Scaling Spark in the Real World:
Performance and Usability

Michael Armbrust, Tathagata Das, Aaron Davidson, Ali Ghodsi, Andrew O,
Josh Rosen, lon Stoica, Patrick Wendell, Reynold Xin, Matei Zahariaf

Databricks Inc.

ABSTRACT

Apache Spark is one of the most widely used open source
processing engines for big data, with rich language-integrated
APIs and a wide range of libraries. Over the past two years,
our group has worked to deploy Spark to a wide range of or-
ganizations through consulting relationships as well as our
hosted service, Databricks. We describe the main challenges
and requirements that appeared in taking Spark to a wide
set of users, and usability and performance improvements
we have made to the engine in response.

1. INTRODUCTION

Interest in MapReduce and large-scale data processing has
led to the emergence of a wide array of cluster comput-
ing systems [3, 6, 7]. These systems use a variety of new
APIs, often based on functional programming, to support
both relational queries and more complex types of process-
ing (e.g., extract-transform-load work or machine learning).

Of these systems, Apache Spark [1] has become one of the
most widely adopted, with, to our knowledge, over 500 pro-
duction deployments, and the most active contributor com-
munity at Apache (over 400 contributors in 2014). Unlike
previous specialized systems, Spark offers a general engine
based on task DAGs and data sharing on which workloads
such as batch jobs, streaming, SQL and graph analytics can
run [14, 15, 2]. It has APIs in Java, Scala, Python and R.

As Spark transitioned from early adopters to a broader
audience, we had a chance to see where its functional API
worked well in practice, where it could be improved, and
what the needs of new users were. This paper describes the
major initiatives we have taken at Databricks to improve
usability and performance of Spark. We cover both engine
improvements and new APIs to make Spark accessible to
non-experts, such as a table-oriented DataFrame API [2].

2. CHALLENGES AND REQUIREMENTS

Overall, Spark has been successful in its goal of supporting
general analytics workloads: we and others have been able to

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.

Proceedings of the VLDB Endowment, Vol. 8, No. 12

Copyright 2015 VLDB Endowment 2150-8097/15/08.

TMIT CSAIL

implement libraries on top for SQL, streaming, graph pro-
cessing and machine learning, often with comparable per-
formance to specialized engines [15, 2, 5]. The generality of
the Spark engine is important because most users combine
multiple of these types of processing in their workloads.

Nevertheless, Spark’s functional API did pose some chal-
lenges for both users and the system, given the heterogeneity
of data types and computations supported. The most com-
mon challenges we saw were the following:

Functional API semantics. The core Spark API is based
on collections of Java/Python objects, on which users run
arbitrary functions written in these languages through oper-
ators like map or groupBy [14]. We found that users often had
trouble selecting the best functional operators for a given
computation. For example, one common problem is using
Spark’s groupByKey operator, which returns a distributed
collection of (key, list of value) pairs, and then performing
an aggregation on each list (e.g., a sum). The groupByKey
has to send each list of records to one machine because that
is its return signature, but this computation would be much
faster with Spark’s reduceByKey operator, which can per-
form partial aggregation on each node.

Because the functions passed to Spark are arbitrary Java
or Python code, it is also hard for the engine to analyze
them and replace operators automatically. Some research
has proposed static analysis of UDFs [11], but such analysis
can be brittle for complex object-oriented programs.

Debugging and profiling. Distributed programs are in-
herently hard to debug, even with Spark’s side-effect-free,
functional API, because users have to worry about work
distribution and skew. We found that the most challenging
issues are in performance debugging: users often do not re-
alize that their work is concentrated on a few machines, or
that some of their data structures are memory-inefficient.

Memory management. “Big data” comes in a wide range
of formats and sizes, requiring careful memory management
throughout the engine. While external operations for aggre-
gation and joins are well-understood, we found other sources
of high memory use. For example, data records in some
applications (e.g., image processing) can be hundreds of
megabytes each, requiring careful accounting as each record
is read. As another example, Spark initially assumed that
the data in each block of a file (typically 128 MB in HDFS)
can all fit in memory at once, but for some highly com-
pressed datasets, each block could decompress into 3-4 GB.



