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Abstract
As organizations start to use data-intensive cluster comput-
ing systems like Hadoop and Dryad for more applications,
there is a growing need to share clusters between users.
However, there is a conflict between fairness in schedul-
ing and data locality (placing tasks on nodes that contain
their input data). We illustrate this problem through our ex-
perience designing a fair scheduler for a 600-node Hadoop
cluster at Facebook. To address the conflict between local-
ity and fairness, we propose a simple algorithm called delay
scheduling: when the job that should be scheduled next ac-
cording to fairness cannot launch a local task, it waits for a
small amount of time, letting other jobs launch tasks instead.
We find that delay scheduling achieves nearly optimal data
locality in a variety of workloads and can increase through-
put by up to 2x while preserving fairness. In addition, the
simplicity of delay scheduling makes it applicable under a
wide variety of scheduling policies beyond fair sharing.

Categories and Subject Descriptors D.4.1 [Operating Sys-
tems]: Process Management—Scheduling.

General Terms Algorithms, Performance, Design.

1. Introduction
Cluster computing systems like MapReduce [18] and Dryad
[23] were originally optimized for batch jobs such as web
indexing. However, another use case has recently emerged:
sharing a cluster between multiple users, which run a mix of
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long batch jobs and short interactive queries over a common
data set. Sharing enables statistical multiplexing, leading to
lower costs over building separate clusters for each group.
Sharing also leads to data consolidation (colocation of dis-
parate data sets), avoiding costly replication of data across
clusters and letting users run queries across disjoint data sets
efficiently. In this paper, we explore the problem of shar-
ing a cluster between users while preserving the efficiency
of systems like MapReduce – specifically, preserving data
locality, the placement of computation near its input data.
Locality is crucial for performance in large clusters because
network bisection bandwidth becomes a bottleneck [18].

Our work was originally motivated by the MapReduce
workload at Facebook. Event logs from Facebook’s website
are imported into a 600-node Hadoop [2] data warehouse,
where they are used for a variety of applications, including
business intelligence, spam detection, and ad optimization.
The warehouse stores 2 PB of data, and grows by 15 TB per
day. In addition to “production” jobs that run periodically,
the cluster is used for many experimental jobs, ranging from
multi-hour machine learning computations to 1-2 minute ad-
hoc queries submitted through an SQL interface to Hadoop
called Hive [3]. The system runs 7500 MapReduce jobs per
day and is used by 200 analysts and engineers.

As Facebook began building its data warehouse, it found
the data consolidation provided by a shared cluster highly
beneficial. However, when enough groups began using
Hadoop, job response times started to suffer due to Hadoop’s
FIFO scheduler. This was unacceptable for production jobs
and made interactive queries impossible. To address this
problem, we have designed the Hadoop Fair Scheduler, re-
ferred to in this paper as HFS.1 HFS has two main goals:
• Fair sharing: divide resources using max-min fair shar-

ing [7] to achieve statistical multiplexing. For example, if

1 HFS is open source and available as part of Apache Hadoop.



two jobs are running, each should get half the resources;
if a third job is launched, each job’s share should be 33%.

• Data locality: place computations near their input data,
to maximize system throughput.

To achieve the first goal (fair sharing), a scheduler must
reallocate resources between jobs when the number of jobs
changes. A key design question is what to do with tasks
(units of work that make up a job) from running jobs when
a new job is submitted, in order to give resources to the new
job. At a high level, two approaches can be taken:

1. Kill running tasks to make room for the new job.
2. Wait for running tasks to finish.
Killing reallocates resources instantly and gives control

over locality for the new jobs, but it has the serious disad-
vantage of wasting the work of killed tasks. Waiting, on the
other hand, does not have this problem, but can negatively
impact fairness, as a new job needs to wait for tasks to fin-
ish to achieve its share, and locality, as the new job may not
have any input data on the nodes that free up.

Our principal result in this paper is that, counterintu-
itively, an algorithm based on waiting can achieve both high
fairness and high data locality. We show first that in large
clusters, tasks finish at such a high rate that resources can be
reassigned to new jobs on a timescale much smaller than job
durations. However, a strict implementation of fair sharing
compromises locality, because the job to be scheduled next
according to fairness might not have data on the nodes that
are currently free. To resolve this problem, we relax fairness
slightly through a simple algorithm called delay schedul-
ing, in which a job waits for a limited amount of time for
a scheduling opportunity on a node that has data for it. We
show that a very small amount of waiting is enough to bring
locality close to 100%. Delay scheduling performs well in
typical Hadoop workloads because Hadoop tasks are short
relative to jobs, and because there are multiple locations
where a task can run to access each data block.

Delay scheduling is applicable beyond fair sharing. In
general, any scheduling policy defines an order in which
jobs should be given resources. Delay scheduling only asks
that we sometimes give resources to jobs out of order to im-
prove data locality. We have taken advantage of the gener-
ality of delay scheduling in HFS to implement a hierarchi-
cal scheduling policy motivated by the needs of Facebook’s
users: a top-level scheduler divides slots between users ac-
cording to weighted fair sharing, but users can schedule their
own jobs using either FIFO or fair sharing.

Although we motivate our work with the data warehous-
ing workload at Facebook, it is applicable in other settings.
Our Yahoo! contacts also report job queueing delays to be
a big frustration. Our work is also relevant to shared aca-
demic Hadoop clusters [8, 10, 14], and to systems other than
Hadoop. Finally, one consequence of the simplicity of de-
lay scheduling is that it can be implemented in a distributed
fashion; we discuss the implications of this in Section 6.

This paper is organized as follows. Section 2 provides
background on Hadoop. Section 3 analyzes a simple model
of fair sharing to identify when fairness conflicts with local-
ity, and explains why delay scheduling can be expected to
perform well. Section 4 describes the design of HFS and our
implementation of delay scheduling. We evaluate HFS and
delay scheduling in Section 5. Section 6 discusses limita-
tions and extensions of delay scheduling. Section 7 surveys
related work. We conclude in Section 8.

2. Background
Hadoop’s implementation of MapReduce resembles that of
Google [18]. Hadoop runs over a distributed file system
called HDFS, which stores three replicas of each block like
GFS [21]. Users submit jobs consisting of a map function
and a reduce function. Hadoop breaks each job into tasks.
First, map tasks process each input block (typically 64 MB)
and produce intermediate results, which are key-value pairs.
There is one map task per input block. Next, reduce tasks
pass the list of intermediate values for each key and through
the user’s reduce function, producing the job’s final output.

Job scheduling in Hadoop is performed by a master,
which manages a number of slaves. Each slave has a fixed
number of map slots and reduce slots in which it can run
tasks. Typically, administrators set the number of slots to
one or two per core. The master assigns tasks in response to
heartbeats sent by slaves every few seconds, which report
the number of free map and reduce slots on the slave.

Hadoop’s default scheduler runs jobs in FIFO order, with
five priority levels. When the scheduler receives a heartbeat
indicating that a map or reduce slot is free, it scans through
jobs in order of priority and submit time to find one with a
task of the required type. For maps, Hadoop uses a locality
optimization as in Google’s MapReduce [18]: after selecting
a job, the scheduler greedily picks the map task in the job
with data closest to the slave (on the same node if possible,
otherwise on the same rack, or finally on a remote rack).

3. Delay Scheduling
Recall that our goal is to statistically multiplex clusters while
having a minimal impact on fairness (i.e. giving new jobs
their fair share of resources quickly) and achieving high data
locality. In this section, we analyze a simple fair sharing
algorithm to answer two questions:

1. How should resources be reassigned to new jobs?
2. How should data locality be achieved?
To answer the first question, we consider two approaches

to reassigning resources: killing tasks from existing jobs to
make room for new jobs, and waiting for tasks to finish to
assign slots to new jobs. Killing has the advantage that it
is instantaneous, but the disadvantage that work performed
by the killed tasks is wasted. We show that waiting imposes
little impact on job response times when jobs are longer than
the average task length and when a cluster is shared between



many users. These conditions hold in workloads at Facebook
and Yahoo!, so we have based HFS on waiting.

