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Abstract

We propose @ motion segmentation algorithm that
aims to break a scene into its most prominent mov-
ing groups. A weighted graph is constructed on the
image . sequence by connecting pizels that are in the
spatiotemporal neighborhood of each other. At each
pizel, we define motion profile vectors which capture
the probability distribution of the image velocity. The
distance between motion profiles is used to assign a
weight on the graph edges.. Using normalized cuts
we find the most salient partitions of the spatiotempo-
ral graph formed by the image sequence. For segment-
ing long tmage sequences, we have developed a recur-
stve update procedure that incorporates knowledge of
segmentation in previous frames for efficiently finding
the group correspondence in the new frame.

1 Introduction

Grouping based on common motion, or what the
Gestaltists[23] called the factor of “Common Fate”, is
one of the strongest cues for segmenting an image se-
quence into separate objects. However, implementing
this perceptual capability has proved to be very chal-
lenging for computer vision systems. Early approaches
were based on trying to estimate optical flow first, and
then locking for discontinuities. This proved difficult
because of a number of reasons

1. Optical flow measurement is difficult in arcas of
little texture or primarily one-dimensional tex-
ture. Any real image is bound to have large re-
gions with these properties.

2. To deal with difficulty (1) enforcing smoothness
constraints to interpolate in the flow field were
proposed. However this raises the requirement
that one must first know the segmentation so as
to avoid smoothing across motion discontinuities!

To cope with these problems, over the last few
years a new framework has appeared based on the
1dea of simultaneous estimation of multiple global mo-
tion models and their spatial supports (so-called “lay-
ers”). This idea has evolved through a number of pa-
pers [3, 22, 6, 20, 11, 12]. Perhaps the cleanest cur-
rent formulations are based on using the Expectation-’
Maximization (EM) algorithm(7]. Typically the mo-
tion models are 2D parametric models, translational,

1154

affine or projective, the E-step is used to solve for the
layers given the motions, and the M-step for solving
for the motions given the layers.

EM approaches offer a number of advantages over
the previous approaches based on initial local mea-
surement of optical flow. By combining information

" over large regions of the images, the motion estimates

found are considerably more robust. Video data can
be quite noisy because of camera jitter and repeated
occlusion and discocclusion events, and the global
analysis provides a way to overcome these difficul-
ties. The layers that are extracted provide the desired
scene segmentation. Oun the other hand, the assump-
tion that image sequence have to follow a global rigid
planar motion is clearly too restrictive, and recently
Weiss[21] has developed a variation of EM approach
that is based on a non-parametric mixture model using
a probability distribution over flow fields that favors
smooth flow fields. When only sparse point correspon-
dences are sought, Torr and Murray[{19] have devel-
oped an alternative approach based on characterizing
rigid motions using Fundamental matrices.

In our opinion, the principal weakness of the EM
approach to layered motion segmentation is in the
initialization phase. How many models should one
initialize and where and what should they be, and
how can one ensure a global optimal solution have
been reached? A representative approach due to Ayer
and Sawhney[3] uses the Minimum Description length
principle for selecting the number of models. Initial-
1zation is done by dividing up the image into a fixed
number of tiles; estimating the initial motion param-
eters in these tiles and then using these as the ini-
tial conditions for the EM algorithm. Our experience
however has shown that finding a good initialization
remains a nagging problem. Undoubtedly, further re-
search in this area will provide improvements in this
area; however in this paper we have chosen to develop
an alternative approach that incorporates motion in-
formation across. spatial and temporal neighborhoods
and searches for a globally optimal segmentation so-
lution without the difficulty of initialization.

We consider motion segmentation as a special in-
stance of a more general grouping problem. Each pixel
in the image sequence is treated as a point living in
a large feature space. The features correspond to its



spatiotemporal position, color and motion, etc. The
question then is — Given these points in this large fea-
ture space, what is the best way of partitioning them?
We believe that image partitioning should be done at
the ‘big picture’ level, rather like a painter first mark-
ing out the major areas and then filling in the details.