Large-scale I/0. Spark clusters and workloads have grown
significantly, with the largest cluster now being over 8000
nodes and individual jobs processing more than 1 PB [13].
We have invested significant engineering to make Spark’s
networking and I/O layers operate well at this scale.

Accessibility to non-experts. While early cluster com-
puting systems like MapReduce were designed for software
engineers, in most organizations, “big data” needs to be ac-
cessible to many other individuals, such as domain experts
(e.g., statisticians or data scientists) who are not developers.
In addition, for all users, higher-level APIs are important be-
cause much data analysis is exploratory: users do not have
time to write a fully optimized distributed program. To ad-
dress these challenges, we have invested substantial effort in
providing high-level data science APIs that mirror single-
node tools, such as R’s data frames, over Spark.

We next describe three key areas of work that tackle these
challenges: core engine improvements, debugging tools, and
a new DataFrame API.

3. ENGINE IMPROVEMENTS

Our main work in the execution engine falls into two
domains: memory management and the networking layer.
Both focus on making the engine more performant and ro-
bust for large-scale workloads.

3.1 Memory Management

To improve memory management, we studied causes of
memory problems based on user reports and implemented
a per-node allocator that manages all sources of memory
usage within each node. Spark initially had a memory man-
ager to track the size of “cached” data that the user chose
to materialize in memory, evicting old data blocks when a
cap was reached. The original manager did not explicitly
track the memory usage for data processing (e.g., scratch
space used for joins or aggregations). As a result, a large
fraction of the memory exhaustion problems came from pro-
cessing large joins or aggregations. To address that, we im-
plemented a second cap to track hash tables for joins and
aggregation. This cap is allocated dynamically among the
threads running these operations as they grow their tables,
and threads that are not allowed to take more RAM spill
to disk. Lastly, a third space was reserved for “unrolling”
blocks that are read from disk to see whether the uncom-
pressed data is still small enough to cache. In all these cases,
we check memory usage every 16 records to handle skewed
record sizes. With these controls, the engine runs robustly
across a wide range of workloads.

3.2 Networking Layer

In Spark’s networking layer, the largest challenge was sup-
porting shuffle operations on many nodes. Shuffle operations
need to move output data from map tasks to reduce tasks
across the network, so that every node is sending some data
to every other node. They are challenging to implement be-
cause each node may be serving data from multiple disks,
multiple connections are generally required to saturate net-
work bandwidth, and care must be taken to balance load
(e.g., if all reducers contact one node, it may get overloaded).

We previously wrote a custom network module that was
based on Java’s NIO. The module used the low-level Java

Hadoop (2100 machines) |
Spark (207 machines) _

0 10 20 30 40 50 60 70 min.

Figure 1: Completion times for 100 TB Daytona GraySort
benchmark, comparing Spark’s 2014 record to Hadoop’s
2013 record.

NIO networking API directly and needed to maintain com-
plex state machines internally. In addition, it created higher
memory pressure from JVM garbage collection and higher
CPU usage than needed due to unnecessary copies of net-
work buffers.

In Apache Spark 1.2, we replaced the network module
with a new implementation based on Netty (www.netty.io),
a high-performance networking framework. Netty simplifies
networking programming by providing a higher level asyn-
chronous event-driven abstraction. Building on Netty, we
have introduced a number of features to improve perfor-
mance and scalability:

e Zero-copy I/O: Instruct the kernel to copy data directly
from on-disk files to the socket, without going through
the user-space memory. This reduces not only the CPU
time spent in context switches between kernel and user
space, but also the memory pressure in the JVM heap.

e Off-heap network buffer management: Netty maintains
a pool of memory pages explicitly outside the Java heap,
and as a result eliminates the impact of network buffers
on the JVM garbage collector.

e Multiple connections: Each Spark worker node main-
tains multiple parallel active connections (by default 5)
for data fetches, in order to increase the fetch throughput
and balance load across the nodes serving data.

