated gradient methods
implemented in this way and available as part of MLlib.
For the first time we provide convergence plots for these
optimization primitives available in Spark, listed in Figure
1. We have available the following optimization algorithms,
with convergence plots in Figure 1:

• gra: gradient descent implementation [7] using full
batch

• acc: accelerated descent as in [1], without automatic
restart [8]

• acc r: accelerated descent, with automatic restart [1]

• acc b: accelerated descent, with backtracking, without
automatic restart [1]

35

https://github.com/databricks/spark-tfocs

• acc rb: accelerated descent, with backtracking, with
automatic restart [1]

• lbfgs: an L-BFGS implementation [13]

In Figure 1 the x axis shows the number of outer loop it-
erations of the optimization algorithm. Note that for back-
tracking implementations, the full cost of backtracking is not
represented in this outer loop count. For non-backtracking
implementations, the number of outer loop iterations is the
same as the number of spark map reduce jobs. The y axis
is the log of the difference from best determined optimized
value. The optimization test runs were:

• linear: A scaled up version of the test data from TFOCS’s
‘test LASSO.m’ example [1], with 10000 observations
on 1024 features. 512 of the features are actually corre-
lated with result. Unregularized linear regression was
used. As expected, the Scala/Spark acceleration im-
plementation was observed to be consistent with the
TFOCS implementation on this dataset.

• linear l1: The same as ‘linear’, but with L1 regulariza-
tion

• logistic: Each feature of each observation is generated
by summing a feature gaussian specific to the obser-
vation?s binary category with a noise gaussian. 10000
observations on 250 features. Unregularized logistic
regression was used.

• logistic l2: Same as ‘logistic’, but using L2 regulariza-
tion

For all runs, all optimization methods were given the same
initial step size. We now note some observations. First, ac-
celeration consistently converges more quickly than standard
gradient descent, given the same initial step size. Second,
automatic restarts are indeed helpful for accelerating conver-
gence. Third, Backtracking can significantly boost conver-
gence rates in some cases (measured in terms of outer loop
iterations), but the full cost of backtracking was not mea-
sured in these runs. Finally, LBFGS generally outperformed
accelerated gradient descent in these test runs.

3.4 Other matrix algorithms
There are several matrix computations on distributed ma-

trices that use algorithms previously published, so we only
cite them here:

• RowMatrix provides QR decomposition as described
in [2]

• RowMatrix provides optimized computation of ATA
via DIMSUM [11]

• BlockMatrix will provide large linear model paral-
lelism [4, 9]

4. HARDWARE ACCELERATION

4.1 CPU and GPU acceleration
To allow full use of hardware-specific linear algebraic op-

erations on a single node, we use the BLAS (Basic Linear Al-
gebra Subroutines) interface with relevant libraries for CPU
and GPU acceleration. Native libraries can be used in Scala

as follows. First, native libaries must have a C BLAS inter-
face or wrapper. The latter is called through the Java native
interface implemented in Netlib-java library and wrapped by
the Scala library called Breeze. We consider the following
implementations of BLAS like routines:

• f2jblas - Java implementation of Fortran BLAS

• OpenBLAS - open source CPU-optimized C implemen-
tation of BLAS

• MKL - proprietary CPU-optimized C and Fortran im-
plementation of BLAS by Intel

• cuBLAS - proprietary GPU-optimized implementation
of BLAS like routines by nVidia. nVidia provides a
Fortran BLAS wrapper for cuBLAS called NVBLAS.
It can be used in Netlib-java through CBLAS interface.

In addition to the mentioned libraries, we also consider
the BIDMat matrix library that can use MKL or cuBLAS.
Our benchmark includes matrix-matrix multiplication rou-
tine called GEMM. This operation comes from BLAS Level
3 and can be hardware optimized as opposed to the opera-
tions from the lower BLAS levels. We benchmark GEMM
with different matrix sizes both for single and double preci-
sion. The system used for benchmark is as follows:

• CPU - 2x Xeon X5650 @ 2.67GHz (32 GB RAM)

• GPU - 3x Tesla M2050 3GB, 575MHz, 448 CUDA
cores

• Software - RedHat 6.3, Cuda 7, nVidia driver 346.72,
BIDMat 1.0.3

The results for the double precision matrices are depicted on
Figure 2. A full spreadsheet of results and code is available
at https://github.com/avulanov/scala-blas.