This idea can be formalized using a graph parti-
tioning criterion called normalized cuf[16]. Given a
motion sequence, a weighted graph G = (V, E) is con-
structed by taking each pixel as a node, and connect-
ing nodes that are in a spatiotemporal nelghborhood
of each other. The weight on each graph edge w(, j)
is a function of the similarity between pair of nodes
1 and j. Similarity can be estimated on the basis of
any of a number of features — color, brightness, tex-
ture, motion, disparity etc. By connecting each node
to other nodes in its spatiotemporal neighborhood, we
provide an effective way for the similarity information
to be integrated over space and time, thus increasing
the robustness of the segmentation, without imposing
any explicit global motion constraint.

The results in this paper are based on usmg only
motion information 50 as to permit a fair comparison
with alternative motion segmentation schemes. For
measuring motion similarity, we will define a motion
feature vector at each pixel called motion profile. Each
motion profile is the probability of different displace-
ment of at each point in the image, which captures
not only the direction of the motion, but also the un-
certainty associated with it.

Once the weighted graph is constructed, the nor-
malized cut criterion is used to recursively partition
the graph. As shown in [16], normalized cut is a global
measure which reflects both the similarity within the
partitions, as well as dissimilarity across the parti-
tions. Furthermore, this criterion can be computed
efficiently by solving a generalized eigenvalue system.

Successful partition of GG gives us spatiotemporal
volumes corresponding to different moving objects.
By taklng time slices of such a volume we can indi-
cate image groups in each frame as well as identify
what their corresponding groups are across time. This
notion of group correspondence is very useful because
it leads to a measure of motion which applies to the
group as a whole, not individual pixels as in the case
of optical flow. Such a measure is considerably more
robust and could be used for estimating gross mea-
sures such as divergence, deformation, rotation which
have been shown to be useful variables for visual guid-
ance of locomotion and manipulation [13, 5]. Snakes
have been used in the computer vision literature(5]
previously for this purpose. They are computation-
ally efficient but difficult to initialize.

The paper is organized as follows. Section 2 briefly
explains our grouping algorithm based on the normal-
ized cut graph partitioning criterion. This section fol-
lows our previous work for static image segmentation
described in[16]. Section 3 describes the motion pro-
file feature vector, and the development of motion seg-
mentation using normalized cuts follows in section 4.
Section 5 shows how we can efficiently segment long
image sequences. We conclude in section 6.
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2 Normalized Cuts

In our previous paper[16], we have developed a
grouping algorithm based on minimizing a graph par-
titioning criteria called normalized cut.

Let G = (V,E) be a weighted graph. Graph G can
be partitioned into two disjoint sets, A, B, AUB =V,
AN B =0, by simply removing edges connectlng the
two parts. The total weights on those edges removed
reflect the degree of disassociation between the sets A
and-B. In graph theoretic language, it is called the

cut:
cut(A, B) = E w(u,v). (1y

u€AvEB

Although there are efficient computational algorithm
for finding partitions that minimizes the cut value, this
criterion favors partitions which have small sizes[16].
To fix this undesired bias, we will define normalized
cut (Ncut) as unbiased measure of dissassociation:

cut(A, B)
asso(A, V)

cut(A, B)

Ncut(A,B) = asso(B.V)’ (2)

where asso(A,V) = 37, 4 ey w(u,t) is the total
connection from nodes in A to all nodes in the graph,

and asso(B, V) is similarly defined. We can also define
a unbiased measure for total association within groups

for a given partition: Nasso(4, B) = %% +

%%%?l), where asso(A, A) and asso(:B, B) are total

weights of edges connecting nodes within A and B re-
spectively. A simple calculation shows Ncut(4, B) =
2—Nasso(A, B). Hence minimizing the disassociation
between the groups and maximizing the association
within the group, can be satisfied simultaneously.