The implementation is able to saturate a full bisection
bandwidth network between 200 machines with 10 Gbps
links each. We used it to set a new record in the Day-
tona GraySort competition [12], by sorting 100 TB of on-
disk data 3x faster than the previous Hadoop-based record
using 10X fewer machines (Figure 1).

4. DEBUGGING TOOLS

To facilitate debugging, we added a wide variety of met-
rics to Spark’s web based application monitoring UI. This
UI shows metrics such as time taken to schedule, run, and
receive the results for each task; input and output bytes;
and memory sizes. The metrics are shown in tables that
users can sort by each column to find outliers. They are
also increasingly aggregated in graphs, such as a live dash-
board with statistics about streaming jobs (Figure 2) and a
visualization of the operator DAG (Figure 3).

Apart from metrics, one surprisingly useful feature we
added was a “stack trace” button, which can be used to
take a trace from any worker and see which functions it is
currently running. This serves both as a simple sampling
profiler and as a way to identify deadlocks.

Finally, although the current Ul provides metrics for Spark’s
lowest-level functional operators, many programs increas-
ingly use higher-level libraries such as Spark SQL, DataFrames



Timelines (Last 96 batches, 0 active, 96 completed) Histograms

» Input Rate
Avg: 43.50 events/sec

Scheduling Delay ™
Avg:Oms

Processing Time ™
Avg: 113 ms

Total Delay
Avg: 114 ms

Figure 2: Metrics dashboard for Spark Streaming. The
plots update in real time to show input rate, processing time
and other information about the running application.

Stage 2 Stage 3 Stage 4

paralielize paralislize groupByKey sorByKey

zip,

Figure 3: Visualization for operator DAGs in Spark’s UL

and Spark’s machine learning library (MLIlib). We are also
extending the monitoring Ul to capture these higher-level
operations. In our experience, visibility into the system re-
mains one of the biggest challenges for users of distributed
computing.

5. DATAFRAME API

To make Spark more accessible to non-experts and in-
crease the information visible to the engine for automatic
optimization, we sought to develop a more declarative API.
We chose an API based on data frames, a common abstrac-
tion for tables in Python and R. Data frames support op-
erations similar to relational algebra, but expose them as
functions in a procedural language (e.g., Python), so that
developers can use the control flow and abstraction features
of the language around them to write complex programs.

Our DataFrame API implements this standard interface
but compiles it using the relational optimizer in Spark SQL [2],
enabling rich logical and physical optimizations based on the
whole computation.! This lets Spark DataFrames handle
transformations such as the groupBy problem mentioned in
Section 2 automatically. To our knowledge, Spark’s is the
first data frame implementation to use a relational optimizer
underneath—previous libraries such as R’s are imperative.

The code below shows a short example of DataFrames in
Python; the API is similar to pandas (pandas.pydata.org):

In particular, Spark SQL supports standard logical opti-
mizations, runtime code generation, and columnar storage.

R
Python

Java/Scala
{ Python I ——

RDD DataFrame

Java/Scala I
0 2 4 6 8 10

Figure 4: Running time (sec) of a simple aggregation query
using DataFrames versus Spark’s functional RDD API.

means = users.where(users["age"] > 20)
.groupBy ("city")
.avg("income")

The API captures expressions like users["age"] > 21 as
abstract syntax trees to enable algebraic optimization, un-
like the opaque user-defined functions passed to Spark’s func-
tional operators, such as map. Nonetheless, users can still
easily invoke UDFs when needed, by passing inline functions
like in the core Spark API.

As shown in Figure 4, DataFrame based computations can
be 2-5x faster than the functional API. The speedups come
from both runtime code generation and algebraic optimiza-
tions (e.g., predicate pushdown).

