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Rigid Body Segmentation and Shape
Description from Dense Optical Flow
Under Weak Perspective

Joseph Weber and Jitendra Malik

Abstract —We present an algorithm for identifying and tracking
independently moving rigid objects from optical flow. Some previous
attempts at segmentation via optical flow have focused on finding
discontinuities in the flow field. While discontinuities do indicate a
change in scene depth, they do not in general signal a boundary
between two separate objects. The proposed method uses the fact that
each independently moving object has a unique epipolar constraint
associated with its motion. Thus motion discontinuities based on self-
occlusion can be distinguished from those due to separate objects. The
use of epipolar geometry allows for the determination of individual
motion parameters for each object as well as the recovery of relative
depth for each point on the object. The algorithm assumes an affine
camera where perspective effects are limited to changes in overall
scale. No camera calibration parameters are required. A Kalman filter
based approach is used for tracking motion parameters with time.

Index Terms —Optical flow, epipolar constraint, fundamental matrix,
shape from motion, motion segmentation, scene patrtitioning problem.
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1 INTRODUCTION

VISUAL motion can provide us with two vital pieces of informa-
tion: the segmentation of the visual scene into distinct moving
objects and shape information about those objects. We will exam-
ine how the use of epipolar geometry under the assumption of
rigidly moving objects can be used to provide both the segmenta-
tion of the visual scene and the structure of the objects within it.

Epipolar geometry tells us that a constraint exists between cor-
responding points from different views of a rigidly moving object
(or camera). This epipolar constraint is unique to each motion.
Optical flow provides a dense set of correspondences between
frames. Therefore the unique epipolar constraint can be used to
find objects undergoing separate motions given the optical flow.
Typically the epipolar constraint is used for large displacement
motions, but it is equally valid for optical flow fields which we
assume represent small inter-frame displacements.

An algorithm will be outlined for segmenting the scene while
simultaneously recovering the motion of each object in the scene.
This algorithm makes the assumption that the scene consists of
connected piecewise-rigid objects. The image then consists of con-
nected regions, each associated with a single rigid object.

Once the motion of rigidly moving objects has been deter-
mined, scene structure can be obtained via the same epipolar con-
straint. The scene structure problem becomes analogous to stere-
opsis in that object depth is a function of distance along the
epipolar line. Dense correspondences such as those in optical flow
can lead to rich descriptions of the scene geometry.

The epipolar geometry will be examined in the context of an af-
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fine camera model where perspective effects are limited to uni-
form changes in scale. Under weak perspective, the epipolar con-
straint equation becomes linear in the image coordinates, thus
allowing a least-squares solution for the parameters of the con-
straint. Different regions of the image representing independently
moving rigid objects can then be segmented by the fact that they
possess different epipolar constraints on their motion in the image
plane. Once the parameters of the constraint equation have been
recovered, they can be used to describe the three dimensional rigid
motion that each object in the scene has undergone.

2 REVIEW OF PAST WORK

Early work on segmentation via motion looked for discontinuities
in the displacement field [17], [2] or piecewise affine partitions of
the field [1], [12]. Since under general perspective projections the
motion field is continuous as long as the depth of the viewed sur-
face is continuous, discontinuities in the flow field signal depth
discontinuities. Unfortunately, the flow field is difficult to recover
at discontinuities. At locations of depth edges, motion will intro-
duce regions of occlusion and disocclusion which are often not
explicitly modeled in optical flow routines. Optical flow tech-
niques based on derivatives of the image function assume con-
tinuous or affine flow and will fail at these regions.

The fact that epipolar geometry implies a linear constraint be-
tween the projected points of a rigid body as it undergoes an arbi-
trary rigid transformation has been used for years in photogram-
metry [5] and more recently in structure from motion algorithms
[11], [15], [16]. Motion parameters and shape descriptions can also
be obtained from correspondences between two views under weak
perspective projection, modulo a relief transformation such as
depth scaling [8]. Algorithms under this model were implemented
by Shapiro et al. [14] and Cernuschi-Frias et al. [4].

In Section 6 we will see that we can formulate the segmentation
of the optical flow field into a scene partitioning problem [10]. The
segmentation problem is formulated in terms of a cost functional
which attempts to balance a number of model constraints. These
constraints include terms for fitting a model to the data while si-
multaneously minimizing the number of distinct regions.