Let W be the graph weight matrix, and D be the
diagonal matrix with D(i,7) = 37, W(i,j). In [16],
we showed that minimizing Ncut can be reduced to
minimizing a Rayleigh quotient:

T -W
min. Ncut = mz’nyy (D )y

o
with the condition y; € {1,—b} and y"D1 = 0. By
relaxing y to take on real values, we can minimize
equation (3) with its constraint by- solvmg for the sec-
ond smallest eigenvector of the generalized eigenvalue
system,

(D - W)y = ADy. (4)

The vector y can be thought of an indicator vector for
the partition. Furthermore, the subsequent eigenvec-
tors are the real valued solutions that form the optimal
sub-partition.

The normalized cut criterion have been used suc-
cessfully for segmenting static images based on bright-
ness, color, and texture information[16]. To extend it
to motion segmentation, we need to first define an
appropriate W. This will be based on the notion of
motion profile.



3 Motion Profile

Traditionally, local motion information in an image
sequence is represented by optical flow, which can be
estimated by using the outputs of spatiotemporal fil-
ters [1, 9, 8], or by using differential techniques based
the brightness constancy assumption [14]. Although
these two techniques differ in the details of their for-
mulation, fundamentally they are equivalent[18]. The
basic limitations of those techniques are also quite sim-
ilar — one can not determine the image velocity reliably
at locations wherée the intensity profile is flat, such as
the image of a featureless wall, or image regions with a
one dimensional intensity profile, such as an extended
edge. Figure (1) illustrates these difficulties in one
typical image sequence.

() (b)

Figure 1: Subimage (a) and (b) shows two frames of an image
sequence, and optical flow computed by the Lucas-Kanade algo-
rithm is shown in (c). Notice that the optical flow estimates are
reasonable in the textured regions, while in constant brightness
regions such as the shirt and the area below the bookshelf, or in
regions of repetitive structure, the algorithm pérforms poorly.

There have been various attempts to fix these prob-
lems in optical flow computation. Some restrict their
algorithms to be run only at the places where veloc-
ity can be computed reliably[17], while others impose
a smoothness constraint and apply regularization to
obtain a smooth looking output{10, 2, 15, 4]. Alterna-
tively, one could combine the process of motion mea-
surement with image segmentation as has been done
successfully in recent layer based approaches to mo-
tion analysis in the EM framework.

In our framework, the segmentation is going to
emerge as a result of finding partitions that minimize
the normalized cut, so evidently the feature similarity

should be based on local measures of motion that can.

be computed before the segmentation is known. In-
stead of deciding locally and prematurely on the opti-
cal flow vector, we use the motion profile, a measure
of the probability distribution of the image velocity at

each pixel as our motion feature vector. Let I (X) de-.
note a window centered at the pixel at location X € R?
at time . We denote by F;(dx) the probability of an
image patch at node 4, I'(X;), at time ¢ corresponding
to another image patch I'*1(X; + dx) at time ¢ + 1.
P;(dx) can be estimated by first computing the simi-
larity S;(dx) between I'(X;) and I'T*(X; +dx), and
normalizing it to get a probability distribution:

Pi(dx) = i% (%)

Figure 2: (a) outlines 6 image regions with various inten-
sity profiles. Subimages (1)-(6) shows the corresponding mo-
tion profiles at pixels centered in the regions shown in (a). Note
these motion vectors have captured the image velocities at those
points as well as their associated uncertainties.

There are many ;Na,ys one can cqmpute similarity
between two image patches; we will use a measure
that is based on the SSD difference:

Si(dx) = eap(~ Y _(I'(Xi+w)—I" (Xs+dx+w))?/02,y),

w

N . (6)

where w € R? is within a local neighborhood of image

patch I'(X;). Figure (2) shows the motion profile

computed according to the above definition on various
image patches on an image shown in figure (1).