Having chosen to use waiting, we turn our attention to
locality. We identify two locality problems that arise when
fair sharing is followed strictly – head-of-line scheduling and
sticky slots. In both cases, a scheduler is forced to launch a
task from a job without local data on a node to maintain
fairness. We propose an algorithm called delay scheduling
that temporarily relaxes fairness to improve locality by ask-
ing jobs to wait for a scheduling opportunity on a node with
local data. We analyze how the amount of waiting impacts
locality and job response times.

For simplicity, we initially focus on one “level” of local-
ity: placing tasks on the same node as their input data. We
start taking into account rack locality in Section 3.6.

3.1 Naı̈ve Fair Sharing Algorithm

A simple way to share a cluster fairly between jobs is to
always assign free slots to the job that has the fewest running
tasks. As long as slots become free quickly enough, the
resulting allocation will satisfy max-min fairness [7]. To
achieve locality, we can greedily search for a local task
in this head-of-line job, as in Hadoop’s FIFO scheduler.
Pseudocode for this algorithm is shown below:

Algorithm 1 Naı̈ve Fair Sharing
when a heartbeat is received from node n:

if n has a free slot then
sort jobs in increasing order of number of running tasks
for j in jobs do

if j has unlaunched task t with data on n then
launch t on n

else if j has unlaunched task t then
launch t on n

end if
end for

end if

We implemented this algorithm in our first version of
HFS. We applied the algorithm independently for map slots
and reduce slots. In addition, we only used the locality check
for map tasks, because reduce tasks normally need to read
roughly equal amounts of data from all nodes.

3.2 Scheduling Responsiveness

The first question we consider is how to reassign tasks when
new jobs are submitted to a cluster. Ideally, we would like
a job j whose fair share is F slots to have a response time
similar to what it would get if it ran alone on a smaller,
private cluster with F slots. Suppose that j would take J
seconds to run on the private cluster. We calculate how long j
takes to receive its share of slots if it is submitted to a shared
cluster that uses waiting. If all slots in the cluster are full, the
rate at which j is given slots will be the rate at which tasks
finish. Suppose that the average task length is T , and that the
cluster contains S slots. Then one slot will free up every T/S
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Figure 1: CDF of running times for MapReduce jobs, map tasks
and reduce tasks in production at Facebook in October 2009.

seconds on average, so j is expected to wait FT/S seconds
to acquire all of its slots. This wait time will be negligible
compared to j’s running time as long as:2

J � F
S

T (1)

Waiting will therefore not impact job response times sig-
nificantly if at least one of the following conditions holds:

1. Many jobs: When there are many jobs running, each
job’s fractional share of the cluster, f = F

S , is small.
2. Small jobs: Jobs with a small number of tasks (we call

these “small jobs”) will also have a small values of f .
3. Long jobs: Jobs where J > T incur little overhead.
In workload traces from Facebook, we have found that

most tasks are short and most jobs are small, so slots can be
reassigned quickly even when the cluster is loaded. Figure 1
shows CDFs of map task lengths, job lengths and reduce task
lengths over one week in October 2009. The median map
task is 19s long, which is significantly less than the median
job length of 84s. Reduces are longer (the median is 231s),
but this happens because most of jobs do not have many
reduce tasks, so a few jobs with long reduces contribute a
large portion of the CDF.

We have also calculated the rate at which slots became
free during “periods of load” when most slots of a particular
type were full. Map slots were more than 95% full 21% of
the time, and on average, during these periods of load, 27.1
slots (out of 3100 total) freed up per second. Reduce slots
were more than 95% full only 4% of the time, and during
these periods, 3.0 slots out of 3100 freed up per second.
Based on the trace, these rates are high enough to let 83%
of jobs launch within 10 seconds, because 83% of jobs have
fewer than 271 map tasks and 30 reduce tasks.

Finally, we have seen similar task and job lengths to those
at Facebook in a 3000-node Yahoo! cluster used for data
analytics and ad-hoc queries: the median job was 78s long,
the median map was 26s, and the median reduce was 76s.

2 It is also necessary that task finish times be roughly uniformly distributed
in time. This is likely to happen in a large multi-user cluster because task
durations are variable and jobs are submitted at variable times.
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Figure 2: Data locality vs. job size in production at Facebook.

3.3 Locality Problems with Naı̈ve Fair Sharing

The main aspect of MapReduce that complicates schedul-
ing is the need to place tasks near their input data. Locality
increases throughput because network bandwidth in a large
cluster is much lower than the total bandwidth of the clus-
ter’s disks [18]. Running on a node that contains the data
(node locality) is most efficient, but when this is not possi-
ble, running on the same rack (rack locality) is faster than
running off-rack. For now, we only consider node locality.
We describe two locality problems that arise with naı̈ve fair
sharing: head-of-line scheduling and sticky slots.

3.3.1 Head-of-line Scheduling

The first locality problem occurs in small jobs (jobs that
have small input files and hence have a small number of data
blocks to read). The problem is that whenever a job reaches
the head of the sorted list in Algorithm 1 (i.e. has the fewest
running tasks), one of its tasks is launched on the next slot
that becomes free, no matter which node this slot is on. If
the head-of-line job is small, it is unlikely to have data on
the node that is given to it. For example, a job with data on
10% of nodes will only achieve 10% locality.

We observed this head-of-line scheduling problem at
Facebook in a version of HFS without delay scheduling.
Figure 2 shows locality for jobs of different sizes (number
of maps) running at Facebook in March 2009. (Recall that
there is one map task per input block.) Each point represents
a bin of job sizes. The first point is for jobs with 1 to 25 maps,
which only achieve 5% node locality and 59% rack locality.
Unfortunately, this behavior was problematic because most
jobs at Facebook are small. In fact, 58% of Facebook’s jobs
fall into this first bin (1-25 maps). Small jobs are so com-
mon because both ad-hoc queries and periodic reporting jobs
work on small data sets.

3.3.2 Sticky Slots

A second locality problem, sticky slots, happens even with
large jobs if fair sharing is used. The problem is that there is
a tendency for a job to be assigned the same slot repeatedly.
For example, suppose that there are 10 jobs in a 100-node
cluster with one slot per node, and that each job has 10
running tasks. Suppose job j finishes a task on node n. Node
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Figure 3: Expected effect of sticky slots on node locality under
various values of file replication level (R) and slots per node (L).

n now requests a new task. At this point, j has 9 running
tasks while all the other jobs have 10. Therefore, Algorithm
1 assigns the slot on node n to job j again. Consequently, in
steady state, jobs never leave their original slots. This leads
to poor data locality because input files are striped across the
cluster, so each job needs to run some tasks on each machine.

The impact of sticky slots depends on the number of jobs,
the number of slots per slave (which we shall denote L), and
the number of replicas per block in the file system (which we
denote R). Suppose that job j’s fractional share of the cluster
is f . Then for any given block b, the probability that none of
j’s slots are on a node with a copy of b is (1− f )RL: there
are R replicas of b, each replica is on a node with L slots,
and the probability that a slot does not belong to j is 1− f .
Therefore, j is expected to achieve at most 1− (1− f )RL

locality. We plot this bound on locality for different R and L
and different numbers of concurrent jobs (with equal shares
of the cluster) in Figure 3. Even with large R and L, locality
falls below 80% for 15 jobs and below 50% for 30 jobs.

Interestingly, sticky slots do not occur in Hadoop due to a
bug in how Hadoop counts running tasks. Hadoop tasks enter
a “commit pending” state after finishing their work, where
they request permission to rename their output to its final
filename. The job object in the master counts a task in this
state as running, whereas the slave object doesn’t. Therefore
another job can be given the task’s slot. While this is bug
(breaking fairness), it has limited impact on throughput and
response time. Nonetheless, we explain sticky slots to warn
other system designers of the problem. For example, sticky
slots have been reported in Dryad [24]. In Section 5, we
show that sticky slots lower throughput by 2x in a version
of Hadoop without this bug.