Results show that MKL provides similar performance to
OpenBLAS except for tall matrices when the latter is slower.
Most of the time GPU is less effective due to overhead of
copying matrices to/from GPU. However, when multiplying
sufficiently large matrices, i.e. starting from 10000×10000
by 10000×1000, the overhead becomes negligible with re-
spect to the computation complexity. At that point GPU is
several times more effective than CPU. Interestingly, adding
more GPUs speeds up the computation almost linearly for
big matrices.

Because it is unreasonable to expect all machines that
Spark is run on to have GPUs, we have made OpenBlas
the default method of choice for hardware acceleration in
Spark’s local matrix computations. Note that these per-
formance numbers are useful anytime the JVM is used for
Linear Algebra, including Hadoop, Storm, and popular com-
modity cluster programming frameworks. As an example of
BLAS usage in Spark, Neural Networks available in MLlib
use the interface heavily, since the forward and backpropa-
gation steps in neural networks are a series of matrix-vector
multiplies.

A full spreadsheet of results and code is available at

https://github.com/avulanov/scala-blas

36

https://github.com/avulanov/scala-blas
https://github.com/avulanov/scala-blas

Figure 1: Error per iteration for optimization primitives. From left to right, top to bottom: logistic
regression, least squares regression, L2 regularized logistic regression, L1 regularized least squares (LASSO).

Figure 2: Benchmarks for hardware acceleration from the JVM. Full results and all numbers are available at
https://github.com/avulanov/scala-blas

37

https://github.com/avulanov/scala-blas

4.2 Sparse Single-Core Linear Algebra
The BLAS interface is made specifically for dense linear

algebra. There are not many libraries on the JVM that
efficiently handle sparse matrix operations, or even provide
the option to store a local matrix in sparse format. MLlib
provides SparseMatrix, which provides memory efficient
storage in Compressed Column Storage (CCS) format. In
this format, a row index and a value is stored for each non-
zero element in separate arrays. The columns are formed by
storing the first and the last indices of the elements for that
column in a separate array.

MLlib has specialized implementations for performing Sparse
Matrix × Dense Matrix, and Sparse Matrix × Dense Vec-
tor multiplications, where matrices can be optionally trans-
posed. These implementations outperform libraries such
as Breeze, and are competitive against libraries like SciPy,
where implementations are backed by C. Benchmarks avail-
able at https://github.com/apache/spark/pull/2294.

Conclusions
We described the distributed and local matrix computa-
tions available in Apache Spark, a widely distributed cluster
programming framework. By separating matrix operations
from vector operations, we are able to distribute a large
number of traditional algorithms meant for single-node us-
age. This allowed us to solve Spectral and Convex opti-
mization problems, opening to the door to easy distribu-
tion of many machine learning algorithms. We conclude by
providing a comprehensive set of benchmarks on accessing
hardware-level optimizations for matrix computations from
the JVM.

Acknowledgments
We thank all Spark contributors, a list of which can be found
at:

https://github.com/apache/spark/graphs/contributors

Spark and MLlib are cross-institutional efforts, and we thank
the Stanford ICME, Berkeley AMPLab, MIT CSAIL, Databricks,
Twitter, HP labs, and many other institutions for their sup-
port. We further thank Ion Stoica, Stephen Boyd, Em-
manuel Candes, and Steven Diamond for their valuable dis-
cussions.

5. REFERENCES
[1] Stephen R Becker, Emmanuel J Candès, and

Michael C Grant. Templates for convex cone problems
with applications to sparse signal recovery.
Mathematical Programming Computation,
3(3):165–218, 2011.

[2] Austin R Benson, David F Gleich, and James
Demmel. Direct qr factorizations for tall-and-skinny
matrices in mapreduce architectures. In Big Data,
2013 IEEE International Conference on, pages
264–272. IEEE, 2013.

[3] L Susan Blackford, Jaeyoung Choi, Andy Cleary,
Eduardo D’Azevedo, James Demmel, Inderjit Dhillon,
Jack Dongarra, Sven Hammarling, Greg Henry,
Antoine Petitet, et al. ScaLAPACK users’ guide,
volume 4. siam, 1997.