4 Motion Segmentation

To segment a motion sequence, a weighted graph
is constructed by taking each pixel as a node, and
connecting nodes that are in a spatialtemporal neigh-
borhood of each other. The weight on a graph
edge connecting two image pixels reflects the similar-
1ty between their motion profiles. We found cross-
correlation of the two motion profiles to be a simple,
yet effective, measure of motion similarity. Define the
distance between two image patches ¢ and j as

d(i,5) = 1 Y Fi(dx)P;(dx), (7)
dx
where dx range over possible displacements. The
weight on graph edge (7,7} is then given by w;; =
exp(—d(i, j)/o7,).
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It should be noted that this measure of motion sim-
ilarity will distinguish between two pixels which have
exactly the same true motion, but where the bright-
ness profiles are such that the associated motion un-
certainties are very different. If one of the pixels is in
a region of constant brightness and another in a region
of rich texture this will happen. We believe that this is
entirely appropriate given local information; the con-
sequence can bé over segmentation of a single rigidly
moving object. This however is trivially handled in a
postprocessing step.

For computational complexity reasons, we limit the
number of nodes in the graph by subsampling the im-
age (factor of 3 from the full spatial resolution in our
examples), and limit the number of edges in the graph
by having nonzero w(i,j) only for nodes in a spa-
tiotemporal window of +3 frames, and +5 in z and
y. The image patch size used for computing patch-
patch comparisons is 5 x 5 pixels.

To partition the graph, we construct the associa-
tion matrix W with entry W (i, j) = wij;, and solve
for the first few eigenvectors of the generalized eigen-
system (D — W)y = ADy. This generalized eigen-
system can be transformed into a standard eigensys-
tem: Az = Az, where A = D_%(D - W)D_%, and

z = D%y. The Lanczos method can be used to ob-
tain the first few eigenvectors efficiently if A is sparse.
The running time of the Lanczos algorithm is dom-
inated by the O(mM) term where m is the maxi-
mum allowed iterations for solving the eigenvectors,
and O(M) the cost of computing matrix vector mul-
tiplication Ay = y*. To see why this matrix vector
multiplication costs only O(n}, where n is the num-
ber of nodes in the graph, we will look at the cost of
inner product of one row of A with a vector y. Let
y*i = Ai -y = ) ; Aijy;. For a fixed i, A;; is only
nonzero if node j is in a fixed space-time neighbor-
hood of i. Hence there are only a fixed number of
operations required for each A; -y, and the total cost
of computing Ay is O(n). Furthermore; each of those
A; -y inner product corresponds to a local space-time
convolution type of operation, and therefore can be
implemented efficiently on parallel processors.
Figures (3) shows the computed generalized eigen-
vectors for the two frame image sequences shown in
figure (1). Recall the eigenvectors are real valued so-
lutions to our recursive normalized cut problem. Ide-
ally they should take on discrete values, and succes-
sive eigenvectors should subpartition the previous seg-
ments. This is indeed the case for the two smallest
eigenvectors in figure (3). The first eigenvector seg-
ments out the moving person in the foreground, while
the second eigenvector separates out the left side of
the wall under the bookshelf. However, the values in
the third eigenvector exhibit a more smoothly- vary-
ing profile, particularly in the bookshelf area which it
is attempting to subpartition. There are many ways
of interpreting this phenomena. From the perspec-
tive of segmentation, one can interpret such an eigen-
vector as unstable .in the sense that there are many
different partitioning points which have similar N cut
values. In our current segmentation scheme, we sim-

Figure 3: Subplots (a) to (e) show the 5 smallest generalized
cigenvectors with eigenvalue less than 0.06 computed for seg-
menting the image sequence in figure (1). Using the first eigen-
vector in (a), the foreground person can be segmented from the
background, while later on using the eigenvectorin (d), the head
of the person can be segmented from the body. See figure (4).

ply choose to ignore all those eigenvectors which have
smoothly varying eigenvector values.- One simple diag-
nostic measure for detecting such instability is based
on; first computing the histogram of the eigenvector
values, and then take the ratio between the minimum
and maximum values in the bins. When the eigen-
vector values vary continuously, the values in the his-
togram bin will stay relatively the same, and the ratio
will be relatively high. In our experiments, we find a
simple threshold on that ratio, set to be 0.06 in all our
experiments, can be used effectively.