3.4 Delay Scheduling

The problems we presented happen because following a
strict queuing order forces a job with no local data to be
scheduled. We address them through a simple technique
called delay scheduling. When a node requests a task, if the
head-of-line job cannot launch a local task, we skip it and
look at subsequent jobs. However, if a job has been skipped
long enough, we start allowing it to launch non-local tasks,



to avoid starvation. The key insight behind delay scheduling
is that although the first slot we consider giving to a job is
unlikely to have data for it, tasks finish so quickly that some
slot with data for it will free up in the next few seconds.

In this section, we consider a simple version of delay
scheduling where we allow a job to be skipped up to D times.
Pseudocode for this algorithm is shown below:

Algorithm 2 Fair Sharing with Simple Delay Scheduling
Initialize j.skipcount to 0 for all jobs j.
when a heartbeat is received from node n:

if n has a free slot then
sort jobs in increasing order of number of running tasks
for j in jobs do

if j has unlaunched task t with data on n then
launch t on n
set j.skipcount = 0

else if j has unlaunched task t then
if j.skipcount ≥ D then

launch t on n
else

set j.skipcount = j.skipcount +1
end if

end if
end for

end if

Note that once a job has been skipped D times, we let
it launch arbitrarily many non-local tasks without resetting
its skipcount. However, if it ever manages to launch a local
task again, we set its skipcount back to 0. We explain the
rationale for this design in our analysis of delay scheduling.

3.5 Analysis of Delay Scheduling

In this section, we explore how the maximum skip count D
in Algorithm 2 affects locality and response times, and how
to set D to achieve a target level of locality. We find that:

1. Non-locality decreases exponentially with D.
2. The amount of waiting required to achieve a given level

of locality is a fraction of the average task length and
decreases linearly with the number of slots per node L.

We assume that we have an M-node cluster with L slots
per node, for a total of S = ML slots. Also, at each time, let
Pj denote the set of nodes on which job j has data left to
process, which we call “preferred” nodes for job j, and let
p j = |Pj |

M be the fraction of nodes that j prefers. To simplify
the analysis, we assume that all tasks are of the same length
T and that the sets Pj are uncorrelated (for example, either
every job has a large input file and therefore has data on
every node, or every job has a different input file).

We first consider how much locality improves depending
on D. Suppose that job j is farthest below its fair share. Then
j has probability p j of having data on each slot that becomes
free. If j waits for up to D slots before being allowed to
launch non-local tasks, then the probability that it does not
find a local task is (1− p j)D. This probability decreases

exponentially with D. For example, a job with data on 10%
of nodes (p j = 0.1) has a 65% chance of launching a local
task with D = 10, and a 99% chance with D = 40.

A second question is how long a job waits below its fair
share to launch a local task. Because there are S slots in
the cluster, a slot becomes free every T

S seconds on average.
Therefore, once a job j reaches the head of the queue, it will
wait at most D

S T seconds before being allowed to launch
non-local tasks, provided that it stays at the head of the
queue.3 This wait will be much less than the average task
length if S is large. In particular, waiting for a local task
may cost less time than running a non-local task: in our
experiments, local tasks ran up to 2x faster than non-local
tasks. Note also that for a fixed number of nodes, the wait
time decreases linearly with the number of slots per node.

We conclude with an approximate analysis of how to set
D to achieve a desired level of locality.4 Suppose that we
wish to achieve locality greater than λ for jobs with N tasks
on a cluster with M nodes, L slots per node and replication
factor R. We will compute the expected locality for an N-task
job j over its lifetime by averaging up the probabilities that it
launches a local task when it has N,N−1, . . . ,1 tasks left to
launch. When j has K tasks left to launch, p j = 1−(1− K

M )R,
because the probability that a given node does not have a
replica of one of j’s input blocks is (1− K

M )R. Therefore,
the probability that j launches a local task at this point is
1− (1− p j)D = 1− (1− K

M )RD ≥ 1− e−RDK/M . Averaging
this quantity over K = 1 to N, the expected locality for job
j, given a skip count D, is at least:

l(D) =
1
N

N

∑
K=1

1− e−RDK/M

= 1− 1
N

N

∑
K=1

e−RDK/M

≥ 1− 1
N

∞

∑
K=1

e−RDK/M

≥ 1− e−RD/M

N(1− e−RD/M)

Solving for l(D)≥ λ, we find that we need to set:

D≥−M
R

ln
(

(1−λ)N
1+(1−λ)N

)
(2)

For example, for λ = 0.95, N = 20, and R = 3, we need
D≥ 0.23M. Also, the maximum time a job waits for a local
task is D

S T = D
LM T = 0.23

L T . For example, if we have L = 8
slots per node, this wait is 2.8% of the average task length.

3 Once a job reaches the head of the queue, it is likely to stay there, because
the head-of-queue job is the one that has the smallest number of running
tasks. The slots that the job lost to fall below its share must have been given
to other jobs, so the other jobs are likely above their fair share.
4 This analysis does not consider that a job can launch non-local tasks
without waiting after it launches its first one. However, this only happens
towards the end of a job, so it does not matter much in large jobs. On the
flip side, the inequalities we use underestimate the locality for a given D.



3.5.1 Long Tasks and Hotspots

The preceding analysis assumed that all tasks were of the
same length and that job’s preferred location sets, Pj, were
uncorrelated. Two factors can break these assumptions:

1. Some jobs may have long tasks. If all the slots on a
node are filled with long tasks, the node may not free
up quickly enough for other jobs to achieve locality.

2. Some nodes may be of interest to many jobs. We call
these nodes hotspots. For example, multiple jobs may
be trying to read the same small input file.

We note that both hotspots and nodes filled with long
tasks are relatively long-lasting conditions. This is why, in
Algorithm 2, we allow jobs to launch arbitrarily many non-
local tasks if they have been skipped D times, until they
launch a local task again. If D is set high enough that a
job has a good chance of launching a local task on one of
its preferred nodes when these nodes are not “blocked” by
hotspots or long tasks, then once a job has been skipped D
times, it is likely that the job’s preferred nodes are indeed
blocked, so we should not continue waiting.

How much long tasks and hotspots impact locality de-
pends on the workload, the file replication level R, and the
number of slots per node L. In general, unless long tasks and
hotspots are very common, they will have little impact on lo-
cality. For example, if the fraction of slots running long tasks
is ϕ, then the probability that all the nodes with replicas of
a given block are filled with long tasks is ϕRL. On a cluster
with R = 3 and L = 6, this is less than 2% as long as ϕ < 0.8.
We have not seen significant problems with long tasks and
hotspots in practice. Nonetheless, for workloads where these
conditions are common, we propose two solutions:

Long Task Balancing: To lower the chance that a node
fills with long tasks, we can spread long tasks throughout
the cluster by changing the locality test in Algorithm 2 to
prevent jobs with long tasks from launching tasks on nodes
that are running a higher-than-average number of long tasks.
Although we do not know which jobs have long tasks in
advance, we can treat new jobs as long-task jobs, and mark
them as short-task jobs if their tasks finish quickly.5

Hotspot Replication: Because distributed file systems like
HDFS place blocks on random nodes, hotspots are only
likely to occur if multiple jobs need to read the same data
file, and that file is small enough that copies of its blocks
are only present on a small fraction of nodes. In this case,
no scheduling algorithm can achieve high locality without
excessive queueing delays. Instead, it would be better to
dynamically increase the replication level of small hot files.

3.6 Rack Locality

Networks in large clusters are typically organized in a multi-
level hierarchy, where nodes are grouped into racks of 20-80
nodes at the lowest level, and one or more levels of aggre-

5 Tasks within a job have similar lengths because they run the same function.

gation switches connects the racks [24]. Usually, bandwidth
per node within a rack is much higher than bandwidth per
node between racks. Therefore, when a task cannot be placed
on a node that contains its data, it is preferable to place it on
a rack that contains the data.