Beyond offering DataFrames for basic data transforma-
tions, we are increasingly using them as the input and out-
put format to Spark’s libraries (e.g., the machine learning
library [8]). This allows us to easily expose Spark’s libraries
in all supported programming languages, without having to
build API with language-specific types in each one. The re-
cently added R bindings to Spark also support DataFrames
and will access other libraries this way.

6. ONGOING WORK

We are continuing to improve Spark for both usability
and performance. On the usability side, we and other mem-
bers of the community are augmenting Spark with a large
set of standard libraries containing scalable versions of com-
mon data analysis algorithms. For example, Spark’s ma-
chine learning library, MLlib, grew by a factor of 4 in the
past year. We have also designed a pluggable data source
API that makes it easy to access external data sources in a
uniform way using DataFrames or SQL [2]. Together, these
APIs form one of the largest integrated standard libraries for
“big data,” and will undoubtedly lead to interesting design
decisions to enable efficient composition of workflows.

On the performance side, under a new project codenamed
Tungsten, we are implementing memory management out-
side the JVM and runtime code generation to bring the per-
formance of DataFrames and SQL to the limit of the under-
lying hardware [10]. These optimizations will transparently
speed up current user code and many of Spark’s libraries.

We have also increasingly seen Spark used in research
projects, including online aggregation [16], graph process-
ing [5], genomic data processing [9], and large-scale neuro-
science [4]. We hope that Spark’s relatively small code size
and wide array of built-in functions make it amenable to
both systems and application-oriented projects.

All of the functionality described in this work is open
source and available at spark.apache.org.



7.
1]
2]
3]

[4]

7]
8]

[9]

REFERENCES

Apache Spark project. http://spark.apache.org.

M. Armbrust et al. Spark SQL: relational data
processing in Spark. In SIGMOD, 2015.

J. Dean and S. Ghemawat. MapReduce: Simplified
data processing on large clusters. In OSDI, 2004.

J. Freeman, N. Vladimirov, T. Kawashima, Y. Mu,
N. J. Sofroniew, D. V. Bennett, J. Rosen, C.-T. Yang,
L. L. Looger, and M. B. Ahrens. Mapping brain
activity at scale with cluster computing. Nature
Methods, 11(9):941-950, Sept 2014.

J. E. Gonzalez et al. GraphX: Graph processing in a
distributed dataflow framework. In OSDI, 2014.

M. Isard et al. Dryad: distributed data-parallel
programs from sequential building blocks. Furosys,
2007.

G. Malewicz et al. Pregel: a system for large-scale
graph processing. In SIGMOD, 2010.

X. Meng et al. ML pipelines: a new high-level API for
MLIib. http://tinyurl.com/spark-ml.

F. A. Nothaft, M. Massie, T. Danford, Z. Zhang,

U. Laserson, C. Yeksigian, J. Kottalam, A. Ahuja,

(10]

(11]

(12]

(13]

(14]

(15]

(16]

J. Hammerbacher, M. Linderman, M. J. Franklin,

A. D. Joseph, and D. A. Patterson. Rethinking
data-intensive science using scalable analytics systems.
In SIGMOD, 2015.

Project Tungsten.
https://databricks.com/blog/2015/04/28/.

K. Tzoumas et al. Peeking into the optimization of
data flow programs with mapreduce-style UDFs. In
ICDE, 2013.

R. Xin et al. GraySort on Apache Spark by
Databricks.
http://sortbenchmark.org/ApacheSpark2014.pdf.
R. Xin and M. Zaharia. Lessons from running large
scale Spark workloads.
http://tinyurl.com/large-scale-spark.

M. Zaharia et al. Resilient distributed datasets: a
fault-tolerant abstraction for in-memory cluster
computing. In NSDI, 2012.

M. Zaharia et al. Discretized streams: Fault-tolerant
streaming computation at scale. In SOSP, 2013.

K. Zeng et al. G-OLA: Generalized online aggregation
for interactive analysis on big data. In SIGMOD, 2015.