In summary, our grouping algorithm can be de-
scribed as: ’ '

1. Given an image sequence, set up a weighted graph
G = (V,E) by taking a subsample of the image
pixels as the node of the graph(A factor of 3 from
the full resolution in our examples). Connect
nodes that are less than r, superpixels apart in
space, and r; frames apart in time. .For each pair
of nodes compute their motion profiles, and de-
fine the weight of the graph edge connecting them
as in equation (12). Summarize the information
into W, and D. In our experiments, rs = 5 and
ry = 3.

2. Solve (D — W)y = ADy for eigenvectors with the
smallest eigenvalues.

3. Use the eigenvector with second smallest eigen-
value to bipartition the graph by finding the split-
ting point such that Ncut is minimized,

4. Decide if the current partition should be used by
checking the stability of the cut, and make sure
Ncut is below pre-specified value,

5. Recursively repartition the segments using the
next smallest eigenvectors.
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Figure 4: Segmentation of image sequencein figure (1) based
on the eigenvectors in figure (2). Segments in (a) and (b) cor-

respond to the person in the foreground, and segments in (c) to

(e) correspond to the background. The reason that the head of
the person is segmented away from the body is that although

they have similar motion, their motion profiles are different. As

we saw in figure (2) the head region contains 2D textures and

the motion profile are more peaked, while in the body region

the motion profiles are more spread out. Segment (c) is broken

away from (d) and (e) for the same reason.

The number of groups segmented by this method
is controlled directly by the maximum allowed N cut,
which is set to 0.05 in all our experiments.

Figure (4) shows the segmentation result on the two
frame image sequence in figure (1} based on eigenvec-
tors computed in figure (3).

Figure (5) shows the result of motion segmentation
on a seven frame Carl Lewis running image sequence.
The image sequence is used because 1) it has very poor
image quality: the image noise is very high, and im-
age contrast is relatively low, and 2) it contains an

-articulated body with different motions on each of the
limbs. As the camera is panning to keep Carl Lewis in
the center of the frame, there is a moving background
which would make background subtraction techniques
fail. We wanted to see if the algorithm is able to
find the most dominarnt motion blocks in the image
sequence. Results in figure (5) shows that we indeed
achieve this goal even under poor image conditions.

5 Segmenting and Tracking Long Im-

age Sequences

The method described above takes in a fixed num-
ber of image frames, and produce a segmentation in a
batch type of operation. The advantage of computing
segmentation based on multiple image frames 1s that
one can incorporate information across several frames
to produce the best partition. However, this becomes
computationally impractical and inefficient if we have
to segment a very long image sequence this way.

To solve this problem, we will use only a fixed num-
ber of image frames centered around each incoming
image frame in the time domain to compute the seg-
mentation. Figure (6) illustrates this idea.

Because there is a significant overlap of the image-

i

Figure 5: The first row shows an image sequence of Carl Lewis
running. Notice that the background is moving to the left as
the camera is panning to keep the runner in the center of the
image, and therefore background subtraction would not work
as an image segmentation technique. The original image size is
200 x 190, and image patches of size 3 X 3 is used to construct
the partition graph. Each of the image patches are connected
to others that are less than 5 superpixels and 3 image frames
away. Row 2 to 4 show the motion segmentation produced by
our algorithm. Note these regions found corresponds the runner
in row 2, moving background in row 3, and the left lower leg in
row 4. The left lower leg is segmented from the runner because
it undergoes significant upward rotation in these seven image
frames. By recursive cuts and by lowering the maximum allowed
Neut value, the other moving limbs can be found.

frames used to compute the segmentation from one
time step to another, we can use it to. our advantage
to speed up our computation. The place where we
can gain most of the speed up is in the step of solving
the generalized eigensystem (D - W)y = ADy, or
its equivalent form Az = Az, where A = D_%(D -

W)D”%, and'z = D%y. We exploit the fact that the
Lanczos method of computing eigenvector for a sparse
matrix is closely related to the problem of computing
orthonormal bases for the Krylov subspace associated
with matrix A. If we have a good guess of the vectors
that spans that subspace, we can arrive at the solution
very quickly. We shall see that this is indeed achieved
by our algorithm.