This can be accomplished by extending Algorithm 2 to
give each job two waiting periods. First, if the head-of-line
job has been skipped at most D1 times, it is only allowed
to launch node-local tasks. Once a job has been skipped D1
times, it enters a second “level” of delay scheduling, where
it is only allowed to launch rack-local tasks. If the job is
skipped D2 times while at this level, it is allowed to launch
non-local tasks. A nice consequence of our analysis is that
D2 can be much smaller than D1: because there are much
fewer racks than nodes, a job will not be skipped many times
until it finds a slot in a rack that contains its data.

We have implemented this algorithm in HFS, and de-
scribe it in detail in Section 4.1. A similar algorithm can be
used for networks with more than 2 levels of hierarchy.

4. Hadoop Fair Scheduler Design
The simple fair scheduler described in Section 3, which
gives each job an equal share of the cluster, is adequate for
clusters with small numbers of users. However, to handle the
needs of a larger organization such as Facebook, we wanted
to address several shortcomings of this model:

1. Some users may be running more jobs than others; we
want fair sharing at the level of users, not jobs.

2. Users want control over the scheduling of their own
jobs. For example, a user who submits several batch
jobs may want them to run in FIFO order to get their
results sequentially.

3. Production jobs need to perform predictably even if the
cluster is loaded with many long user tasks.

We address these problems in our design of the Hadoop
Fair Scheduler (HFS). HFS uses a two-level scheduling hi-
erarchy. At the top level, HFS allocates task slots across
pools using weighted fair sharing. There is one pool per user,
but organizations can also create special pools for particular
workloads (e.g. production jobs). At the second level, each
pool allocates its slots among jobs in the pool, using either
FIFO with priorities or a second level of fair sharing. Fig-
ure 4 shows an example pool hierarchy. HFS can easily be
generalized to support multi-level pool hierarchies, or poli-
cies other than FIFO and fair sharing within a pool.

We provide one feature beyond standard weighted fair
sharing to support production jobs. Each pool can be given
a minimum share, representing a minimum number of slots
that the pool is guaranteed to be given as long as it contains
jobs, even if the pool’s fair share is less than this amount
(e.g. because many users are running jobs). HFS always
prioritizes meeting minimum shares over fair shares, and
may kill tasks to meet minimum shares. Administrators are
expected to set minimum shares for production jobs based



Hadoop cluster 
total slots: 100 

Pool 2 (user X) 
min share: 0 

internal policy: FIFO 

Pool 1 (production) 
min share: 60 

internal policy: fair 

Pool 3 (user Y) 
min share: 10 

internal policy: fair 

Job 1 Job 2 Job 3 Job 4 Job 5 

60 slots 0 slots 
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30 30 40 0 0 

Figure 4: Example of allocations in HFS. Pools 1 and 3 have
minimum shares of 60 and 10 slots. Because Pool 3 is not using its
share, its slots are given to Pool 2. Each pool’s internal scheduling
policy (FIFO or fair sharing) splits up its slots among its jobs.

on the number of slots a job needs to meet a certain SLO
(e.g. import logs every 15 minutes, or delete spam messages
every hour). If the sum of all pools’ minimum shares exceeds
the number of slots in the cluster, HFS logs a warning and
scales down the minimum shares equally until their sum is
less than the total number of slots.

Finally, although HFS uses waiting to reassign resources
most of the time, it also supports task killing. We added this
support to prevent a buggy job with long tasks, or a greedy
user, from holding onto a large share of the cluster. HFS uses
two task killing timeouts. First, each pool has a minimum
share timeout, Tmin. If the pool does not receive its minimum
share within Tmin seconds of a job being submitted to it,
we kill tasks to meet the pool’s share. Second, there is a
global fair share timeout, Tf air, used to kill tasks if a pool
is being starved of its fair share. We expect administrators
to set Tmin for each production pool based on its SLO, and
to set a larger value for Tf air based on the level of delay
users can tolerate. When selecting tasks to kill, we pick the
most recently launched tasks in pools that are above their
fair share to minimize wasted work.

4.1 Task Assignment in HFS

Whenever a slot is free, HFS assigns a task to it through
a two-step process: First, we create a sorted list of jobs
according to our hierarchical scheduling policy. Second, we
scan down this list to find a job to launch a task from,
applying delay scheduling to skip jobs that do not have data
on the node being assigned for a limited time. The same
algorithm is applied independently for map slots and reduce
slots, although we do not use delay scheduling for reduces
because they usually need to read data from all nodes.

To create a sorted list of jobs, we use a recursive algo-
rithm. First, we sort the pools, placing pools that are below
their minimum share at the head of the list (breaking ties
based on how far each pool is below its minimum share),
and sorting the other pools by current share

weight to achieve weighted
fair sharing. Then, within each pool, we sort jobs based on
the pool’s internal policy (FIFO or fair sharing).

Our implementation of delay scheduling differs slightly
from the simplified algorithm in Section 3.4 to take into ac-

count some practical considerations. First, rather than using
a maximum skip count D to determine how long a job waits
for a local task, we set a maximum wait time in seconds. This
allows jobs to launch within a predictable time when a large
number of slots in the cluster are filled with long tasks and
slots free up at a slow rate. Second, to achieve rack local-
ity when a job is unable to launch node-local tasks, we use
two levels of delay scheduling – jobs wait W1 seconds to find
a node-local task, and then W2 seconds to find a rack-local
task. This algorithm is shown below:

Algorithm 3 Delay Scheduling in HFS
Maintain three variables for each job j, initialized as
j.level = 0, j.wait = 0, and j.skipped = f alse.
when a heartbeat is received from node n:

for each job j with j.skipped = true, increase j.wait by the time
since the last heartbeat and set j.skipped = f alse
if n has a free slot then

sort jobs using hierarchical scheduling policy
for j in jobs do

if j has a node-local task t on n then
set j.wait = 0 and j.level = 0
return t to n

else if j has a rack-local task t on n and ( j.level ≥ 1 or
j.wait ≥W1) then

set j.wait = 0 and j.level = 1
return t to n

else if j.level = 2 or ( j.level = 1 and j.wait ≥ W2) or
( j.level = 0 and j.wait ≥W1 +W2) then

set j.wait = 0 and j.level = 2
return any unlaunched task t in j to n

else
set j.skipped = true

end if
end for

end if

Each job begins at a “locality level” of 0, where it can
only launch node-local tasks. If it waits at least W1 seconds,
it goes to locality level 1 and may launch rack-local tasks.
If it waits a further W2 seconds, it goes to level 2 and may
launch off-rack tasks. Finally, if a job ever launches a “more
local” task than the level it is on, it goes back down to a
previous level, as motivated in Section 3.5.1. The algorithm
is straightforward to generalize to more locality levels for
clusters with more than a two-level network hierarchy.

We expect administrators to set the wait times W1 and W2
based on the rate at which slots free up in their cluster and
the desired level of locality, using the analysis in Section 3.5.
For example, at Facebook, we see 27 map slots freeing per
second when the cluster is under load, files are replicated
R = 3 ways, and there are M = 620 machines. Therefore,
setting W1 = 10s would give each job roughly D = 270
scheduling opportunities before it is allowed to launch non-
local tasks. This is enough to let jobs with K = 1 task achieve
at least 1− e−RDK/M = 1− e−3·270·1/620 = 73% locality, and
to let jobs with 10 tasks achieve 90% locality.



Environment Nodes Hardware and Configuration
Amazon EC2 100 4 2GHz cores, 4 disks and 15 GB RAM

per node. Appears to have 1 Gbps links.
4 map and 2 reduce slots per node.

Private Cluster 100 8 cores and 4 disks per node. 1 Gbps
Ethernet. 4 racks. 6 map and 4 reduce
slots per node.

Table 1: Experimental environments used in evaluation.

5. Evaluation
We have evaluated delay scheduling and HFS through a
set of macrobenchmarks based on the Facebook workload,
microbenchmarks designed to test hierarchical scheduling
and stress delay scheduling, a sensitivity analysis, and an
experiment measuring scheduler overhead.

