Generating Big Random Primes

To generate a random 500 bits prime:
1. Pick a random odd number $2^{499} < n < 2^{500}$.
2. Check whether n is prime
3. If n is not prime, go to step 1.

The number of repetitions depends on how many prime numbers are there between 2^{499} and 2^{500}.
There are about $n = \ln n$ primes between 2 and n.
There are about $n/2 \ln n$ primes between $n/2$ and n.
By picking a random odd number, there is a chance in $\ln n$ of picking a prime.
There are efficient $O((\log n)^3)$ time algorithms to check whether n is prime. The algorithms use randomness.

General Idea for Randomized Primality Testing

On input a big integer n, want to decide whether it’s prime or composite.
Use randomness.
Look for "evidence" that n is composite.
If can find evidence, say that n is composite. Otherwise say that n is prime.

Fermat’s Little Theorem

If n is prime, then for every $a \in \mathbb{Z}_n^*$,

$$a^{n-1} \equiv 1 \pmod{n}$$

If, on input n, we find an a such that $a^{n-1} \neq 1 \pmod{n}$, then this proves that n is not prime.

Not a Necessary Condition

There are integers n (e.g. 561) that are not prime, yet for every $a \in \mathbb{Z}_n$, $a \neq 0$, we have $a^{n-1} \equiv 1 \pmod{n}$.
They are called Carmichael Numbers, and there are infinitely many (but they are rare).

Theorem: If n is a Carmichael number, it cannot be a power of a prime.
Modular Square Roots

If n is prime, then the equation

$$x^2 = 1 \pmod{n}$$

has only two solutions in \mathbb{Z}_n: $x = 1$ and $x = (-1 \pmod{n})$.

If, on input n, we find an a such that $a \neq 1 \pmod{n}$, $a \neq -1 \pmod{n}$, but $a^2 = 1 \pmod{n}$, then this proves that n is not prime.

Rabin-Miller Test

On input integer n:

Pick a random a in $\{1, \ldots, n-1\}$.

Compute $a^{n-1} \pmod{n}$ using the modular exponentiation algorithm (with repeated squaring).

If find nontrivial root of 1 at some stage of modular exponentiation, output composite. If $a^{n-1} \neq 1 \pmod{n}$, output prime.

Correctness

If n is prime, then no matter how we choose a, the algorithm output the right answer, because it can never find a a such that $a^{n-1} \neq 1 \pmod{n}$ and it can never find a non-trivial root of 1.

If n is composite, we want to prove that are choices of a for which the algorithm gives the right answer, and in fact the right answer is given with probability $> 1/2$.

Analysis of Error Probability in Miller-Rabin

Fix a composite n.

Consider the set B of bad choices of a such that MillerRabin says that n is prime when the random choice a is made.

We want to prove $B < (n-1)/2$. We do so by proving that B is always contained in a proper subgroup of \mathbb{Z}_n^*.
Group

A group is a set G with an operation \otimes, that given two elements of G returns an element of G such that

1. For every $a, b \in G$, $a \otimes b = b \otimes a$;
2. For every $a, b, c \in G$, $(a \otimes b) \otimes c = a \otimes (b \otimes c)$;
3. There exists an element $u \in G$ such that for every $a \in G$, $a \otimes u = u \otimes a = a$;
4. For every element $a \in G$ there exists an element $a^0 \in G$ such that $a \otimes a^0 = u$.

Examples

- \mathbb{Z}_n with the operation $\cdot + \mod n$ is a group, $u = 0$.
- \mathbb{Z}_n^* with the operation $\cdot \mod n$ is a group, $u = 1$.

Subgroup

Let G be a group with operation \otimes.

A subset $S \subset G$ is a subgroup if $u \in S$, and for every $a, b \in S$ we have $a \otimes b \in S$ and also $a^0, b^0 \in S$.

If G is a group and S is a subgroup of G, then S is also a group.

Theorem: If S is a subgroup of G then $|S|$ divides $|G|$.

Proof of Fermat’s Little Theorem

Let n be prime.

Fix an element $a \in \mathbb{Z}_n^*$.

Consider the set $\{1, a, a^2 \mod n, a^3 \mod n, \ldots\}$ of all possible powers of a. It is a subset of \mathbb{Z}_n^*, and so it is finite.

Then, at some point, we get a power that we have already seen: there are s, r, $0 \leq r < s \leq n - 1$ such that $a^s = a^r \mod n$.

Size of B, first case

Suppose n is composite and is not a Carmichael number. Then there is some $a \in \mathbb{Z}_n^*$ such that $a^{n-1} \not\equiv 1 \mod n$.

Define the set $G := \{a : a^{n-1} = 1 \mod n\}$. This is a subgroup of \mathbb{Z}_n^* (verify) and it is a proper subgroup. Then $|G| \leq |\mathbb{Z}_n^*|/2 < (n-1)/2$.

And also $B \subseteq G$, so $|B| < (n-1)/2$.

Size of B, second case

Suppose n is a Carmichael number.

Then n has at least two different prime factors. We can write $n = n_1n_2$ where $\gcd(n_1, n_2) = 1$.

Let t be the number of consecutive zeroes in the least significant digits of $n - 1$, i.e. write $n - 1 = 2^t u$ where u is odd.

For each a that could be picked at random in RabinMiller, consider the sequence

$$(a^u \mod n, a^{2u} \mod n, a^{4u} \mod n, \ldots, a^{2^t u} \mod n)$$

These are intermediate values computed during the computation of $a^{n-1} \mod n$.

Consider the largest j such that there is a v such that $v^{2^j u} = -1 \pmod{n}$. Fix the corresponding v.

Define $G = \{ a : a^{2^j u} = \pm 1 \pmod{n} \}$.

Then:
- $B \subseteq G$,
- G is a subgroup of \mathbb{Z}_n^*,
- there is an element $w \in \mathbb{Z}_n^*$ such that $w \notin G$.

Proving that $G \neq \mathbb{Z}_n^*$

Consider the system

$$\begin{align*}
x &= v \pmod{n_1} \\
x &= 1 \pmod{n_2}
\end{align*}$$

There is a $w \in \mathbb{Z}_n^*$ that satisfies the system.

When we raise w to $2^j u$ we have

$$\begin{align*}
w^{2^j u} &= -1 \pmod{n_1} \\
w^{2^j u} &= 1 \pmod{n_2}
\end{align*}$$

So it is impossible that $w^{2^j u} = 1 \pmod{n}$ or that $w^{2^j u} = -1 \pmod{n}$.

Then $w \notin G$.

Error Probability

Then for every composite n, the probability that Miller-Rabin makes a mistake (i.e. says that n is prime) is $< 1/2$.

If we take k Miller-Rabin tests, and say that n is prime iff all k tests indicate that is prime, then the probability of making a mistake becomes $1/2^k$.

Using $k = 50$ gives very high confidence.