[4] Weizhu Chen, Zhenghao Wang, and Jingren Zhou.
Large-scale l-bfgs using mapreduce. In Advances in
Neural Information Processing Systems, pages
1332–1340, 2014.

[5] Jeffrey Dean and Sanjay Ghemawat. Mapreduce:
simplified data processing on large clusters.
Communications of the ACM, 51(1):107–113, 2008.

[6] Richard B Lehoucq, Danny C Sorensen, and Chao
Yang. ARPACK users’ guide: solution of large-scale
eigenvalue problems with implicitly restarted Arnoldi
methods, volume 6. Siam, 1998.

[7] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan
Sparks, Shivaram Venkataraman, Davies Liu, Jeremy
Freeman, DB Tsai, Manish Amde, Sean Owen, Doris
Xin, Reynold Xin, Michael J. Franklin, Reza Zadeh,
Matei Zaharia, and Ameet Talwalkar. Mllib: Machine
learning in apache spark. arXiv preprint
arXiv:1505.06807, 2015.

[8] Brendan OâĂŹDonoghue and Emmanuel Candes.
Adaptive restart for accelerated gradient schemes.
Foundations of computational mathematics,
15(3):715–732, 2013.

[9] Reza Bosagh Zadeh. Large linear model parallelism
via a join and reducebykey.
https://issues.apache.org/jira/browse/SPARK-6567,
2015. Accessed: 2015-08-09.

[10] Reza Bosagh Zadeh and Gunnar Carlsson. Dimension
independent matrix square using mapreduce. In
Foundations of Computer Science (FOCS 2013) -
Poster, 2013.

[11] Reza Bosagh Zadeh and Ashish Goel. Dimension
independent similarity computation. The Journal of
Machine Learning Research, 14(1):1605–1626, 2013.

[12] Matei Zaharia, Mosharaf Chowdhury, Michael J
Franklin, Scott Shenker, and Ion Stoica. Spark: cluster
computing with working sets. In Proceedings of the
2nd USENIX conference on Hot topics in cloud
computing, volume 10, page 10, 2010.

[13] Ciyou Zhu, Richard H Byrd, Peihuang Lu, and Jorge
Nocedal. Algorithm 778: L-bfgs-b: Fortran
subroutines for large-scale bound-constrained
optimization. ACM Transactions on Mathematical
Software (TOMS), 23(4):550–560, 1997.

APPENDIX
Appendix A - BLAS references
To find information about the implementations used, here
we provide links to implementations used in Figure 2.

1. Netlib, Reference BLAS and CBLAS http://www.netlib.
org/blas/

2. Netlib-java https://github.com/fommil/netlib-java

3. Breeze https://github.com/scalanlp/breeze

4. BIDMat https://github.com/BIDData/BIDMat/

5. OpenBLAS https://github.com/xianyi/OpenBLAS

6. CUDA http://www.nvidia.com/object/cuda home new.
html

7. NVBLAS http://docs.nvidia.com/cuda/nvblas

38

https://github.com/apache/spark/pull/2294
https://github.com/apache/spark/graphs/contributors
https://issues.apache.org/jira/browse/SPARK-6567
http://www.netlib.org/blas/
http://www.netlib.org/blas/
https://github.com/fommil/netlib-java
https://github.com/scalanlp/breeze
https://github.com/BIDData/BIDMat/
https://github.com/xianyi/OpenBLAS
http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
http://docs.nvidia.com/cuda/nvblas

	Introduction
	Apache Spark
	Challenges and Contributions

	Distributed matrix
	RowMatrix and IndexedRowMatrix
	CoordinateMatrix
	BlockMatrix
	Local Vectors and Matrices

	Matrix Computations
	Singular Value Decomposition
	Square SVD with ARPACK
	Tall and Skinny SVD

	Spark TFOCS: Templates for First-Order Conic Solvers
	TFOCS
	Example: LASSO Regression
	Example: Linear Programming

	Convex Optimization
	Other matrix algorithms

	Hardware Acceleration
	CPU and GPU acceleration
	Sparse Single-Core Linear Algebra

	References