We ran experiments in two environments: Amazon’s
Elastic Compute Cloud (EC2) [1] and a 100-node private
cluster. On EC2, we used “extra-large” VMs, which appear
to occupy a whole physical nodes. Both environments are
atypical of large MapReduce installations because they have
fairly high bisection bandwidth; the private cluster spanned
only 4 racks, and while topology information is not provided
by EC2, tests revealed that nodes were able to send 1 Gbps to
each other. Therefore, our experiments understate potential
performance gains from locality. We ran a modified version
of Hadoop 0.20, configured with a block size of 128 MB
because this improved performance (Facebook uses this set-
ting in production). We set the number of task slots per node
in each cluster based on hardware capabilities. Table 1 lists
the hardware and slot counts in each environment.

5.1 Macrobenchmarks

To evaluate delay scheduling and HFS on a multi-user work-
load, we ran a set macrobenchmarks based on the workload
at Facebook on EC2. We generated a submission sched-
ule for 100 jobs by sampling job inter-arrival times and
input sizes from the distribution seen at Facebook over a
week in October 2009. We ran this job submission sched-
ule with three workloads based on the Hive benchmark [5]
(which is itself based on Pavlo et al’s benchmark comparing
MapReduce to parallel databases [26]): an IO-heavy work-
load, in which all jobs were IO-bound; a CPU-heavy work-
load, in which all jobs were CPU-bound; and a mixed work-
load, which included all the jobs in the benchmark. For each
workload, we compared response times and data locality un-
der FIFO scheduling, naı̈ve fair sharing, and fair sharing
with delay scheduling. We now describe our experimental
methodology in detail, before presenting our results.

We began by generating a common job submission sched-
ule that was shared by all the experiments. We chose to
use the same schedule across experiments so that elements
of “luck,” such as a small job submitted after a large one,
happened the same number of times in all the experiments.
However, the schedule was long enough (100 jobs) to con-
tain a variety of behaviors. To generate the schedule, we first

Bin # Maps % Jobs
at Facebook

# Maps in
Benchmark

# Jobs in
Benchmark

1 1 39% 1 38
2 2 16% 2 16
3 3–20 14% 10 14
4 21–60 9% 50 8
5 61–150 6% 100 6
6 151–300 6% 200 6
7 301–500 4% 400 4
8 501–1500 4% 800 4
9 > 1501 3% 4800 4

Table 2: Distribution of job sizes (in terms of number of map tasks)
at Facebook and in our macrobenchmarks.

sampled job inter-arrival times at random from the Facebook
trace. This distribution of inter-arrival times was roughly ex-
ponential with a mean of 14 seconds, making the total sub-
mission schedule 24 minutes long.

We also generated job input sizes based on the Facebook
workload, by looking at the distribution of number of map
tasks per job at Facebook and creating datasets with the
correct sizes (because there is one map task per 128 MB
input block). We quantized the job sizes into nine bins, listed
in Table 2, to make it possible to compare jobs in the same
bin within and across experiments. We note that most jobs at
Facebook are small, but the last bin, for jobs with more than
1501 maps, contains some very large jobs: the 98th percentile
job size is 3065 map tasks, the 99th percentile is 3846 maps,
the 99.5th percentile is 6232 maps, and the largest job in the
week we looked at had over 25,000 maps.6 We chose 4800
maps as our representative for this bin to pose a reasonable
load while remaining manageable for our EC2 cluster.

We used our submission schedule for three workloads
(IO-heavy, CPU-heavy, and mixed), to evaluate the impact
of our algorithms for organizations with varying job charac-
teristics. We chose the actual jobs to run in each case from
the Hive benchmark [5], which contains Hive versions of
four queries from Pavlo et al’s MapReduce benchmark [26]:
text search, a simple filtering selection, an aggregation, and
a join that gets translated into multiple MapReduce steps.

Finally, we ran each workload under three schedulers:
FIFO (Hadoop’s default scheduler), naı̈ve fair sharing (i.e.
Algorithm 1), and fair sharing with 5-second delay schedul-
ing. For simplicity, we submitted each job as a separate user,
so that jobs were entitled to equal shares of the cluster.

5.1.1 Results for IO-Heavy Workload

To evaluate our algorithms on an IO-heavy workload, we
picked the text search job out of the Hive benchmark, which
scans through a data set and prints out only the records that
contain a certain pattern. Only 0.01% of the records contain
the pattern, so the job is almost entirely bound by disk IO.

Our results are shown in Figures 5, 6, and 7. First, Figure
5 shows a CDF of job running times for various ranges of

6 Many of the smallest jobs are actually periodic jobs that run several times
per hour to import external data into the cluster and generate reports.
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Figure 5: CDFs of running times of jobs in various bin ranges in the
IO-heavy workload. Fair sharing greatly improves performance for
small jobs, at the cost of slowing the largest jobs. Delay scheduling
further improves performance, especially for medium-sized jobs.
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Figure 6: Data locality for each bin in the IO-heavy workload.
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Figure 7: Average speedup of delay scheduling over naı̈ve fair
sharing for jobs in each bin in the IO-heavy workload. The black
lines show standard deviations.

bins. We see that about 30% of the smaller jobs are signif-
icantly slowed down under FIFO scheduling, because they
must wait for a larger job to finish. Switching to fair shar-
ing resolves this problem, letting all the small jobs perform
nearly equally well no matter when they are launched. The
job with the greatest improvement runs 5x faster under fair
sharing than FIFO. On the other hand, fair sharing slows
down the largest jobs (in bin 9), because it lets other jobs
run while they are active. The greatest slowdown, of about
1.7x, happens to two jobs from bin 9 that overlap in time.
This is expected behavior for fair sharing: predictability and
response times for small jobs are improved at the expense of
moderately slowing down larger jobs.

Second, we observe that adding delay scheduling to fair
sharing improves performance overall. As shown in Figure
6, delay scheduling brings the data locality to 99-100% for
all bins, whereas bins with small jobs have low data locality
under both Hadoop’s default scheduler and naı̈ve fair shar-
ing. The effect on response time is more nuanced, and to il-
lustrate it clearly, we have plotted Figure 7, which shows the
average speedup experienced by jobs in each bin when mov-
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Figure 8: CDFs of running times of jobs in various bin ranges in the
CPU-heavy workload. Fair sharing speeds up smaller jobs while
slowing down the largest ones, but delay scheduling has little effect
because the workload is CPU-bound.

ing from naı̈ve fair sharing to delay scheduling. We see that
delay scheduling has a negligible effect on the smallest jobs;
this is partly because much of the lifetime of small jobs is
setup, and partly because the cluster is actually underloaded
most of the time, and small jobs are launched roughly uni-
formly throughout time, so most of them do not face network
contention. Delay scheduling also has less of an effect on the
largest jobs; these have many input blocks on every node, so
they achieve high locality even with Hadoop’s greedy de-
fault algorithm. However, significant speedups are seen for
medium-sized jobs, with jobs in bin 5 (100 maps) running
on average 44% faster with delay scheduling.

5.1.2 Results for CPU-Heavy Workload

To create a CPU-heavy workload, we modified the text
search job in the Hive benchmark to run a compute-intensive
user defined function (UDF) on each input record, but still
output only 0.01% of records. This made the jobs 2-7 times
slower (the effect was more pronounced for large jobs, be-
cause much of the lifetime of smaller jobs is Hadoop job
setup overhead). We observed data locality levels very close
to those in the IO-heavy workload, so we do not plot them
here. However, we have plotted job response time CDFs
in Figure 8. We note two behaviors: First, fair sharing im-
proves response times of small jobs as before, but its effect
is much larger (speeding some jobs as much as 20x), be-
cause the cluster is more heavily loaded (we are running on
the same data but with more expensive jobs). Second, delay
scheduling has a negligible effect, because the workload is
CPU-bound, but it also does not hurt performance.