There are stochastic [6], region-growing [7], and continuation
[10], [3] methods for finding solutions to the scene partitioning
problem when it is described in terms of a cost functional. Our
solution will use the region-growing method described in [19] to
solve for the partition. This method uses a statistic-based region
growing algorithm which assumes the solution is piecewise con-
tinuous in image coordinates.

3 PROJECTIONS AND RIGID MOTIONS

3.1 The Weak Perspective Camera
The weak perspective camera projection can be written as:
X=MX+p (1)
where X is the 3D world coordinate point and x its 2D image pro-
jection. The 2 x 3 matrix M rotates the 3D world point into the
camera’s reference frame, scales the axes and projects onto the
image plane. The vector p is the image plane projection of the
translation aligning the two frames. The simplest form of the ma-
trix M occurs when the world and camera coordinates are aligned
and the camera’s aspect ratio is unity. In this case M can be written

f 100
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where Z,, is the average depth of the scene. This transformation is
a valid approximation to a real camera only if the variance of the

depth in the viewed scene is small compared to Z,..

A rigid transformation of the world points that takes the point
X to X’ can be written as

X =RX+T ®3)
where R is a rotation matrix with unit determinant.

Eliminating the depth component Z between equations for x
and x” we obtain the linear constraint

ax’+by +cx+dy+e=0 @)
where
a=-Ry, b=Rj
€ = SRy3Ry; = SRy5Ry
d = SRR, — sRy3Ry,
e = Ryt — Ryt (5)

and the vector t’ is SM(T — R(p0)"). The scale factor s = Z,, /7", , is
the fractional change in average depth between frames. More de-
tails can be found in [20].

Equation (4) can be written in terms of a special form of the

Fundamental Matrix [5].

X,y DF(x,y, 1)' =0 (6)

3.2 Koenderink and van Doorn Rotation Representation

A rotation in space can be expressed in a number of representa-
tions: Euler angles, axis/angle pair, quarternions etc. A particu-
larly useful representation for vision was introduced by
Koenderink and van Doorn [8]. In this representation, the rota-
tion matrix is the composition of two specific rotations: the first
about the viewing direction (cyclorotation) and the second about
an axis perpendicular to the viewing direction at a given angle
from the horizontal.

Using this representation in the formation of the Fundamental
Matrix as in (4) we find that

a = sin(p)cos(¢), b = sin(p)cos(¢)
¢ = —ssin(p)cos(6 — ¢)
d = ssin(p)sin(6 - ¢)

e=- sin(p)(t)’( cos(¢) +t; sin(q))) @)

Equations (8) are identical to the ones used in Shapiro et al. [14].

We can invert (8) to find the motion parameters s, ¢, and 6
given the elements of the Fundamental Matrix (a, b, c, d, €). In the
next section we explain how to estimate these given the optical
flow.

4  SOLVING FOR THE FUNDAMENTAL MATRIX

The epipolar constraint (4) requires point correspondences be-

tween frames. Equating point displacements with optical flow

(u, v), we get (X', y) = (X, y) + (u, v) and
au+bv+c'x+dy+e=X-Nn+e=0 (8)

with X = (u, V, X, y) and N = (a, b,c’, d’). The epipolar constraint

equation elements (4) are related to the primed values by ¢’ =c¢ + a,
d=d+h.

The affine epipolar constraint equation forces the optical flow
to lie on a line in velocity space. Because of noise, the measured
optical flow may not lie on the line dictated by the epipolar con-
straint. We can use weighted least squares to solve for the pa-
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rameters (ﬁ, e) by minimizing the weighted distance in velocity

space between the measured optical flow and the constraint line.
The weighting factor for each error term, w,, comes from the error

covariance of the measured optical flow, var(\7T\7) =Q,.

The following minimization is similar to the one in Shapiro et
al. [14]. We define a Lagrange multiplier, A, on the constrainta’ + b’
= 1. This constraint can be written as ||Qﬁ||2 = 1 with an appropri-
ate diagonal matrix Q. The function to be minimized is then

min Zwi(xi fi+e) - A(JQAIf - 1) ©

where the summation is over all points with optical flow meas-
urements.
The minimization over e can be done immediately by setting

e =—X-N where X = Zwif(i /z w; is the weighted centroid of
i i

the 4D points X;. After substituting for e and differentiating we
obtain

W-AQ)n=0 (10)

. . s <o\T/s <
where the measurement matrix W is E‘Wi(xi —Xi) (xi —Xi).
i

Since Q has only two nonzero entries, finding the value of A which

causes (W — AQ) to drop rank involves only a quadratic equation

in A. The solution N is the vector which spans the null space of

(W — AQ). The resulting value of 4 is equal to the weighted quad-
ratic error in velocity space.

