Divide and Conquer

Divide: reduce the instance of the problem to be solved to instances of smaller size.
Conquer: use recursion to solve the smaller instances.
Combine: use solutions for the smaller instances to find a solution for the original instance.

Mergesort

Problem: to sort a given array \(a_1, \ldots, a_n\).

Divide: divide the sequence into the two subsequences \(a_1, \ldots, a_{n/2}\) and \(a_{n/2+1}, \ldots, a_n\).

Conquer: sort the two sequences.

Combine: merge the sorted subsequences.

Quicksort

Problem: Ditto.

Divide: select an element \(a\) from the sequence. Partition the sequence into the set of elements \(\leq a\) and the set of elements \(> a\).

Conquer: sort the two sequences.

Combine: paste the sorted subsequences.

Binary Search

Look for \(a\) into \(A[1, \ldots, n]\).

Special case of looking for \(a\) into \(A[i, \ldots, j]\).

If \(i > j\) then not found
Else if \(a = A \left(\left\lfloor \frac{i+j}{2} \right\rfloor \right)\) then found!
Else if \(a > A \left(\left\lfloor \frac{i+j}{2} \right\rfloor \right)\) then look for \(a\) in \(A \left[\left\lfloor \frac{i+j}{2} \right\rfloor + 1, j \right]\)
Else look for \(a\) in \(A \left[i, \left\lfloor \frac{i+j}{2} \right\rfloor \right]\).

Recurrence relation

In Mergesort, if \(T(n)\) is the number of operations, then

\[T(1) = 1 \text{ and } T(n) = 2T(n/2) + cn \]

where \(c\) is a constant.

Then it must be \(T(n) = \Theta(n \log n)\).
Master Theorem

Let $a, b, c \geq 1$ constants. Let $\beta = \log_b a$. Let $f(\cdot)$ be a positive function, and $T(\cdot)$ be a function over the integers defined as

\[T(1) = c \text{ and } T(n) = aT(n/b) + f(n) \]

then

1. If $f(n) = O(n^\beta)$ with $\beta' < \beta$, then $T(n) = \Theta(n^\beta)$.
2. If $f(n) = \Theta(n^\beta)$ then $T(n) = \Theta(n^\beta \log n)$.
3. If $f(n) = \Omega(n^{\beta'})$ with $\beta' > \beta$ and $af(n/b) < cf(n)$ for some $c < 1$, then $T(n) = \Theta(f(n))$.

Examples

Always assume $T(1) = O(1)$.

1. If $T(n) = 7T(n/2) + O(n^2)$ then $T(n) = \Theta(n^{\log_2 7}) = \Theta(n^{2.807\ldots})$ (matrix multiplication).
2. If $T(n) = 2T(n/2) + O(n)$ then $T(n) = \Theta(n \log n)$ (mergesort).
3. If $T(n) = 2T(n/2) + n^2$ then $T(n) = O(n^2)$ (made-up example).

Max and Min

Given a list of integers a_1, \ldots, a_n, we want to find the minimum and the maximum.

We can do that in linear time, and this is optimal.

Let us get a better grip on the precise number of comparisons.

How many comparisons?

Simple algorithm:

(1) Find the minimum with $n - 1$ comparisons.

\[
\text{curr_min} = a[1]; \\
\text{for } (i=2; i<n; i++) \\
\quad \text{if } (a[i] < \text{curr_min}) \text{ curr_min} = a[i]; \\
\text{return curr_min;}
\]

(2) Find the maximum with other $n - 1$ comparisons.

Total: $2n - 2$ comparisons.

Divide and Conquer

Let m_1 and M_1 be the minimum and the maximum of the subsequence $a_1, \ldots, a_{n/2}$.

Let m_2 and M_2 be the minimum and the maximum of the subsequence $a_{n/2+1}, \ldots, a_n$.

Let $m = \min(m_1, m_2)$ and $M = \max(M_1, M_2)$.

Then m is the minimum of a_1, \ldots, a_n, and M is the maximum of a_1, \ldots, a_n.
Analysis

\[C(n) = 2C(n/2) + 2, \quad C(2) = 1, \quad C(1) = 0. \]

Solving by substitution. By the Master Theorem we know
\[C(n) = \Theta(n), \]
therefore we try and write
\[C(n) = an + b. \]
We derive

\[
\begin{align*}
 an + b &= 2(an/2 + b) + 2 \\
 2a + b &= 1
\end{align*}
\]

Which solves to \(a = 1.5 \) and \(b = -2 \). And \(C(n) = \lceil 3n/2 \rceil - 2 \) solves the recurrence for every \(n \).

Optimaly

\(3n/2 - 2 \) comparisons is the best possible.

The proof is somewhat complicated (and we do not do it in full).

It is simpler to first prove that \(n - 1 \) comparisons are necessary to find the maximum.

Lower Bounds for the Maximum

It is simpler to first prove weaker lower bound.

A straightforward decision-tree argument shows that \(\log n \) comparisons are necessary. (Why?)

It is also “easy” to see that \(n/2 \) comparisons are necessary.

The Precise Lower Bound for the Maximum

Fix an algorithm for finding the maximum of \(n \) integers. We show that the algorithm makes \(n - 1 \) comparisons (or makes a mistake).

Observe the behavior of the algorithm on input a certain sequence (say, a sorted sequence). While the algorithm runs, maintain a list of possible positions that could be the maximum compatibly with the comparisons done so far.

The list contains initially \(n \) elements. When the algorithm finishes the list contains 1 element. Each comparison can cancel at most one element from the list.

Lower Bound for Max-Min

Consider any algorithm. Fix an even \(n \). We will construct an instance where the algorithm makes \(3n/2 - 2 \) comparisons.

During the execution of the algorithm, maintain the list of elements that could be the maximum and the list of elements that could be the minimum.

Initially \(2n \) total elements, at the end 2.

Comparisons between two elements in both lists: two cancellations (at most \(n/2 \) times).

Other comparisons: we can force 1 or 0 cancellations.

Without recursion (and without fun)

```plaintext
if (a[1]<a[2]) {
    m=a[1]; M=a[2];
} else {
    m=a[2]; M=a[1];
}
for (i=3; i<n-1; i+=2){
    if (a[i]<a[i+1]) {
        tm=a[i]; tM=a[i+1];
    } else {
        tm=a[i+1]; tM=a[i];
    }
    if (tM > M) M=tM;
    if (tm < m) m=tm;
}
```