5.1.3 Results for Mixed Workload

We generated a mixed workload by running all four of the
jobs in the Hive benchmark. Apart from the text search job
used in the IO-heavy workload, this includes:
• A simple select that is also IO-intensive (selecting pages

with a certain PageRank).
• An aggregation job that is communication-intensive

(computing ad revenue for each IP address in a dataset).
• A complex join query that translates into a series of four

jobs (identifying the user that generated the most revenue
and the average PageRank of their pages).



Bin Job Type Map Tasks Reduce Tasks # Jobs Run
1 select 1 NA 38
2 text search 2 NA 16
3 aggregation 10 3 14
4 select 50 NA 8
5 text search 100 NA 6
6 aggregation 200 50 6
7 select 400 NA 4
8 aggregation 800 180 4
9 join 2400 360 2
10 text search 4800 NA 2

Table 3: Job types and sizes for each bin in our mixed workload.
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Figure 9: CDFs of running times of jobs in various bin ranges in
the mixed workload.

For this experiment, we split bin 9 into two smaller bins,
one of which contained 2 join jobs (which translate into a
large 2400-map job followed by three smaller jobs each) and
another of which contained two 4800-map jobs as before.
We list the job we used as a representative in each bin in
Table 3. Unlike our first two workloads, which had map-only
jobs, this workload also contained jobs with reduce tasks, so
we also list the number of reduce tasks per job.

We plot CDFs of job response times in each bin in Figure
9. As in the previous experiments, fair sharing significantly
improves the response time for smaller jobs, while slightly
slowing larger jobs. Because the aggregation jobs take
longer than map-only jobs (due to having a communication-
heavy reduce phase), we have also plotted the speedups
achieved by each bin separately in Figure 10. The dark bars
show speedups for naı̈ve fair sharing over FIFO, while the
light bars show speedups for fair sharing with delay schedul-
ing over FIFO. The smaller map-only jobs (bins 1 and 2)
achieve significant speedups from fair sharing. Bin 3 does
not achieve a speedup as high as in other experiments be-
cause the jobs are longer (the median one is about 100 sec-
onds, while the median in bins 1 and 2 is 32 seconds with
delay scheduling). However, in all but the largest bins, jobs
benefit from both fair sharing and delay scheduling. We also
see that the benefits from delay scheduling are larger for the
bins with IO-intensive jobs (1, 2, 4, 5, 7 and 10) than for
bins where there are also reduce tasks (and hence a smaller
fraction of the job running time is spent reading input).

5.2 Microbenchmarks

We ran several microbenchmarks to test HFS in a more con-
trolled manner, and to stress-test delay scheduling in situ-
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Figure 10: Average speedup of naı̈ve fair sharing and fair sharing
with delay scheduling over FIFO for jobs in each bin in the mixed
workload. The black lines show standard deviations.

ations where locality is difficult to achieve. For these ex-
periments, we used a “scan” included in Hadoop’s GridMix
benchmark. This is a synthetic job in which each map out-
puts 0.5% of its input records, similar to the text search job in
the macrobenchmarks. As such, it is a suitable workload for
stress-testing data locality because it is IO-bound. The scan
job normally has one reduce task that counts the results, but
we also ran some experiments with no reduces (saving map
outputs as the job’s output) to emulate pure filtering jobs.

5.2.1 Hierarchical Scheduling

To evaluate the hierarchical scheduling policy in HFS and
measure how quickly resources are given to new jobs, we
set up three pools on the EC2 cluster. Pools 1 and 2 used
fair sharing as their internal policy, while pool 3 used FIFO.
We then submitted a sequence of jobs to test both sharing be-
tween pools and scheduling within a pool. Figure 11 shows a
timeline of the experiment. Delay scheduling (with W1 = 5s)
was also enabled, and all jobs achieved 99-100% locality.

We used two types of filter jobs: two long jobs with long
tasks (12000 map tasks that each took 25s on average) and
four jobs with short tasks (800 map tasks that each took 12s
on average). To make the first type of jobs have longer tasks,
we set their filtering rate to 50% instead of 0.5%.

We began by submitting a long-task job to pool 1 at time
0. This job was given tasks on all the nodes in the cluster.
Then, at time 57s, we submitted a second long-task job in
pool 2. This job reached its fair share (half the cluster) in
17 seconds. Then, at time 118s, we submitted three short-
task jobs to pool 3. The pool ran acquired 33% of the slots
in the cluster in 12 seconds and scheduled its jobs in FIFO
order, so that as soon as the first job finished tasks, slots
were given to the second job. Once pool 3’s jobs finished, the
cluster returned to being shared equally between pools 1 and
2. Finally, at time 494s, we submitted a second job in pool
1. Because pool 1 was configured to perform fair sharing, it
split up its slots between its jobs, giving them 25% of the
slots each, while pool 2’s share remained 50%.

Note that the graph in Figure 11 shows a “bump” in the
share of pool 2 twenty seconds after it starts running jobs,
and a smaller bump when pool 3 starts. These bumps occur
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Figure 11: Stacked chart showing the percent of map slots in the cluster given to each job as a function of time in our hierarchical scheduling
experiment. Pools 1 and 2 use fair sharing internally, while pool 3 uses FIFO. The job submission scheduled is explained in the text.

Job Size Node / Rack Locality
Without Delay Sched.

Node / Rack Locality
With Delay Sched.

3 maps 2% / 50% 75% / 96%
10 maps 37% / 98% 99% / 100%

100 maps 84% / 99% 94% / 99%

Table 4: Node and rack locality in small-jobs stress test workload.
Results were similar for FIFO and fair sharing.

because of the “commit pending” bug in Hadoop discussed
in Section 3.3.2. Hadoop tasks enter a “commit pending”
phase after they finish running the user’s map function when
they are still reported as running but a second task can be
launched in their slot. However, during this time, the job
object in the Hadoop master counts the task as running,
while the slave object doesn’t. Normally, a small percent
of tasks from each jobs are in the “commit pending” state,
so the bug doesn’t affect fairness. However, when pool 2’s
first job is submitted, none of its tasks finish until about 20
seconds pass, so it holds onto a greater share of the cluster
than 50%. (We calculated each job’s share as the percent of
running tasks that belong to it when we plotted Figure 11.)

5.2.2 Delay Scheduling with Small Jobs

To test the effect of delay scheduling on locality and through-
put in a small job workload where head-of-line scheduling
poses a problem, we ran workloads consisting of filter jobs
with 3, 10 or 100 map tasks on the private cluster. For each
workload, we picked the number of jobs based on the job
size so as to have the experiment take 10-20 minutes. We
compared fair sharing and FIFO with and without delay
scheduling (W1 = W2 = 15s). FIFO performed the same as
fair sharing, so we only show one set of numbers for both.

Figure 12 shows normalized running times of the work-
load, while Table 4 shows locality achieved by each sched-
uler. Delay scheduling increased throughput by 1.2x for 3-
map jobs, 1.7x for 10-map jobs, and 1.3x for 100-map jobs,
and raised data locality to at least 75% and rack locality to
at least 94%. The throughput gain is higher for 10-map jobs
than for 100-map jobs because locality with 100-map jobs is
fairly good even without delay scheduling. The gain for the
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Figure 12: Performance of small-jobs stress test with and without
delay scheduling. Results were similar for FIFO and fair sharing.

3-map jobs was low because, at small job sizes, job initial-
ization becomes a bottleneck in Hadoop. Interestingly, the
gains with 10 and 100 maps were due to moving from rack-
local to node-local tasks; rack locality was good even with-
out delay scheduling because our cluster had only 4 racks.