5 THE CASE OF AFFINE FLOW

The solution for the Fundamental Matrix elements in (11) requires
that the matrix W — AQ have rank three, i.e., the null space has
dimension one. Multiple solutions can exist if the optical flow is
affine in image coordinates. In this case, a linear relationship exists
between (u, v) and (x, y), and thus W drops rank. The Fundamental
Matrix cannot be uniquely determined. The nontrivial causes of
affine flow are either coplanarity of the observed points, or if the
object motion is a rotation which contains no rotation in depth (the
rotation p in the Koenderink and van Doorn representation).

Since the optical flow is corrupted by noise, a criterion must be
developed for deciding if a region contains affine flow. The sym-
metric matrix W — AQ should have rank three and therefore have
three positive, nonzero singular values. A region is designated as
containing affine flow via a ratio of singular values. A threshold
on this ratio is used to label regions as containing affine flow. The
magnitude of the threshold comes from the variance estimate pro-
duced by the optical flow algorithm used.

6 SEGMENTING VIA A REGION-GROWING METHOD

We wish to partition the scene into distinct regions, each region
being labeled by a unique Fundamental Matrix. We define a cost
functional which balances the cost of labeling each pixel with a
penalty for having too many different labeling. We define as a
total cost functional

E(R; o) = 2 D(R;) + P(R;; )

i

where the summation i is over all pixels in the image. The vector
n; is the estimate of the Fundamental Matrix at pixel i. In terms of
the standard form of a cost functional [3], D(i) represents a good-
ness of fit term which attempts to keep the estimate close to the
data, and P(ﬁ; a) is a discontinuity penalty term which tries to limit

(11)

the frequency of discontinuities. The D(fi) term is the weighted

sums of squared distances in velocity space with a Lagrange mul-
tiplier as defined in the Section 4. The penalty term attaches a fixed

cost o for each pixel bordering a discontinuity.
To solve this partitioning problem we will use the region-
growing method described in [19]. The algorithm begins by form-

ing small initial patches of size 4 x 4 pixels. Each of these patches
then computes its solution, i, and error, D,. For a small value of

the boundary penalty ¢, all regions which can be combined when
a statistic, F’, is below a fixed confidence level are merged. Newly

formed regions are tested for affine flow solutions. The value of o
is increased allowing for more regions to be merged. This contin-

ues until we reach the final value of o.

7 RECOVERING DEPTH

Once we have recovered the elements of the Fundamental Matrix
for a region of the image plane, we can attempt to recover the
depth of each image point. From Section 3.1 we find that up to an
unknown scale factor:

1
Va? +b?

where Z, = —d't” / (S||d||2) with d = (R;R,,)". Z, is a constant for

Z= (bx"—ay’+dx—cy)+Z,  (12)

each object. Therefore, up to an additive constant and unknown
scale, the depth of each imaged point can be computed given the
elements of the matrix F.

In the case of affine flow, we know that the object is either un-
dergoing pure translation or is rotating about an axis parallel to
the optical axis. In either case, no depth information can be ob-
tained under orthographic or weak-perspective projection. Conse-
quently depth recovery would have to rely on other cues.

8 OBJECT TRACKING

In order to track the segmented objects, the algorithm takes the
present segmentation and forms a prediction of the segmentation
for the next flow field. The segmentation algorithm is run using
this prediction image to fill in the unassigned regions. This is re-
peated for each new optical flow field.

The proposed scheme avoids having to run the entire segmen-
tation algorithm from scratch at each new frame since it uses the
previous segmentation as a prediction. However, this method
requires a correct initial segmentation. If two objects are labeled as
a single object in the initial segmentation they may remain so in
subsequent frames.

We can use the information in each new frame to increase the
accuracy of both the shape and motion of each independently
moving object. We adopt a Kalman filter approach in which the
motion parameters are modeled as a slowly varying process. The
work by Soatto et al. [13] addresses the case of estimating the ele-
ments of the Fundamental Matrix in a Kalman Filter framework.
Although their work was for the full Fundamental Matrix, it is
easily adapted to the simpler affine form.