Let A" denote the matrix constructed at time ¢ from

‘image frame ¢ — k to ¢t 4+ k. We can break A' into

submatrices corresponding to the connections between
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Figure 6: At any given time step ¢, only & k image frames
centered around ¢ are used to construct the partition graph, for
computing the segmentation and group correspondence. At the
next time step ¢ + 1, image frame ¢ — & is dropped and t + &k + 1
is incorporated in our grouping algorithm.

each of the image frames:

At=k)(t=k) A(t=k)(1—k+1) 0

AGt—k41)(1=k)  A(t=k41)(t—k+1) .
° 0 A(t4k)(t4k)

where each A;; encodes the connections from nodes
in frame i to nodes in frame j. Let z’ be an eigen-
vector for A’. z¢ can also be broken into sub-vectors

corresponding to each of the frames:
¢
Zi_k
Z{ k41
2= . )
t
Ziik

When the time step is advanced by one frame, the
new A't! is related to the previous A’ by,

‘ ‘0
et | AN@iZh+ 1,2:2k+1) :
A(t4k) (t4+k+1)
0 o AGrktn)(e+b) AQkd1) (e4k41)
(10)
Let zt*1 be the eigenvector for A™*!,
t+1
Zi k41
t+1 _ :
zZ'T = i . (11)
zz-{-k
4
Lkt

Unless there is a major scene change at time ¢+ 1, we
expect the first 2k frames of z'*! to stay relatively the
same. To initialize the component correspending to
the new frame, we can compute z:t! = A1z where
zZ = [zi_‘kﬂ, Sy Z£+k: 0]. Intuitively this amounts to
interpolating from the eigenvectors from the previous
frames to obtain a guess at the eigenvector for the
frame t + k + 1. z!*! is then input to the Lanczos
eigenvector solver to speed up the computation.

.Figure 7: Subplot (a) shows the three of the first six frames of

the “Aower garden” sequence along with the segmentation. The
original image size is 120 X 175, and image patches of size 3 X 3
are used to construct the partition graph. Each of the image
patches are connected to others that are less than 5 superpixels
and 3 image frames away. Subplot (b) shows the 15th to the
18th frame of the sequence and the motion segmentation using
tracking algorithm with the sliding time window method.
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To test our method, we used the standard “flower
garden” sequence. In this experiment, we set the half-
width of the time window, k, to 2 frames. Figure (7a)
shows three of the first six frames of the image se-
quence along with the motion segmentation. In sliding
time window updating mode, the cost of computing
the generalized eigenvectors at the each of the new
time steps amounts to only 20% of. the cost in the
batch mode. Figure (7b) shows the 15th to the 18th
image frame along with the motion segmentation.

6 Conclusion

In this paper, we have developed a motion segmen-
tation algorithm based on the normalized cuts graph
partitioning method. We treat the image sequence
as a'three dimensional spatiotemporal data set and
construct a weighted graph by taking each pixel as a
node, and connecting pixels that are in the spatiotem-
poral neighborhood of each other. We define a motion
profile vector at each image pixel which captures the
probability distribution of the image velocity at that
point. By defining a distance between motion profile
at two pixels, we can assign a weight on the graph
edge connecting them. Using normalized cuts we find
the most salient partitions of the spatiotemporal vol-
ume formed by the image sequence. Each partition,
which is in the form of a spatiotemporal volume, cor-
responds to a group of pixels moving coherently in
space and time. We have also developed a recursive
technique for segmenting and tracking long image. se-
quences. Experimental results on various real image
sequences are presented.
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