Definitions for graphs

- **Breadth First Search and Depth First Search**

Graphs

A graph G is given by a set of vertices V and a set of edges E. Normally we call $n = |V|$ and $m = |E|$.

- In a **directed** graph, an edge is an ordered pairs of vertices (u, v). The edge goes from u to v and is represented using an arrow.

- In an **undirected** graph, an edge is a set (unordered pair) of two vertices $\{u, v\}$.

Expressive power

A graph can be used to represent a communication network, a hierarchy of classes, the topology of a maze, relationships between people, a subway map, a finite-state automaton, the web . . .

Each application motivates a series of computational problems.

We will see efficient solutions to the most basic ones:

- Connectivity and Shortest Paths.
- Cuts, Flows, Matching.

Representation

There are two simple ways of representing a directed graph $G = (V, E)$. Assume $V = \{1, \ldots, n\}$.

- **Adjacency List.** For every node u we maintain a list of all the nodes v such that $(u, v) \in E$.

- **Adjacency Matrix.** A $n \times n$ Boolean matrix $M[\cdot, \cdot]$ is maintained, where

\[
M[u, v] = \begin{cases}
1 & \text{if } (u, v) \in E \\
0 & \text{otherwise}
\end{cases}
\]

Comparison

- An adjacency list representation uses $O(n + m)$ space: we have an array of n pointers and the sum of the number of elements in all the lists is m.

Deciding whether $(u, v) \in E$ takes $O(n)$ time in the worst case.

- An adjacency matrix uses $O(n^2)$ space.

Deciding whether $(u, v) \in E$ takes $O(1)$ time in the worst case.

Assuming names of vertices and pointers use 2 bytes each, adjacency list requires $2n + 4m$ bytes of space ($2n + 8m$ for undirected graphs), adjacency matrix $n^2/8$.
Terminology — Undirected Graph

- **u** and **v** are adjacent (or neighbors) if \(\{u, v\} \in E \).
- The degree of **u** is the number of its neighbor (the size of its adjacency list).
- A path is a sequence of vertices \(v_1, v_2, \ldots, v_k \) such that any two consecutive vertices are adjacent. The length of the path is \(k - 1 \). A path is simple if no vertex is duplicated.
- A cycle is a path \(v_1, v_2, \ldots, v_k \) where \(v_1 = v_k \). A cycle is simple if \(v_1, \ldots, v_{k-1} \) are all different.

Terminology — Directed Graph

- Path, simple path, cycle, simple cycle, as before.
- Two vertices **s** and **t** are strongly connected if there is a directed path from **s** to **t** and a directed path from **t** to **s**.
- The relation “being strongly connected to” partitions the set of vertices into strongly connected components. A graph is strongly connected if all its vertices are in the same strongly connected component.

It is possible to test whether a graph is strongly connected in optimal \(O(n + m) \) time. (No proof)

Search

Several graph algorithms use a procedure that “searches” the graph “visiting” all edges.

The two main methods to search a graph are

- **Breadth-first search**
- **Depth-first search**

Breadth First Search

Start from a vertex, then visit all vertices at distance one, then visit all vertices at distance two, . . .

Implementation

We use a queue \(Q \) and a vector of \(n \) “colors”, one for each vertex.

\[
\text{BFS} \left(s, G = (V, E) \right) \begin{align*}
\text{begin} & \\
\text{Initialize} \ Q &: \\
\text{for all} \ u \in V & \text{ do Initialize } \text{col}(u) := \text{white} \\
\text{col}(s) & := \text{gray}; \text{enqueue} \ (s, Q) \\
\text{while} \ Q \text{ is not empty} & \\
& \text{for all} \ v \text{ such that } (u, v) \in E \text{ and } \text{col}(v) = \text{white} \\
& \text{ do } \\
& \text{col}(v) := \text{gray} \\
& \text{enqueue}(v, Q) \\
\text{end} \\
\end{align*}
\]
Analysis

- Using adjacency list, running time is $O(n + m)$.
- We do $O(1)$ operations on every vertex, and $O(1)$ operations on every edge.
- At the end, the black vertices are precisely those in the connected component of s (for undirected graphs).

Depth First Search

We follow a direction, as far as possible, and then we backtrack. Optimal strategy to get out of a maze (BFS is also optimal, but DFS is more natural).

Recursive Implementation — Simple Version

Basic idea (works for undirected connected graphs):

```
DFS (s, G = (V, E))
    for all u ∈ V do Initialize col(u) := white
    DFS-R (s, G)
end

DFS-R (s, G = (V, E))
    col(s) := black;
    for all v such that (s, v) ∈ E and col(v) = white do
        DFS-R (v, G)
```

Recursive Implementation — General Version

time is a global variable.

```
DFS (G = (V, E))
    for all u ∈ V do col(u) := white
    time := 0
    for all u ∈ V do if col(u) = white then DFS-R (u, G)

DFS-R (s, G)
    time := time + 1; d(s) := time; col(s) = gray
    for all v such that (s, v) ∈ E do if col(v) = white then
        DFS-R (v, G)
    col(s) := black
    time := time + 1; f(s) = time
```
Building a DFS Tree

By a further modification of the procedures DFS and DFS-R, we can also build a tree (or rather a forest).

The roots of the forest are the nodes on which we call DFS-R from within DFS.

The edges in the forest are the edges of the form \((s, v)\) where \(s\) is the parameter in a call of DFS\((s, G)\) and \(v\) is white, and DFS\((v, G)\) is the resulting procedure call.

The forest represents the way the recursive calls “unfold” during the computation.

Edges in the DFS Tree

An edge \((u, v)\) is a
- **Tree edge** if it is part of the forest.
- **Back edge** if \(v\) is an ancestor of \(u\) in the tree.
- **Forward edge** if \(v\) is a descendant of \(u\) in the tree.
- **Cross edge** otherwise.

In the DFS forest of an undirected graph, there is no difference between forward and back edges, and there are no cross edges.

Acyclic Graphs

An **acyclic** graph is a directed graph without cycles.

Acyclic graphs represent hierarchical structures, e.g. precedence constraints (as in the `make` command, or in course prerequisites).

Topological Sort

Suppose \(V\) is a set of actions that we have to perform, and \((u, v) \in E\) iff action \(u\) has to be done before action \(v\).

We want to find a schedule \(v_1, \ldots, v_n\) of the actions such that if \((v_i, v_j) \in E\) then \(i < j\).

If the graph contains a cycle we are not going to be able to do that.

If the graph is acyclic we can always find a feasible schedule, and we can do so efficiently.