9 EXPERIMENTAL RESULTS

The algorithm was tested on a number of synthetic and real image
sequences. The optical flow was computed using the multi-scale
differential method of Weber and Malik [20]. Flow fields were
about 80% dense with most estimates missing from discontinuous
flow regions. These regions violate the constancy assumption used
by the differential method.
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9.1 Sequence 1

A synthetic sequence was created consisting of two texture-
mapped cubes rotating in space. The magnitude of the optical flow
ranged from zero to about five pixels/frame. For the first 10
frames of the sequence, the cubes were rotating about fixed but
different rotation axes. For the second 10 frames these axes were
switched. The rotation axes used, as well as a sample image and
optical flow field are shown in Fig. 1.

Fig. 1. Two independently rotating texture-mapped cubes were created
on a Silicon Graphics workstation. A single frame from the sequence
and a sample optical flow field is shown on the top row. No flow esti-
mates were available at the boundaries of the two cubes because such
regions violate the constancy assumption used by the differential
method. For the first 10 frames, the cubes rotated with rotation axes
indicated in the bottom left figure. For the second 10 frames, the rota-
tion axes were as indicated in the bottom right figure.

The segmentation algorithm found two separate moving ob-
jects for each frame. The initial segmentation along with the initial
depth recovered for the smaller cube is shown in Fig. 2.

=]

Fig. 2. The boundary between the two independently moving objects
found by the segmentation algorithm and the pixel depths of the
smaller cube.

The estimated angle ¢ as a function of frame number for each
cube is shown in Fig. 3. The original estimate is good because of
the density of the optical flow. Subsequent frames do not show
much improvement. The Kalman Filter successively tracks the
change in rotation axis which occurs at frame 10.

19, NO. 2, FEBRUARY 1997
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Fig. 3. The recovered value of the angle the rotation axis of each cube
makes in the image plane as a function of frame number. After 10
frames, the rotation directions were switched.

9.2 Sequence 2

The algorithm was run on a real sequence consisting of a cube
placed on a rotating platen.1 The background was stationary. The
displacements between frames are very small in this sequence,
with the largest displacement on the cube itself being only 0.5
pixel. The background had zero flow and was labeled as affine. An
image from the sequence, the computed optical flow and recov-
ered depth map are shown in Fig. 4.

i
o T
ﬁ-_.’riﬁ-

Fig. 4. A single frame of a Rubik’'s Cube on a rotating platen. The opti-
cal flow and recovered depth map as seen from a side view are shown
as well.

In this case, the rotation axis of the cube makes an angle of 90
degrees in the image plane and was recovered as such to within a
few degrees.

9.3 Sequence 3

The next image sequence contains large planar regions which pro-
duce regions of affine flow. A frame from the sequence, an exam-
ple optical flow recovered and the segmentation are shown in
Fig. 5. This sequence demonstrates the algorithm’s ability to iden-
tify regions of affine flow. The boundaries appear irregular be-

1. This sequence was produced by Richard Szeliski at DEC.
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cause no shape priors are used in the segmentation algorithm.

Affine regions will be labeled as distinct if the difference in af-
fine parameters is larger than the expected variance in flow due to
noise. The threshold used in the segmentation algorithm is
bounded by this noise variance.

]u-mleS
45678910
NRBWBLE

Fig. 5. A single frame of the “mobile” sequence from RPI. The back-
ground consists of planar translating patterns while a toy train traverses
the foreground. An example optical flow recovered is also shown. The
labeled image is shown as well. The background parts (in gray) were
identified as undergoing pure translational motion by the singular value
ratio test. The black and white regions (corresponding to the train, rotat-
ing ball, and transition regions) were not labeled as affine.

10 DisCuUssSION

We have shown that using just the optical flow, it is possible to
segment an image into regions with a consistent rigid motion and
determine the motion parameters for that rigid motion. Further-
more, the relative depth of points within the separate regions can
be recovered for each point displacement between the images.

The recovery requires no camera calibration but does make the
assumptions of an affine camera: i.e., perspective effects are small.
The special form of epipolar geometry for the case considered here
has its epipoles at infinity. Perspective dominant motions can not
be fit by the motion parameters. The region-growing algorithm
used for the simultaneous region formation and motion parameter
estimation was not dependent on this particular form of the ge-
ometry. If a recovery of the full perspective case was required, the
same algorithm could be used. However, the calculation of the
Fundamental Matrix from small displacements such as found in
optical flow is not stable [18], [9]. This is one of the fundamental
limitations of using optical flow with an algorithm based on the
epipolar constraint.
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