W4231: Analysis of Algorithms

9/23/1999

• Sorting in linear time (sometimes).

A trivial example

An array of integers $a_1 \cdots a_n$ is given such that $1 \leq a_i \leq n$ and all the elements are distinct.

Solution: output $1, \ldots, n$.

Repetitions are allowed

An array of integers $a_1 \cdots a_n$ is given such that $1 \leq a_i \leq n$ and elements may be repeated.

Create a vector c_1, \ldots, c_n, where

$$c_i = |\{j : a_j = 1\}|$$

If $A = [2, 4, 1, 2, 5, 8, 3, 1]$ then

$C = [2, 2, 1, 1, 0, 0, 1]$.

Scan C, for every i, write i for c_i times.

Implementation

```c
sort(int a[], int n){
    int c[n], i, j, k;
    // initialize c[]
    for (j=0; j<n; j++)
        c[j]=0;
    // fill in the entries of c[]
    for (i=0; i<n; i++)
        c[a[i]]++;
    // sort a[]
    i=0;
    for (j=0; j<n; j++)
        for (k=0; k<c[j]; k++){
            a[i]=j; i++;
        }
}
```

Stability

A sorting algorithm is stable if

on input $a_1 \cdots a_n$ it outputs the sorted sequence $a_{\pi(1)} \cdots a_{\pi(n)}$

with the property that if $i < j$ and $a_{\pi(i)} \leq a_{\pi(j)}$

then $\pi(i) < \pi(j)$.

An example of non-stability

The difference between stable and non-stable algorithms is important only if each item has a key used for sorting and some other information; and the keys can be repeated.

E.g. sort the pairs

(1997, LA Confidential), (1998, Life is Beautiful),

using the first number as a key.
If the algorithm reports

Then it is not stable

A Stable Version of Counting Sort

Each c_j is a queue.
For every i, we copy a_i in the queue c_j, where j is the key of a_i.
At the end we patch the queues together. Impossible to have an inversion.
Alternative method in CLR.

Analysis

Let c_j be the number of items of key j. Then $\sum_{j=1}^{m} c_j = n$.
Running time; $O(m)$ to initialize c; $O(n)$ to fill c; $\sum_{j=1}^{m} O(c_j) + O(1) = O(\sum_j c_j) + O(m) = O(m+n)$ total time is $O(n+m)$.
Better than mergesort when $m = o(n \log n)$.

Radix Sort

Suppose we have in input n integers that are b-digits binary numbers.
Put the numbers whose last digit is 0 before those whole last digit is 1.
Proceed like that for every digit using a stable sorting.
Dealing with each digit takes $O(n)$ time.
Total time: $O(nb)$.

More on Radix Sort

Generalization: each number has b digits in base k.
Do b passes of a stable sort.
For integers in the range $1, \ldots, m$, we can view these integers as having $\log_n m$ digits in base n.
Do $\log_n m$ passes of stable counting sort. Each one takes time $O(n)$.
Sort in time $O(n \log m / \log n)$.

Summary of Sorting Algs for Integers

Input: n integers in the range $1, \ldots, m$.

- Mergesort $O(n \log n)$-time independent of m (assuming unit-cost RAM model).
- Radix Sort $O(n \log m / \log n)$.
- Counting Sort $O(n + m)$.

Counting sort is preferable only if $m = O(n)$. Radix sort works well for bigger m, provided $m = O(n \log n)$. For bigger values of m, Mergesort is better.
Lexicographic order

Consider strings over a certain alphabet set S on which an order $<$ is defined. E.g. S is the set of Roman characters a, b, \ldots, z and the order $<$ is the alphabetic order.

For two strings $a = a_1 \cdots a_n$ and $b = b_1 \cdots b_m$, we write $a <_{lex} b$ if there is a j such that

- $a_i = b_i$ for $i = 1, \ldots, j - 1$ and
- $a_j < b_j$.

or if $a_i = b_i$ for $i = 1, \ldots, n$ and $m > n$.

E.g. $\text{platform} < \text{plausible}$ ($j = 4$ in prev. definition $t < u$).

Sorting strings

We first sort the 4th component

```
1 2 3 4
t r u e
d i s h
d i s k
b l o w
```

We sort the 3rd component

```
1 2 3 4
b l o w
```

Running Time

If we have n strings of length l this takes linear and optimal time $O(nl)$, provided we can do each pass in $O(n)$ time.

This is possible if we sort the array of pointers to the strings.
Strings of different lengths

If the strings have different length \(l_1, \ldots, l_n \), and \(l_{\text{max}} \) is the max length, the algorithm can be adapted to work in \(O(nl_{\text{max}}) \) time. This is not linear (neither optimal) if there are only a few long strings.

A better algorithm takes time \(O(l_{\text{tot}}) \) where \(l_{\text{tot}} = \sum_i l_i \).

Idea of the better algorithm: sort the \(l_{\text{max}} \)-th entry of strings of length \(l_{\text{max}} \), then the \((l_{\text{max}} - 1) \)-th entry of strings of length \(\geq l_{\text{max}} \).

Analysis

For every \(1 \leq l \leq l_{\text{max}} \), call \(c_l \) the number of strings of length \(\geq l \).

Then \(\sum_{l=1}^{l_{\text{max}}} c_l = l_{\text{tot}}. \)

Can you see why?

Then if we sort in time \(O(c_l) \) the \(l \)-th entry of the strings who have an \(l \)-th entry, the algorithm takes time \(O(l_{\text{tot}}) \).

Example

mit, columbia, rutgers, harvard, princeton, yale

Entry 9
mit
columbia
rutgers
harvard
princeton
yale

Entry 8
mit
columbia
rutgers
harvard
princeton
yale

Entry 7
mit
harvard
columbia
princeton
rutgers
yale

Entry 6
mit
columbia
princeton
harvard
rutgers
yale

Entry 5
mit
harvard
princeton
rutgers
columbia
yale

Entry 4
mit
yale
rutgers
princeton
columbia
harvard
Entry 1

Columbia
Harvard
MIT
Princeton
Rutgers
Yale

Entry 2

Columbia
Harvard
MIT
Princeton
Rutgers
Yale

Entry 3

Princeton
Yale
Columbia
MIT
Rutgers
Harvard