5.2.3 Delay Scheduling with Sticky Slots

As explained in Section 3.3, sticky slots do not normally
occur in Hadoop due to an accounting bug. We tested a
version of Hadoop with this bug fixed to quantify the effect
of sticky slots. We ran this test on EC2. We generated a
large 180-GB data set (2 GB per node), submitted between
5 and 50 concurrent scan jobs on it, and measured the time
to finish all jobs and the locality achieved. Figures 14 and
13 show the results with and without delay scheduling (with
W1 = 10s). Without delay scheduling, locality was lower the
more concurrent jobs there were – from 92% with 5 jobs
down to 27% for 50 jobs. Delay scheduling raised locality to
99-100% in all cases. This led to an increase in throughput
of 1.1x for 10 jobs, 1.6x for 20 jobs, and 2x for 50 jobs.

5.3 Sensitivity Analysis

We measured the effect of the wait time in delay scheduling
on data locality through a series of experiments in the EC2
environment. We ran experiments with two small job sizes:
4 maps and 12 maps, to measure how well delay schedul-
ing mitigates head-of-line scheduling. We ran 200 jobs in
each experiment, with 50 jobs active at any time. We var-
ied the node locality wait time, W1, from 0 seconds to 10
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Figure 13: Node locality in sticky slots stress test. As the number
of concurrent jobs grows, locality falls because of sticky slots.
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Figure 14: Finish times in sticky slots stress test. When delay
scheduling is not used, performance decreases as the number of
jobs increases because data locality decreases. In contrast, finish
times with delay scheduling grow linearly with the number of jobs.

seconds. There was no rack locality because we do not have
information about racks on EC2; however, rack locality will
generally be much higher than node locality because there
are more slots per rack. Figure 15 shows the results. We see
that without delay scheduling, both 4-map jobs and 12-map
jobs have poor locality (5% and 11%). Setting W1 as low as
1 second improves locality to 68% and 80% respectively. In-
creasing the delay to 5s achieves nearly perfect locality. Fi-
nally, with a 10s delay, we got 100% locality for the 4-map
jobs and 99.8% locality for the 12-map jobs.

5.4 Scheduler Overhead

In our 100-node experiments, HFS did not add any notice-
able scheduling overhead. To measure the performance of
HFS under a much heavier load, we used mock objects to
simulate a cluster with 2500 nodes and 4 slots per node (2
map and 2 reduce), running a 100 jobs with 1000 map and
1000 reduce tasks each that were placed into 20 pools. Un-
der this workload, HFS was able to schedule 3200 tasks per
second on a 2.66 GHz Intel Core 2 Duo. This is several times
more than is needed to manage cluster of this size running
reasonably-sized tasks (e.g., if the average task length is 10s,
there will only be 1000 tasks finishing per second).

6. Discussion
Underlying our work is a classic tradeoff between utilization
and fairness. In provisioning a cluster computing infrastruc-
ture, there is a spectrum between having a separate cluster
per user, which provides great fairness but poor utilization,
and having a single FIFO cluster, which provides great uti-
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Figure 15: Effect of delay scheduling’s wait time W1 on node
locality for small jobs with 4 and 12 map tasks. Even delays as
low as 1 second raise locality from 5% to 68% for 4-map jobs.

lization but no fairness. Our work enables a sweet spot on
this spectrum – multiplexing a cluster efficiently while giv-
ing each user response times comparable to a private cluster
through fair sharing.

To implement fair sharing, we had to consider two other
tradeoffs between utilization and fairness: first, whether to
kill tasks or wait for them to finish when new jobs are
submitted, and second, how to achieve data locality. We
have proposed a simple strategy called delay scheduling that
achieves both fairness and locality by waiting for tasks to
finish. Two key aspects of the cluster environment enable
delay scheduling to perform well: first, most tasks are short
compared to jobs, and second, there are multiple locations
in which a task can run to read a given data block, because
systems like Hadoop support multiple task slots per node.

Delay scheduling performs well in environments where
these two conditions hold, which include the Hadoop envi-
ronments at Yahoo! and Facebook. Delay scheduling will not
be effective if a large fraction of tasks is much longer than
the average job, or if there are few slots per node. However,
as cluster technology evolves, we believe that both of these
factors will improve. First, making tasks short improves fault
tolerance [18], so as clusters grow, we expect more develop-
ers to split their work into short tasks. Second, due to multi-
core, cluster nodes are becoming “bigger” and can thus sup-
port more tasks at once. In the same spirit, organizations are
putting more disks per node – for example, Google used 12
disks per node in its petabyte sort benchmark [9]. Lastly,
10 Gbps Ethernet will greatly increase network bandwidth
within a rack, and may allow rack-local tasks to perform as
well as node-local tasks. This would increase the number of
locations from which a task can efficiently access its input
block by an order of magnitude.

Because delay scheduling only involves being able to
skip jobs in a sorted order that captures “who should be
scheduled next,” we believe that it can be used in a variety
of environments beyond Hadoop and HFS. We now discuss
several ways in which delay scheduling can be generalized.

Scheduling Policies other than Fair Sharing: Delay schedul-
ing can be applied to any queuing policy that produces a
sorted list of jobs. For example, in Section 5.2.2, we showed
that it can also double throughput under FIFO.



Scheduling Preferences other than Data Locality: Some
jobs may prefer to run multiple tasks in the same location
rather than running each task near its input block. For exam-
ple, some Hadoop jobs have a large data file that is shared
by all tasks and is dynamically copied onto nodes that run
the job’s tasks using a feature called the distributed cache
[4, 12]. In this situation, the locality test in our algorithm
can be changed to prefer running tasks on nodes that have
the cached file. To allow a cluster to be shared between jobs
that want to reuse their slots and jobs that want to read data
spread throughout the cluster, we can distribute tasks from
the former throughout the cluster using the load balancing
mechanism proposed for long tasks in Section 3.5.1.

Load Management Mechanisms other than Slots: Tasks
in a cluster may have heterogeneous resource requirements.
To improve utilization, the number of tasks supported on a
node could be varied dynamically based on its load rather
than being fixed as in Hadoop. As long as each job has
a roughly equal chance of being scheduled on each node,
delay scheduling will be able to achieve data locality.

Distributed Scheduling Decisions: We have also imple-
mented delay scheduling in Nexus [22], a two-level cluster
scheduler that allows multiple instances of Hadoop, or of
other cluster computing frameworks, to coexist on a shared
cluster. In Nexus, a master process from each framework
registers with the Nexus master to receive slots on the clus-
ter. The Nexus master schedules slots by making “slot of-
fers” to the appropriate framework (using fair sharing), but
frameworks are allowed to reject an offer to wait for a slot
with better data locality. We have seen locality improve-
ments similar to those in Section 5 when running multiple
instances of Hadoop on Nexus with delay scheduling. The
fact that high data locality can be achieved in a distributed
fashion provides significant practical benefits: first, multiple
isolated instances of Hadoop can be run to ensure that ex-
perimental jobs do not crash the instance that runs produc-
tion jobs; second, multiple versions of Hadoop can coexist;
and lastly, organizations can use multiple cluster computing
frameworks and pick the best one for each application.

7. Related Work
Scheduling for Data-Intensive Cluster Applications: The
closest work we know of to our own is Quincy [24], a fair
scheduler for Dryad. Quincy also tackles the conflict be-
tween locality and fairness in scheduling, but uses a very
different mechanism from HFS. Each time a scheduling de-
cision needs to be made, Quincy represents the scheduling
problem as an optimization problem, in which tasks must be
matched to nodes and different assignments have different
costs based on locality and fairness. Min-cost flow is used
to solve this problem. Quincy then kills some of the running
tasks and launches new tasks to place the cluster in the con-
figuration returned by the flow solver.

While killing tasks may be the most effective way to
reassign resources in some situations, it wastes computation.
Our work shows that waiting for suitable slots to free up can
also be effective in a diverse real-world workload. One of
the main differences between our environment and Quincy’s
is that Hadoop has multiple task slots per node, while the
system in [24] only ran one task per node. The probability
that all slots with local copies of a data block are filled
by long tasks (necessitating killing) decreases exponentially
with the number of slots per node, as shown in Section 3.5.1.
Another important difference is that task lengths are much
shorter than job lengths in typical Hadoop workloads.

