W4231: Analysis of Algorithms

9/23/1999 (revised 9/29)

• Sorting in linear time (sometimes).

A trivial example

An array of integers \(a_1 \cdots a_n\) is given such that \(1 \leq a_i \leq n\) and all the elements are distinct.

Solution: output \(1, \ldots, n\).

Repetitions are allowed

An array of integers \(a_1 \cdots a_n\) is given such that \(1 \leq a_i \leq n\) and elements may be repeated.

Create a vector \(c_1, \ldots, c_n\), where

\[c_i = |\{j : a_j = i\}| \]

If \(A = [2, 4, 1, 2, 5, 8, 3, 1]\) then

\(C = [2, 2, 1, 1, 0, 0, 1]\).

Scan \(C\), for every \(i\), write \(i\) for \(c_i\) times.

Implementation

\[
sort(int a[], int n){
\quad int c[n], i, j, k;
\quad // initialize c[]
\quad for (j=0; j<n; j++) c[j]=0;
\quad // fill in the entries of c[]
\quad for (i=0; i<n; i++) c[a[i]]++;
\quad // sort a[]
\quad i=0;
\quad for (j=0; j<n; j++)
\quad \quad for (k=0; k<c[j]; k++)
\quad \quad \quad a[i]=j; i++;
\quad }
\]

Stability

A sorting algorithm is stable if

on input \(a_1 \cdots a_n\) it outputs the sorted sequence \(a_{\pi(1)} \cdots a_{\pi(n)}\)

with the property that if \(i < j\) and \(a_{\pi(i)} \leq a_{\pi(j)}\)

then \(\pi(i) < \pi(j)\).

An example of non-stability

The difference between stable and non-stable algorithms is important only if each item has a key used for sorting and some other information; and the keys can be repeated.

E.g. sort the pairs

using the first number as a key.
If the algorithm reports

Then it is not stable

A Stable Version of Counting Sort

Each \(c_j \) is a queue.

For every \(i \), we copy \(a_i \) in the queue \(c_j \), where \(j \) is the key of \(a_i \).

At the end we patch the queues together. Impossible to have an inversion.

Alternative method in CLR.

Analysis

Let \(c_j \) be the number of items of key \(j \). Then \(\sum_{j=1}^{m} c_j = n \).

Running time: \(O(m) \) to initialize \(c \); \(O(n) \) to fill \(c \); \(\sum_{j=1}^{m} O(c_j) + O(1) = O(\sum_j c_j) + O(m) = O(m+n) \) total time is \(O(n+m) \).

Better than mergesort when \(m = o(n \log n) \).

Radix Sort

Suppose we have in input \(n \) integers that are \(b \)-digits binary numbers.

Put the numbers whose last digit is 0 before those whole last digit is 1.

Proceed like that for every digit using a stable sorting.

Dealing with each digit takes \(O(n) \) time.

Total time: \(O(nb) \).

More on Radix Sort

Generalization: each number has \(b \) digits in base \(k \).

Do \(b \) passes of a stable sort.

For integers in the range 1,\ldots,\(m \), we can view these integers as having \(\log_n m \) digits in base \(n \).

Do \(\log_n m \) passes of stable counting sort. Each one takes time \(O(n) \).

Sort in time \(O(n \log m / \log n) \).

Summary of Sorting Algs for Integers

Input: \(n \) integers in the range 1,\ldots,\(m \).

- Mergesort \(O(n \log n) \)-time independent of \(m \) (assuming unit-cost RAM model).
- Radix Sort \(O(n \log m / \log n) \).
- Counting Sort \(O(n+m) \).

Counting sort is preferable only if \(m = O(n) \). Radix sort works well for bigger \(m \), provided \(m = O(n^{\log n}) \). For bigger values of \(m \), Mergesort is better.
Lexicographic order

Consider strings over a certain alphabet set S on which an order $<$ is defined. E.g. S is the set of Roman characters a, b, \ldots, z and the order $<$ is the alphabetic order.

For two strings $a = a_1 \cdots a_n$ and $b = b_1 \cdots b_m$, we write $a <_{lex} b$ if there is a j such that

- $a_i = b_i$ for $i = 1, \ldots, j - 1$
- $a_j < b_j$.

or if $a_i = b_i$ for $i = 1, \ldots, n$ and $m > n$.

E.g. $\text{platform} < \text{plausible}$ ($j = 4$ in prev. definition — $t < u$).

Sorting strings

We first sort the 4th component

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>r</td>
<td>u</td>
<td>e</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>i</td>
<td>s</td>
<td>k</td>
</tr>
<tr>
<td>d</td>
<td>i</td>
<td>s</td>
<td>h</td>
</tr>
<tr>
<td>b</td>
<td>l</td>
<td>o</td>
<td>w</td>
</tr>
<tr>
<td>t</td>
<td>r</td>
<td>u</td>
<td>e</td>
</tr>
</tbody>
</table>

Then the 3rd

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>l</td>
<td>o</td>
<td>w</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>i</td>
<td>s</td>
<td>h</td>
</tr>
<tr>
<td>d</td>
<td>i</td>
<td>s</td>
<td>k</td>
</tr>
<tr>
<td>t</td>
<td>r</td>
<td>u</td>
<td>e</td>
</tr>
</tbody>
</table>

Running Time

If we have n strings of length l this takes linear and optimal time $O(nl)$, provided we can do each pass in $O(n)$ time.

This is possible if we sort the array of pointers to the strings.
Strings of different lengths

If the strings have different length l_1, \ldots, l_n, and l_{max} is the max length, the algorithm can be adapted to work in $O(nl_{\text{max}})$ time. This is not linear (neither optimal) if there are only a few long strings.

A better algorithm takes time $O(l_{\text{tot}})$ where $l_{\text{tot}} = \sum_i l_i$.

Better Algorithm

Main idea: for l going from l_{max} to 1, sort all the strings whose length is at least l using l-th character as a key.

LexSort (s_1, \ldots, s_n)
create queues $C_1, \ldots, C_{l_{\text{max}}}$, where C_l contains strings of length l
for $l = l_{\text{max}}$ down to 2
 sort C_l using the l-th character as a key
 append C_l at the end of C_{l-1}
sort C_1 using the 1-st character as a key
return C_1

Analysis

For every $1 \leq l \leq l_{\text{max}}$, call c_l the number of strings of length $\geq l$.

Then $\sum_{l=1}^{l_{\text{max}}} c_l = l_{\text{tot}}$.

Can you see why?

Then if we sort in time $O(c_l)$ the l-th entry of the strings who have an l-th entry, the algorithm takes time $O(l_{\text{tot}})$.

Example

mit, columbia, rutgers, harvard, princeton, yale

Entry 9
mit
columbia
rutgers
harvard
princeton
yale

Entry 8
mit
columbia
rutgers
harvard
princeton
yale

Entry 7
mit
columbia
rutgers
harvard
princeton
yale

Entry 6
mit
columbia
rutgers
harvard
princeton
yale