W4231: Analysis of Algorithms

9/23/1999 (revised 9/29)

- Sorting in linear time (sometimes).

A trivial example

An array of integers \(a_1 \cdots a_n \) is given such that \(1 \leq a_i \leq n \) and all the elements are distinct.

Solution: output \(1, \ldots, n \).

Repetitions are allowed

An array of integers \(a_1 \cdots a_n \) is given such that \(1 \leq a_i \leq n \) and elements may be repeated.

Create a vector \(c_1, \ldots, c_n \), where

\[
c_i = |\{j : a_j = i\}|
\]

If \(A = [2, 4, 1, 2, 5, 8, 3, 1] \) then

\(C = [2, 2, 1, 1, 0, 0, 1] \).

Scan \(C \), for every \(i \), write \(i \) for \(c_i \) times.

Implementation

\[
\text{sort}(\text{int } a[], \text{ int } n) \{
 \text{int } c[n], i, j, k;
 \text{// initialize } c[]
 \text{for (}j=0; j<n; j++)
 \text{c}[j]=0;
 \text{// fill in the entries of } c[]
 \text{for (}i=0; i<n; i++)
 \text{c}[a[i]]++;
 \text{// sort } a[]
 \text{i=0;}
 \text{for (}j=0; j<n; j++)
 \text{for (}k=0; k<c[j]; k++)
 \text{a[i]=j; i++;}
\}
\]

Stability

A sorting algorithm is stable if

on input \(a_1 \cdots a_n \) it outputs the sorted sequence \(a_{\pi(1)} \cdots a_{\pi(n)} \)

with the property that if \(i < j \) and \(a_{\pi(i)} \leq a_{\pi(j)} \)

then \(\pi(i) < \pi(j) \).

An example of non-stability

The difference between stable and non-stable algorithms is important only if each item has a key used for sorting and some other information; and the keys can be repeated.

E.g. sort the pairs

using the first number as a key.
If the algorithm reports

Then it is not stable

A Stable Version of Counting Sort

Each c_j is a queue.

For every i, we copy a_i in the queue c_j, where j is the key of a_i.

At the end we patch the queues together. Impossible to have an inversion.

Alternative method in CLR.

Analysis

Let c_j be the number of items of key j. Then $\sum_{j=1}^{m} c_j = n$.

Running time; $O(m)$ to initialize c; $O(n)$ to fill c; $\sum_{j=1}^{m} O(c_j) + O(1) = O(\sum_j c_j) + O(m) = O(m+n)$ total time is $O(n+m)$.

Better than mergesort when $m = o(n \log n)$.

Radix Sort

Suppose we have in input n integers that are b-digits binary numbers.

Put the numbers whose last digit is 0 before those whole last digit is 1.

Proceed like that for every digit using a stable sorting.

Dealing with each digit takes $O(n)$ time.

Total time: $O(nb)$.

More on Radix Sort

Generalization: each number has b digits in base k.

Do b passes of a stable sort.

For integers in the range $1, \ldots, m$, we can view these integers as having $\log_n m$ digits in base n.

Do $\log_n m$ passes of stable counting sort. Each one takes time $O(n)$.

Sort in time $O(n \log m / \log n)$.

Summary of Sorting Algs for Integers

Input: n integers in the range $1, \ldots, m$.

- Mergesort $O(n \log n)$-time independent of m (assuming unit-cost RAM model).
- Radix Sort $O(n \log m / \log n)$.
- Counting Sort $O(n + m)$.

Counting sort is preferable only if $m = O(n)$. Radix sort works well for bigger m, provided $m = O(n \log n)$. For bigger values of m, Mergesort is better.
Lexicographic order

Consider strings over a certain alphabet set S on which an order $<$ is defined. E.g. S is the set of Roman characters a, b, \ldots, z and the order $<$ is the alphabetic order.

For two strings $a = a_1 \cdots a_n$ and $b = b_1 \cdots b_m$, we write $a <_{lex} b$ if there is a j such that

- $a_i = b_i$ for $i = 1, \ldots, j - 1$ and $a_j < b_j$.

or if $a_i = b_i$ for $i = 1, \ldots, n$ and $m > n$.

Sorting strings

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>true</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dish</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>disk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>blow</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We first sort the 4th component.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>blow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dish</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>disk</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Then the 3rd component.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>true</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dish</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>disk</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Then the 2nd component.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>blow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dish</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>disk</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Then the 1st component.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>blow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dish</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>disk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>true</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Running Time

If we have n strings of length l this takes linear and optimal time $O(nl)$, provided we can do each pass in $O(n)$ time.

This is possible if we sort the array of pointers to the strings.
Strings of different lengths

If the strings have different length l_1, \ldots, l_n, and l_{max} is the max length, the algorithm can be adapted to work in $O(nl_{\text{max}})$ time. This is not linear (neither optimal) if there are only a few long strings.

A better algorithm takes time $O(l_{\text{tot}})$ where $l_{\text{tot}} = \sum_i l_i$.

Better Algorithm

Main idea: for l going from l_{max} to 1, sort all the strings whose length is at least l using l-th character as a key.

\[
\text{LexSort} \left(s_1, \ldots, s_n \right) \\
\text{create queues } C_{l_{\text{max}}}, \ldots, C_1, \text{ where } C_l \text{ contains strings of length } l \\
\text{for } l = l_{\text{max}} \text{ down to } 2 \\
\text{sort } C_l \text{ using the } l\text{-th character as a key} \\
\text{append } C_l \text{ at the end of } C_{l-1} \\
\text{sort } C_1 \text{ using the } 1\text{-st character as a key} \\
\text{return } C_1
\]

Analysis

For every $1 \leq l \leq l_{\text{max}}$, call c_l the number of strings of length $\geq l$.

Then $\sum_{l=1}^{l_{\text{max}}} c_l = l_{\text{tot}}$.

Can you see why?

Then if we sort in time $O(c_l)$ the l-th entry of the strings who have an l-th entry, the algorithm takes time $O(l_{\text{tot}})$.

Example

mit, columbia, rutgers, harvard, princeton, yale

Entry 9
mit
columbia
rutgers
harvard
princeton
yale

Entry 8
mit
columbia
rutgers
harvard
princeton
yale

Entry 7
mit
columbia
rutgers
princeton
yale

Entry 6
mit
columbia
princeton
harvard
rutgers
yale