At first sight, it may appear that Quincy uses more infor-
mation about the cluster than HFS, and hence should make
better scheduling decisions. However, HFS also uses infor-
mation that is not used by Quincy: delay scheduling is based
on knowledge about the rate at which slots free up. Instead
of making scheduling decisions based on point snapshots of
the state of the cluster, we take into account the fact that
many tasks will finish in the near future.

Finally, delay scheduling is simpler than the optimiza-
tion approach in Quincy, which makes it easy to use with
scheduling policies other than fair sharing, as we do in HFS.

High Performance Computing (HPC): Batch schedulers
for HPC clusters, like Torque [13], support job priority and
resource-consumption-aware scheduling. However, HPC
jobs run on a fixed number of machines, so it is not possible
to change jobs’ allocations over time as we do in Hadoop
to achieve fair sharing. HPC jobs are also usually CPU or
communication bound, so there is less need for data locality.

Grids: Grid schedulers like Condor [28] support locality
constraints, but usually at the level of geographic sites, be-
cause the jobs are more compute-intensive than MapReduce.
Recent work also proposes replicating data across sites on
demand [17]. Similarly, in BAD-FS [16], a workload sched-
uler manages distribution of data across a wide-area network
to dedicated storage servers in each cluster. Our work instead
focuses on task placement in a local-area cluster where data
is stored on the same nodes that run jobs.

Parallel Databases: Like MapReduce, parallel databases
run data-intensive workloads on a cluster. However, database
queries are usually executed as long-running processes
rather than short tasks like Hadoop’s, reducing the opportu-
nity for fine-grained sharing. Much like in HPC schedulers,
queries must wait in a queue to run [6], and a single “mon-
ster query” can take up the entire system [11]. Reservations
can be used used to avoid starving interactive queries when
a batch query is running [6], but this leads to underutiliza-
tion when there are no interactive queries. In contrast, our
Hadoop scheduler can assign all resources to a batch job and
reassign slots rapidly when interactive jobs are launched.

Fair Sharing: A plethora of fair sharing algorithms have
been developed in the networking and OS domains [7, 19,



25, 30]. Many of these schedulers have been extend to the
hierarchical setting [15, 20, 27, 29]. While these algorithms
are sophisticated and scalable, they do not deal with data
locality, as they share only one resource.

8. Conclusion
As data-intensive cluster computing systems like MapRe-
duce and Dryad grow in popularity, there is a strong need
to share clusters between users. To multiplex clusters ef-
ficiently, a scheduler must take into account both fairness
and data locality. We have shown that strictly enforcing fair-
ness leads to a loss of locality. However, it is possible to
achieve nearly 100% locality by relaxing fairness slightly,
using a simple algorithm called delay scheduling. We have
implemented delay scheduling in HFS, a fair scheduler for
Hadoop, and shown that it can improve response times for
small jobs by 5x in a multi-user workload, and can double
throughput in an IO-heavy workload. HFS is open source
and included in Hadoop: an older version without delay
scheduling is in Hadoop 0.20, and a version with all the fea-
tures described in this paper will appear in Hadoop 0.21.

9. Acknowledgements
We thank the Hadoop teams at Yahoo! and Facebook for
the many informative discussions that guided this work. We
are also grateful to our shepherd, Jim Larus, whose input
greatly improved this paper. In addition, Joe Hellerstein and
Hans Zeller referred us to related work in database systems.
This research was supported by California MICRO, Cali-
fornia Discovery, the Natural Sciences and Engineering Re-
search Council of Canada, as well as the following Berkeley
RAD Lab sponsors: Sun Microsystems, Google, Microsoft,
Amazon, Cisco, Cloudera, eBay, Facebook, Fujitsu, HP, In-
tel, NetApp, SAP, VMware, and Yahoo!.

References
[1] Amazon EC2. http://aws.amazon.com/ec2.
[2] Apache Hadoop. http://hadoop.apache.org.
[3] Apache Hive. http://hadoop.apache.org/hive.
[4] Hadoop Map/Reduce tutorial. http://hadoop.apache.

org/common/docs/current/mapred tutorial.html.
[5] Hive performance benchmarks. http://issues.apache.

org/jira/browse/HIVE-396.
[6] HP Neoview Workload Management Services Guide.

http://www.docs.hp.com/en/544806-001/
Neoview WMS Guide R2.3.pdf.

[7] Max-Min Fairness (Wikipedia).
http://en.wikipedia.org/wiki/Max-min fairness.

[8] NSF Cluster Exploratory (CluE) Program Solicitation.
http://nsf.gov/pubs/2008/nsf08560/nsf08560.htm.

[9] Official Google Blog: Sorting 1PB with MapReduce.
http://googleblog.blogspot.com/2008/11/
sorting-1pb-with-mapreduce.html.

[10] Open Cirrus. http://www.opencirrus.org.
[11] Personal communication with Hans Zeller of HP.

[12] Personal communication with Owen O’Malley of the Yahoo!
Hadoop team.

[13] TORQUE Resource Manager.
http://www.clusterresources.com/pages/products/
torque-resource-manager.php.

[14] Yahoo! Launches New Program to Advance Open-Source
Software for Internet Computing. http://research.
yahoo.com/node/1879.

[15] J. Bennett and H. Zhang. WF2Q: Worst-case fair weighted
fair queueing. In IEEE INFOCOM’96, pages 120–128, 1996.

[16] J. Bent, D. Thain, A. C. Arpaci-Dusseau, R. H. Arpaci-
Dusseau, and M. Livny. Explicit control in a batch-aware dis-
tributed file system. In NSDI’04, 2004.

[17] A. Chervenak, E. Deelman, M. Livny, M.-H. Su, R. Schuler,
S. Bharathi, G. Mehta, and K. Vahi. Data Placement for
Scientific Applications in Distributed Environments. In Proc.
8th IEEE/ACM International Conference on Grid Computing
(Grid 2007), September 2007.

[18] J. Dean and S. Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. Commun. ACM,
51(1):107–113, 2008.

[19] A. Demers, S. Keshav, and S. Shenker. Analysis and simula-
tion of a fair queueing algorithm. In Journal of Internetwork-
ing Research and Experience, pages 3–26, 1990.

[20] S. Floyd and V. Jacobson. Link-sharing and resource manage-
ment models for packet networks. IEEE/ACM Transactions
on Networking, 3(4):365–386, 1995.

[21] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google File
System. In Proc. SOSP 2003, pages 29–43, 2003.

[22] B. Hindman, A. Konwinski, M. Zaharia, and I. Stoica. A
common substrate for cluster computing. In Workshop on Hot
Topics in Cloud Computing (HotCloud) 2009, 2009.

[23] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad:
Distributed data-parallel programs from sequential building
blocks. In EuroSys 2007, pages 59–72, 2007.

[24] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar,
and A. Goldberg. Quincy: Fair scheduling for distributed
computing clusters. In SOSP 2009, 2009.

[25] J. Nieh and M. S. Lam. A SMART scheduler for multimedia
applications. ACM TOCS, 21(2):117–163, 2003.

[26] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt,
S. Madden, and M. Stonebraker. A comparison of approaches
to large-scale data analysis. In SIGMOD ’09, 2009.

[27] I. Stoica, H. Zhang, and T. Ng. A hierarchical fair service
curve algorithm for link-sharing, real-time and priority ser-
vice. In SIGCOMM’97, pages 162–173, Sept. 1997.

[28] D. Thain, T. Tannenbaum, and M. Livny. Distributed com-
puting in practice: the Condor experience. Concurrency
and Computation Practice and Experience, 17(2-4):323–356,
2005.

[29] C. A. Waldspurger. Lottery and Stride Scheduling: Flexible
Proportional-Share Resource Management. PhD thesis, MIT,
Laboratory of Computer Science, 1995. MIT/LCS/TR-667.

[30] C. A. Waldspurger and W. E. Weihl. Lottery scheduling:
Flexible proportional-share resource management. In Proc.
OSDI 94, 1994.


